ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Inforna 2.0: A Platform for the Sequence-Based Design of Small Molecules Targeting Structured RNAs

View Author Information
Department of Chemistry and Informatics Core, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
Cite this: ACS Chem. Biol. 2016, 11, 6, 1720–1728
Publication Date (Web):April 20, 2016
https://doi.org/10.1021/acschembio.6b00001
Copyright © 2016 American Chemical Society

    Article Views

    5666

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    The development of small molecules that target RNA is challenging yet, if successful, could advance the development of chemical probes to study RNA function or precision therapeutics to treat RNA-mediated disease. Previously, we described Inforna, an approach that can mine motifs (secondary structures) within target RNAs, which is deduced from the RNA sequence, and compare them to a database of known RNA motif–small molecule binding partners. Output generated by Inforna includes the motif found in both the database and the desired RNA target, lead small molecules for that target, and other related meta-data. Lead small molecules can then be tested for binding and affecting cellular (dys)function. Herein, we describe Inforna 2.0, which incorporates all known RNA motif–small molecule binding partners reported in the scientific literature, a chemical similarity searching feature, and an improved user interface and is freely available via an online web server. By incorporation of interactions identified by other laboratories, the database has been doubled, containing 1936 RNA motif–small molecule interactions, including 244 unique small molecules and 1331 motifs. Interestingly, chemotype analysis of the compounds that bind RNA in the database reveals features in small molecule chemotypes that are privileged for binding. Further, this updated database expanded the number of cellular RNAs to which lead compounds can be identified.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acschembio.6b00001.

    • User manual, description of small molecules in the database including references and their categorization, and supplementary figures (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 145 publications.

    1. Samantha M. Meyer, Toru Tanaka, Amirhossein Taghavi, Jared T. Baisden, Maison Grefe, Matthew D. Disney. Optimization of a Protein-Targeted Medicine into an RNA-Specific Small Molecule. ACS Chemical Biology 2023, 18 (11) , 2336-2342. https://doi.org/10.1021/acschembio.3c00476
    2. Blessy M. Suresh, Yuquan Tong, Daniel Abegg, Alexander Adibekian, Jessica L. Childs-Disney, Matthew D. Disney. Altering the Cleaving Effector in Chimeric Molecules that Target RNA Enhances Cellular Selectivity. ACS Chemical Biology 2023, 18 (11) , 2385-2393. https://doi.org/10.1021/acschembio.3c00363
    3. Xiaoyi Zeng, Yajing Liu, Yuxin Fan, Di Wu, Yangyang Meng, Mingze Qin. Agents for the Treatment of Gout: Current Advances and Future Perspectives. Journal of Medicinal Chemistry 2023, 66 (21) , 14474-14493. https://doi.org/10.1021/acs.jmedchem.3c01710
    4. Chloé Maucort, Maurinne Bonnet, Jean-Claude Ortuno, Gordon Tucker, Emie Quissac, Maïté Verreault, Stéphane Azoulay, Christophe Di Giorgio, Audrey Di Giorgio, Maria Duca. Synthesis of Bleomycin-Inspired RNA Ligands Targeting the Biogenesis of Oncogenic miRNAs. Journal of Medicinal Chemistry 2023, 66 (15) , 10639-10657. https://doi.org/10.1021/acs.jmedchem.3c00797
    5. Quentin M. R. Gibaut, Jessica A. Bush, Yuquan Tong, Jared T. Baisden, Amirhossein Taghavi, Hailey Olafson, Xiyuan Yao, Jessica L. Childs-Disney, Eric T. Wang, Matthew D. Disney. Transcriptome-Wide Studies of RNA-Targeted Small Molecules Provide a Simple and Selective r(CUG)exp Degrader in Myotonic Dystrophy. ACS Central Science 2023, 9 (7) , 1342-1353. https://doi.org/10.1021/acscentsci.2c01223
