Protease-Resistant and Cell-Permeable Double-Stapled Peptides Targeting the Rab8a GTPase
- Philipp M. Cromm
- ,
- Jochen Spiegel
- ,
- Philipp Küchler
- ,
- Laura Dietrich
- ,
- Julia Kriegesmann
- ,
- Mathias Wendt
- ,
- Roger S. Goody
- ,
- Herbert Waldmann
- , and
- Tom N. Grossmann
Abstract

Small GTPases comprise a family of highly relevant targets in chemical biology and medicinal chemistry research and have been considered “undruggable” due to the persisting lack of effective synthetic modulators and suitable binding pockets. As molecular switches, small GTPases control a multitude of pivotal cellular functions, and their dysregulation is associated with many human diseases such as various forms of cancer. Rab-GTPases represent the largest subfamily of small GTPases and are master regulators of vesicular transport interacting with various proteins via flat and extensive protein–protein interactions (PPIs). The only reported synthetic inhibitor of a PPI involving an activated Rab GTPase is the hydrocarbon stapled peptide StRIP3. However, this macrocyclic peptide shows low proteolytic stability and cell permeability. Here, we report the design of a bioavailable StRIP3 analogue that harbors two hydrophobic cross-links and exhibits increased binding affinity, combined with robust cellular uptake and extremely high proteolytic stability. Localization experiments reveal that this double-stapled peptide and its target protein Rab8a accumulate in the same cellular compartments. The reported approach offers a strategy for the implementation of biostability into conformationally constrained peptides while supporting cellular uptake and target affinity, thereby conveying drug-like properties.
Cited By
This article is cited by 57 publications.
- Vanitha Selvarajan, Nhan D. T. Tram, Jian Xu, Sarah T. Y. Ngen, Jun-Jie