    6. Blessy M. Suresh, Amirhossein Taghavi, Jessica L. Childs-Disney, Matthew D. Disney. Fragment-Based Approaches to Identify RNA Binders. Journal of Medicinal Chemistry 2023, 66 (10) , 6523-6541. https://doi.org/10.1021/acs.jmedchem.3c00034
    7. Zhila Izadi, Ebrahim Barzegari, Amin Iranpanah, Soraya Sajadimajd, Hossein Derakhshankhah. Gentamycin Rationally Repositioned to Inhibit miR-34a Ameliorates Oxidative Injury to PC12 Cells. ACS Omega 2023, 8 (1) , 771-781. https://doi.org/10.1021/acsomega.2c06112
    8. Quentin M. R. Gibaut, Yoshihiro Akahori, Jessica A. Bush, Amirhossein Taghavi, Toru Tanaka, Haruo Aikawa, Lucas S. Ryan, Brian M. Paegel, Matthew D. Disney. Study of an RNA-Focused DNA-Encoded Library Informs Design of a Degrader of a r(CUG) Repeat Expansion. Journal of the American Chemical Society 2022, 144 (48) , 21972-21979. https://doi.org/10.1021/jacs.2c08883
    9. Abhishek A. Kognole, Anthony Hazel, Alexander D. MacKerell, Jr.. SILCS-RNA: Toward a Structure-Based Drug Design Approach for Targeting RNAs with Small Molecules. Journal of Chemical Theory and Computation 2022, 18 (9) , 5672-5691. https://doi.org/10.1021/acs.jctc.2c00381
    10. Yuquan Tong, Quentin M. R. Gibaut, Warren Rouse, Jessica L. Childs-Disney, Blessy M. Suresh, Daniel Abegg, Shruti Choudhary, Yoshihiro Akahori, Alexander Adibekian, Walter N. Moss, Matthew D. Disney. Transcriptome-Wide Mapping of Small-Molecule RNA-Binding Sites in Cells Informs an Isoform-Specific Degrader of QSOX1 mRNA. Journal of the American Chemical Society 2022, 144 (26) , 11620-11625. https://doi.org/10.1021/jacs.2c01929
    11. Liwen Hua, Qiuyue Zhang, Xinyue Zhu, Ruoning Wang, Qidong You, Lei Wang. Beyond Proteolysis-Targeting Chimeric Molecules: Designing Heterobifunctional Molecules Based on Functional Effectors. Journal of Medicinal Chemistry 2022, 65 (12) , 8091-8112. https://doi.org/10.1021/acs.jmedchem.2c00316
    12. Anita Donlic, Emily G. Swanson, Liang-Yuan Chiu, Sarah L. Wicks, Aline Umuhire Juru, Zhengguo Cai, Kamillah Kassam, Chris Laudeman, Bilva G. Sanaba, Andrew Sugarman, Eunseong Han, Blanton S. Tolbert, Amanda E. Hargrove. R-BIND 2.0: An Updated Database of Bioactive RNA-Targeting Small Molecules and Associated RNA Secondary Structures. ACS Chemical Biology 2022, 17 (6) , 1556-1566. https://doi.org/10.1021/acschembio.2c00224
    13. Shiqin Miao, Debmalya Bhunia, Shekaraiah Devari, Yufeng Liang, Oliver Munyaradzi, Sarah Rundell, Dennis Bong. Bifacial PNAs Destabilize MALAT1 by 3′ A-Tail Displacement from the U-Rich Internal Loop. ACS Chemical Biology 2021, 16 (8) , 1600-1609. https://doi.org/10.1021/acschembio.1c00575
    14. Jessica A. Bush, Christopher C. Williams, Samantha M. Meyer, Yuquan Tong, Hafeez S. Haniff, Jessica L. Childs-Disney, Matthew D. Disney. Systematically Studying the Effect of Small Molecules Interacting with RNA in Cellular and Preclinical Models. ACS Chemical Biology 2021, 16 (7) , 1111-1127. https://doi.org/10.1021/acschembio.1c00014
    15. Cong Shen, Jiawei Luo, Wenjue Ouyang, Pingjian Ding, Hao Wu. Identification of Small Molecule–miRNA Associations with Graph Regularization Techniques in Heterogeneous Networks. Journal of Chemical Information and Modeling 2020, 60 (12) , 6709-6721. https://doi.org/10.1021/acs.jcim.0c00975
    16. Audrey Di Giorgio, Maria Duca. New Chemical Modalities Enabling Specific RNA Targeting and Degradation: Application to SARS-CoV-2 RNA. ACS Central Science 2020, 6 (10) , 1647-1650. https://doi.org/10.1021/acscentsci.0c01187
    17. Herschel Mukherjee, J. Craig Blain, Lee E. Vandivier, Donovan N. Chin, Jessica E. Friedman, Fei Liu, Ashley Maillet, Chao Fang, Jenifer B. Kaplan, Jinxing Li, David M. Chenoweth, Allan Beck Christensen, Lars Kolster Petersen, Nils Jakob Vest Hansen, Luis Barrera, Neil Kubica, Gnanasambandam Kumaravel, Jennifer C. Petter. PEARL-seq: A Photoaffinity Platform for the Analysis of Small Molecule-RNA Interactions. ACS Chemical Biology 2020, 15 (9) , 2374-2381. https://doi.org/10.1021/acschembio.0c00357
    18. Matthew G. Costales, Jessica L. Childs-Disney, Hafeez S. Haniff, Matthew D. Disney. How We Think about Targeting RNA with Small Molecules. Journal of Medicinal Chemistry 2020, 63 (17) , 8880-8900. https://doi.org/10.1021/acs.jmedchem.9b01927
    19. Jonathan L. Chen, Peiyuan Zhang, Masahito Abe, Haruo Aikawa, Liying Zhang, Alexander J. Frank, Timothy Zembryski, Christopher Hubbs, HaJeung Park, Jane Withka, Claire Steppan, Lucy Rogers, Shawn Cabral, Martin Pettersson, Travis T. Wager, Matthew A. Fountain, Gavin Rumbaugh, Jessica L. Childs-Disney, Matthew D. Disney. Design, Optimization, and Study of Small Molecules That Target Tau Pre-mRNA and Affect Splicing. Journal of the American Chemical Society 2020, 142 (19) , 8706-8727. https://doi.org/10.1021/jacs.0c00768
    20. Xiaohui Liu, Hafeez S. Haniff, Jessica L. Childs-Disney, Anton Shuster, Haruo Aikawa, Alexander Adibekian, Matthew D. Disney. Targeted Degradation of the Oncogenic MicroRNA 17-92 Cluster by Structure-Targeting Ligands. Journal of the American Chemical Society 2020, 142 (15) , 6970-6982. https://doi.org/10.1021/jacs.9b13159
    21. Raphael I. Benhamou, Alicia J. Angelbello, Ryan J. Andrews, Eric T. Wang, Walter N. Moss, Matthew D. Disney. Structure-Specific Cleavage of an RNA Repeat Expansion with a Dimeric Small Molecule Is Advantageous over Sequence-Specific Recognition by an Oligonucleotide. ACS Chemical Biology 2020, 15 (2) , 485-493. https://doi.org/10.1021/acschembio.9b00958
    22. Brittany S. Morgan, Bilva G. Sanaba, Anita Donlic, Diane B. Karloff, Jordan E. Forte, Yuqi Zhang, Amanda E. Hargrove. R-BIND: An Interactive Database for Exploring and Developing RNA-Targeted Chemical Probes. ACS Chemical Biology 2019, 14 (12) , 2691-2700. https://doi.org/10.1021/acschembio.9b00631
    23. Jun Yin, Xing Chen, Chun-Chun Wang, Yan Zhao, Ya-Zhou Sun. Prediction of Small Molecule–MicroRNA Associations by Sparse Learning and Heterogeneous Graph Inference. Molecular Pharmaceutics 2019, 16 (7) , 3157-3166. https://doi.org/10.1021/acs.molpharmaceut.9b00384
    24. Matthew D. Disney. Targeting RNA with Small Molecules To Capture Opportunities at the Intersection of Chemistry, Biology, and Medicine. Journal of the American Chemical Society 2019, 141 (17) , 6776-6790. https://doi.org/10.1021/jacs.8b13419
    25. Chun-Chun Wang, Xing Chen, Jia Qu, Ya-Zhou Sun, Jian-Qiang Li. RFSMMA: A New Computational Model to Identify and Prioritize Potential Small Molecule–MiRNA Associations. Journal of Chemical Information and Modeling 2019, 59 (4) , 1668-1679. https://doi.org/10.1021/acs.jcim.9b00129
    26. Cécile Becquart, Myriame Le Roch, Stéphane Azoulay, Philippe Uriac, Audrey Di Giorgio, Maria Duca. Exploring Heterocycle-Spermine Conjugates as Modulators of Oncogenic microRNAs Biogenesis. ACS Omega 2018, 3 (12) , 16500-16508. https://doi.org/10.1021/acsomega.8b02681
    27. Eric Valeur, Patrick Jimonet. New Modalities, Technologies, and Partnerships in Probe and Lead Generation: Enabling a Mode-of-Action Centric Paradigm. Journal of Medicinal Chemistry 2018, 61 (20) , 9004-9029. https://doi.org/10.1021/acs.jmedchem.8b00378
    28. Hafeez S. Haniff, Amanda Graves, Matthew D. Disney. Selective Small Molecule Recognition of RNA Base Pairs. ACS Combinatorial Science 2018, 20 (8) , 482-491. https://doi.org/10.1021/acscombsci.8b00049
    29. Alicia J. Angelbello, Jonathan L. Chen, Jessica L. Childs-Disney, Peiyuan Zhang, Zi-Fu Wang, and Matthew D. Disney . Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chemical Reviews 2018, 118 (4) , 1599-1663. https://doi.org/10.1021/acs.chemrev.7b00504
    30. Sai Pradeep Velagapudi, Yiling Luo, Tuan Tran, Hafeez S. Haniff, Yoshio Nakai, Mohammad Fallahi, Gustavo J. Martinez, Jessica L. Childs-Disney, and Matthew D. Disney . Defining RNA–Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA. ACS Central Science 2017, 3 (3) , 205-216. https://doi.org/10.1021/acscentsci.7b00009
    31. Matthew G. Costales, Christopher L. Haga, Sai Pradeep Velagapudi, Jessica L. Childs-Disney, Donald G. Phinney, and Matthew D. Disney . Small Molecule Inhibition of microRNA-210 Reprograms an Oncogenic Hypoxic Circuit. Journal of the American Chemical Society 2017, 139 (9) , 3446-3455. https://doi.org/10.1021/jacs.6b11273
    32. Huan Xiao, Xin Yang, Yihao Zhang, Zongkang Zhang, Ge Zhang, Bao-Ting Zhang. RNA-targeted small-molecule drug discoveries: a machine-learning perspective. RNA Biology 2023, 20 (1) , 384-397. https://doi.org/10.1080/15476286.2023.2223498
    33. Roberta Rocca, Katia Grillone, Emanuele Liborio Citriniti, Gianmarco Gualtieri, Anna Artese, Pierosandro Tagliaferri, Pierfrancesco Tassone, Stefano Alcaro. Targeting non-coding RNAs: Perspectives and challenges of in-silico approaches. European Journal of Medicinal Chemistry 2023, 261 , 115850. https://doi.org/10.1016/j.ejmech.2023.115850
    34. Pnina Gottfried Komlosh, Jonathan L. Chen, Jessica Childs-Disney, Matthew D. Disney, Dan Canaani. Broad-spectrum metastasis suppressing compounds and therapeutic uses thereof in human tumors. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-47478-x
    35. Ka Hin Chan, Yakun Wang, Bo‐Xin Zheng, Wei Long, Xinxin Feng, Wing‐Leung Wong. RNA‐Selective Small‐Molecule Ligands: Recent Advances in Live‐Cell Imaging and Drug Discovery. ChemMedChem 2023, 18 (19) https://doi.org/10.1002/cmdc.202300271
    36. Xueyi Yang, Jessica L. Childs‐Disney, M. Paegel, Matthew D. Disney. DNA‐Encoded Libraries and Their Application to RNA. Israel Journal of Chemistry 2023, 63 (10-11) https://doi.org/10.1002/ijch.202300073
    37. Olga Khorkova, Jack Stahl, Aswathy Joji, Claude-Henry Volmar, Zane Zeier, Claes Wahlestedt. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opinion on Drug Discovery 2023, 18 (9) , 1011-1029. https://doi.org/10.1080/17460441.2023.2236552
    38. Jianfeng Sun, Miaoer Xu, Jinlong Ru, Anna James-Bott, Dapeng Xiong, Xia Wang, Adam P. Cribbs. Small molecule-mediated targeting of microRNAs for drug discovery: Experiments, computational techniques, and disease implications. European Journal of Medicinal Chemistry 2023, 257 , 115500. https://doi.org/10.1016/j.ejmech.2023.115500
    39. Salma Haj-Yahia, Arijit Nandi, Raphael I. Benhamou. Targeted Degradation of Structured RNAs via Ribonuclease-Targeting Chimeras (RiboTacs). Expert Opinion on Drug Discovery 2023, 18 (8) , 929-942. https://doi.org/10.1080/17460441.2023.2224960
    40. Jyotsna Bhat-Ambure, Pravin Ambure, Eva Serrano-Candelas, Cristina Galiana-Roselló, Ariadna Gil-Martínez, Mario Guerrero, Margarita Martin, Jorge González-García, Enrique García-España, Rafael Gozalbes. G4-QuadScreen: A Computational Tool for Identifying Multi-Target-Directed Anticancer Leads against G-Quadruplex DNA. Cancers 2023, 15 (15) , 3817. https://doi.org/10.3390/cancers15153817
    41. Ying Wang, Svetlana Y. Folimonova. Long Noncoding RNAs in Plant–Pathogen Interactions. Phytopathology® 2023, 113 (8) , 1380-1386. https://doi.org/10.1094/PHYTO-02-23-0051-IA
    42. Kengo Sato, Michiaki Hamada. Recent trends in RNA informatics: a review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery. Briefings in Bioinformatics 2023, 24 (4) https://doi.org/10.1093/bib/bbad186
    43. Olga Khorkova, Jack Stahl, Aswathy Joji, Claude-Henry Volmar, Claes Wahlestedt. Amplifying gene expression with RNA-targeted therapeutics. Nature Reviews Drug Discovery 2023, 22 (7) , 539-561. https://doi.org/10.1038/s41573-023-00704-7
    44. Sowmya Ramaswamy Krishnan, Arijit Roy, M. Michael Gromiha. R-SIM: A Database of Binding Affinities for RNA-small Molecule Interactions. Journal of Molecular Biology 2023, 435 (14) , 167914. https://doi.org/10.1016/j.jmb.2022.167914
    45. Yuquan Tong, Yeongju Lee, Xiaohui Liu, Jessica L. Childs-Disney, Blessy M. Suresh, Raphael I. Benhamou, Chunying Yang, Weimin Li, Matthew G. Costales, Hafeez S. Haniff, Sonja Sievers, Daniel Abegg, Tristan Wegner, Tiffany O. Paulisch, Elizabeth Lekah, Maison Grefe, Gogce Crynen, Montina Van Meter, Tenghui Wang, Quentin M. R. Gibaut, John L. Cleveland, Alexander Adibekian, Frank Glorius, Herbert Waldmann, Matthew D. Disney. Programming inactive RNA-binding small molecules into bioactive degraders. Nature 2023, 117 https://doi.org/10.1038/s41586-023-06091-8
    46. Greta Bagnolini, TinTin B. Luu, Amanda E. Hargrove. Recognizing the power of machine learning and other computational methods to accelerate progress in small molecule targeting of RNA. RNA 2023, 29 (4) , 473-488. https://doi.org/10.1261/rna.079497.122
    47. Elliott B. Nickbarg, Kerrie B. Spencer, Jonathan D. Mortison, Jeannie T. Lee. Targeting RNA with small molecules: lessons learned from Xist RNA. RNA 2023, 29 (4) , 463-472. https://doi.org/10.1261/rna.079523.122
    48. Kamyar Yazdani, Deondre Jordan, Mo Yang, Christopher R. Fullenkamp, David R. Calabrese, Robert Boer, Thomas Hilimire, Timothy E. H. Allen, Rabia T. Khan, John S. Schneekloth. Machine Learning Informs RNA‐Binding Chemical Space**. Angewandte Chemie 2023, 135 (11) https://doi.org/10.1002/ange.202211358
    49. Kamyar Yazdani, Deondre Jordan, Mo Yang, Christopher R. Fullenkamp, David R. Calabrese, Robert Boer, Thomas Hilimire, Timothy E. H. Allen, Rabia T. Khan, John S. Schneekloth. Machine Learning Informs RNA‐Binding Chemical Space**. Angewandte Chemie International Edition 2023, 62 (11) https://doi.org/10.1002/anie.202211358
    50. Helen L. Lightfoot, Graham F. Smith. Targeting RNA with small molecules—A safety perspective. British Journal of Pharmacology 2023, https://doi.org/10.1111/bph.16027
    51. Md Ismail Hossain, Mason Myers, Danushika Herath, Ali H. Aldhumani, Hannah Boesger, Jennifer V. Hines. 4-Aminoquinolines modulate RNA structure and function: Pharmacophore implications of a conformationally restricted polyamine. Biochemical and Biophysical Research Communications 2023, 644 , 55-61. https://doi.org/10.1016/j.bbrc.2022.12.080
    52. Xueyi Yang, Jessica L. Childs-Disney, Matthew D. Disney. A meditation on accelerating the development of small molecule medicines targeting RNA. Expert Opinion on Drug Discovery 2023, 18 (2) , 115-117. https://doi.org/10.1080/17460441.2022.2084528
    53. Christopher L. Haga, Donald G. Phinney. Strategies for targeting RNA with small molecule drugs. Expert Opinion on Drug Discovery 2023, 18 (2) , 135-147. https://doi.org/10.1080/17460441.2022.2111414
    54. Ella Czarina Morishita. Discovery of RNA-targeted small molecules through the merging of experimental and computational technologies. Expert Opinion on Drug Discovery 2023, 18 (2) , 207-226. https://doi.org/10.1080/17460441.2022.2134852
    55. Roslyn Michelle Ray, Andreea Daniela Lazar, Liliana Roxana Balahura (Stamat), Alexandra Elena Mocanu-Dobranici, Marieta Costache, Sorina Dinescu. Therapeutic targeting non-coding RNAs. 2023, 349-417. https://doi.org/10.1016/B978-0-323-90406-3.00006-3
    56. Seyed Afshin Seyednejad, Gregory C. Sartor. Noncoding RNA therapeutics for substance use disorder. Advances in Drug and Alcohol Research 2022, 2 https://doi.org/10.3389/adar.2022.10807
    57. Haiyan An, Karen T Elvers, Jason A Gillespie, Kimberley Jones, John R Atack, Olivera Grubisha, Tatyana A Shelkovnikova. A toolkit for the identification of NEAT1_2/paraspeckle modulators. Nucleic Acids Research 2022, 50 (20) , e119-e119. https://doi.org/10.1093/nar/gkac771
    58. Céline Martin, Maurinne Bonnet, Nadia Patino, Stéphane Azoulay, Audrey Di Giorgio, Maria Duca. Design, Synthesis, and Evaluation of Neomycin‐Imidazole Conjugates for RNA Cleavage. ChemPlusChem 2022, 87 (11) https://doi.org/10.1002/cplu.202200250
    59. Talhat Chaudhry, Christopher R. Coxon, Kehinde Ross. Trading places: Peptide and small molecule alternatives to oligonucleotide-based modulation of microRNA expression. Drug Discovery Today 2022, 27 (11) , 103337. https://doi.org/10.1016/j.drudis.2022.08.005
    60. Lukas Möller, Lorenzo Guerci, Clemens Isert, Kenneth Atz, Gisbert Schneider. Translating from Proteins to Ribonucleic Acids for Ligand‐binding Site Detection. Molecular Informatics 2022, 41 (10) https://doi.org/10.1002/minf.202200059
    61. Jin Wang, Tian Tian, Xin Li, Yan Zhang. Noncoding RNAs Emerging as Drugs or Drug Targets: Their Chemical Modification, Bio-Conjugation and Intracellular Regulation. Molecules 2022, 27 (19) , 6717. https://doi.org/10.3390/molecules27196717
    62. Pei Guo, Da Han. Targeting Pathogenic DNA and RNA Repeats: A Conceptual Therapeutic Way for Repeat Expansion Diseases. Chemistry – A European Journal 2022, 28 (54) https://doi.org/10.1002/chem.202201749
    63. F P Panei, R Torchet, H Ménager, P Gkeka, M Bonomi, . HARIBOSS: a curated database of RNA-small molecules structures to aid rational drug design. Bioinformatics 2022, 38 (17) , 4185-4193. https://doi.org/10.1093/bioinformatics/btac483
    64. W. David Wilson, Ananya Paul. Reversible Small Molecule–Nucleic Acid Interactions. 2022, 477-521. https://doi.org/10.1039/9781837671328-00477
    65. Caroline Diener, Andreas Keller, Eckart Meese. Emerging concepts of miRNA therapeutics: from cells to clinic. Trends in Genetics 2022, 38 (6) , 613-626. https://doi.org/10.1016/j.tig.2022.02.006
    66. Yuanzhe Zhou, Yangwei Jiang, Shi‐Jie Chen. RNA –ligand molecular docking: Advances and challenges. WIREs Computational Molecular Science 2022, 12 (3) https://doi.org/10.1002/wcms.1571
    67. Rodrigo Aguilar, Kerrie B. Spencer, Barry Kesner, Noreen F. Rizvi, Maulik D. Badmalia, Tyler Mrozowich, Jonathan D. Mortison, Carlos Rivera, Graham F. Smith, Julja Burchard, Peter J. Dandliker, Trushar R. Patel, Elliott B. Nickbarg, Jeannie T. Lee. Targeting Xist with compounds that disrupt RNA structure and X inactivation. Nature 2022, 604 (7904) , 160-166. https://doi.org/10.1038/s41586-022-04537-z
    68. Thi Phuong Anh Tran, Sylvain Poulet, Mélanie Pernak, Anita Rayar, Stéphane Azoulay, Audrey Di Giorgio, Maria Duca. Development of 2-deoxystreptamine–nucleobase conjugates for the inhibition of oncogenic miRNA production. RSC Medicinal Chemistry 2022, 13 (3) , 311-319. https://doi.org/10.1039/D1MD00345C
    69. Fanrong Yu, Bihui Li, Jianfeng Sun, Jing Qi, Rudy Leon De Wilde, Luz Angela Torres-de la Roche, Cheng Li, Sajjad Ahmad, Wenjie Shi, Xiqing Li, Zihao Chen. PSRR: A Web Server for Predicting the Regulation of miRNAs Expression by Small Molecules. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.817294
    70. Sanjukta Mukherjee, Asako Murata, Ryoga Ishida, Ayako Sugai, Chikara Dohno, Michiaki Hamada, Sudhir Krishna, Kazuhiko Nakatani. HT-SELEX-based identification of binding pre-miRNA hairpin-motif for small molecules. Molecular Therapy - Nucleic Acids 2022, 27 , 165-174. https://doi.org/10.1016/j.omtn.2021.11.021
    71. Hafeez S. Haniff, Xiaohui Liu, Yuquan Tong, Samantha M. Meyer, Laurent Knerr, Malin Lemurell, Daniel Abegg, Haruo Aikawa, Alexander Adibekian, Matthew D. Disney. A structure-specific small molecule inhibits a miRNA-200 family member precursor and reverses a type 2 diabetes phenotype. Cell Chemical Biology 2022, 29 (2) , 300-311.e10. https://doi.org/10.1016/j.chembiol.2021.07.006
    72. Saisai Sun, Jianyi Yang, Zhaolei Zhang. RNALigands: a database and web server for RNA–ligand interactions. RNA 2022, 28 (2) , 115-122. https://doi.org/10.1261/rna.078889.121
    73. Arne Kuepper, Niall M McLoughlin, Saskia Neubacher, Alejandro Yeste-Vázquez, Estel Collado Camps, Chandran Nithin, Sunandan Mukherjee, Lucas Bethge, Janusz M Bujnicki, Roland Brock, Stefan Heinrichs, Tom N Grossmann. Constrained peptides mimic a viral suppressor of RNA silencing. Nucleic Acids Research 2021, 49 (22) , 12622-12633. https://doi.org/10.1093/nar/gkab1149
    74. Monalisa Swain, Abeer A Ageeli, Wojciech K Kasprzak, Mi Li, Jennifer T Miller, Joanna Sztuba-Solinska, John S Schneekloth, Deepak Koirala, Joseph Piccirili, Americo J Fraboni, Ryan P Murelli, Alexander Wlodawer, Bruce A Shapiro, Nathan Baird, Stuart F J Le Grice. Dynamic bulge nucleotides in the KSHV PAN ENE triple helix provide a unique binding platform for small molecule ligands. Nucleic Acids Research 2021, 49 (22) , 13179-13193. https://doi.org/10.1093/nar/gkab1170
    75. Lien D. Nguyen, Rachel K. Chau, Anna M. Krichevsky. Small Molecule Drugs Targeting Non-Coding RNAs as Treatments for Alzheimer’s Disease and Related Dementias. Genes 2021, 12 (12) , 2005. https://doi.org/10.3390/genes12122005
    76. Jacopo Manigrasso, Marco Marcia, Marco De Vivo. Computer-aided design of RNA-targeted small molecules: A growing need in drug discovery. Chem 2021, 7 (11) , 2965-2988. https://doi.org/10.1016/j.chempr.2021.05.021
    77. Jessica A. Bush, Haruo Aikawa, Rita Fuerst, Yue Li, Andrei Ursu, Samantha M. Meyer, Raphael I. Benhamou, Jonathan L. Chen, Tanya Khan, Sarah Wagner-Griffin, Montina J. Van Meter, Yuquan Tong, Hailey Olafson, Kendra K. McKee, Jessica L. Childs-Disney, Tania F. Gendron, Yongjie Zhang, Alyssa N. Coyne, Eric T. Wang, Ilyas Yildirim, Kye Won Wang, Leonard Petrucelli, Jeffrey D. Rothstein, Matthew D. Disney. Ribonuclease recruitment using a small molecule reduced c9ALS/FTD r(G 4 C 2 ) repeat expansion in vitro and in vivo ALS models. Science Translational Medicine 2021, 13 (617) https://doi.org/10.1126/scitranslmed.abd5991
    78. Igor Kozlovskii, Petr Popov. Structure-based deep learning for binding site detection in nucleic acid macromolecules. NAR Genomics and Bioinformatics 2021, 3 (4) https://doi.org/10.1093/nargab/lqab111
    79. Huachun Liu, Simone Rauch, Bryan C. Dickinson. Programmable technologies to manipulate gene expression at the RNA level. Current Opinion in Chemical Biology 2021, 64 , 27-37. https://doi.org/10.1016/j.cbpa.2021.03.004
    80. Xiaoxuan Su, Wenxiao Ma, Di Feng, Boyang Cheng, Qian Wang, Zefeng Guo, Demin Zhou, Xinjing Tang. Efficient Inhibition of SARS‐CoV‐2 Using Chimeric Antisense Oligonucleotides through RNase L Activation**. Angewandte Chemie 2021, 133 (40) , 21830-21835. https://doi.org/10.1002/ange.202105942
    81. Xiaoxuan Su, Wenxiao Ma, Di Feng, Boyang Cheng, Qian Wang, Zefeng Guo, Demin Zhou, Xinjing Tang. Efficient Inhibition of SARS‐CoV‐2 Using Chimeric Antisense Oligonucleotides through RNase L Activation**. Angewandte Chemie International Edition 2021, 60 (40) , 21662-21667. https://doi.org/10.1002/anie.202105942
    82. Sagar Satpathi, Tamaki Endoh, Peter Podbevšek, Janez Plavec, Naoki Sugimoto. Transcriptome screening followed by integrated physicochemical and structural analyses for investigating RNA-mediated berberine activity. Nucleic Acids Research 2021, 49 (15) , 8449-8461. https://doi.org/10.1093/nar/gkab189
    83. William J. Martin, Paola Grandi, Marco Marcia. Screening strategies for identifying RNA- and ribonucleoprotein-targeted compounds. Trends in Pharmacological Sciences 2021, 42 (9) , 758-771. https://doi.org/10.1016/j.tips.2021.06.001
    84. Zhichao Tang, Sana Akhter, Ankita Ramprasad, Xiao Wang, Mikhail Reibarkh, Jinan Wang, Sadikshya Aryal, Srinivas S Thota, Junxing Zhao, Justin T Douglas, Philip Gao, Erik D Holmstrom, Yinglong Miao, Jingxin Wang. Recognition of single-stranded nucleic acids by small-molecule splicing modulators. Nucleic Acids Research 2021, 49 (14) , 7870-7883. https://doi.org/10.1093/nar/gkab602
    85. Melanie Winkle, Sherien M. El-Daly, Muller Fabbri, George A. Calin. Noncoding RNA therapeutics — challenges and potential solutions. Nature Reviews Drug Discovery 2021, 20 (8) , 629-651. https://doi.org/10.1038/s41573-021-00219-z
    86. Walter Thavarajah, Laura M. Hertz, David Z. Bushhouse, Chloé M. Archuleta, Julius B. Lucks. RNA Engineering for Public Health: Innovations in RNA-Based Diagnostics and Therapeutics. Annual Review of Chemical and Biomolecular Engineering 2021, 12 (1) , 263-286. https://doi.org/10.1146/annurev-chembioeng-101420-014055
    87. Jared T. Baisden, Jessica L. Childs-Disney, Lucas S. Ryan, Matthew D. Disney. Affecting RNA biology genome-wide by binding small molecules and chemically induced proximity. Current Opinion in Chemical Biology 2021, 62 , 119-129. https://doi.org/10.1016/j.cbpa.2021.03.006
    88. Hong Su, Zhenling Peng, Jianyi Yang, . Recognition of small molecule–RNA binding sites using RNA sequence and structure. Bioinformatics 2021, 37 (1) , 36-42. https://doi.org/10.1093/bioinformatics/btaa1092
    89. Tomoko Furuzono, Asako Murata, Satoshi Okuda, Kenji Mizutani, Tsuyoshi Adachi, Kazuhiko Nakatani. Speeding drug discovery targeting RNAs: An iterative “RNA selection-compounds screening cycle“ for exploring RNA-small molecule pairs. Bioorganic & Medicinal Chemistry 2021, 36 , 116070. https://doi.org/10.1016/j.bmc.2021.116070
    90. Zhichao Tang, Junxing Zhao, Zach J. Pearson, Zarko V. Boskovic, Jingxin Wang. RNA-Targeting Splicing Modifiers: Drug Development and Screening Assays. Molecules 2021, 26 (8) , 2263. https://doi.org/10.3390/molecules26082263
    91. James P. Falese, Anita Donlic, Amanda E. Hargrove. Targeting RNA with small molecules: from fundamental principles towards the clinic. Chemical Society Reviews 2021, 50 (4) , 2224-2243. https://doi.org/10.1039/D0CS01261K
    92. M. Maneiro, E. De Vita, D. Conole, C.S. Kounde, Q. Zhang, E.W. Tate. PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs. 2021, 67-190. https://doi.org/10.1016/bs.pmch.2021.01.002
    93. Aline Umuhire Juru, Amanda E. Hargrove. Frameworks for targeting RNA with small molecules. Journal of Biological Chemistry 2021, 296 , 100191. https://doi.org/10.1074/jbc.REV120.015203
    94. Megan L. Kelly, Chia-Chieh Chu, Honglue Shi, Laura R. Ganser, Hal P. Bogerd, Kelly Huynh, Yuze Hou, Bryan R. Cullen, Hashim M. Al-Hashimi. Understanding the characteristics of nonspecific binding of drug-like compounds to canonical stem–loop RNAs and their implications for functional cellular assays. RNA 2021, 27 (1) , 12-26. https://doi.org/10.1261/rna.076257.120
    95. Blessy M. Suresh, Weichao Li, Peiyuan Zhang, Kye Won Wang, Ilyas Yildirim, Christopher G. Parker, Matthew D. Disney. A general fragment-based approach to identify and optimize bioactive ligands targeting RNA. Proceedings of the National Academy of Sciences 2020, 117 (52) , 33197-33203. https://doi.org/10.1073/pnas.2012217117
    96. , Yanqiu Shao, Qiangfeng Cliff Zhang. Targeting RNA structures in diseases with small molecules. Essays in Biochemistry 2020, 64 (6) , 955-966. https://doi.org/10.1042/EBC20200011
    97. Katia Grillone, Caterina Riillo, Francesca Scionti, Roberta Rocca, Giuseppe Tradigo, Pietro Hiram Guzzi, Stefano Alcaro, Maria Teresa Di Martino, Pierosandro Tagliaferri, Pierfrancesco Tassone. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic “dark matter”. Journal of Experimental & Clinical Cancer Research 2020, 39 (1) https://doi.org/10.1186/s13046-020-01622-x
    98. Liberty François-Moutal, Victor Miranda, Michael Sandino, May Khanna. Chemical Probes to Control RNA Function. 2020, 214-246. https://doi.org/10.1039/9781839160745-00214
    99. Yi Feng, Jinbo Li, Yan Zhang. Chemical Knockdown of MicroRNA with Small‐Molecule Chimeras. ChemBioChem 2020, 21 (22) , 3180-3185. https://doi.org/10.1002/cbic.202000287
    100. Mubarak I Umar, Chun Kit Kwok. Specific suppression of D-RNA G-quadruplex–protein interaction with an L-RNA aptamer. Nucleic Acids Research 2020, 48 (18) , 10125-10141. https://doi.org/10.1093/nar/gkaa759
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect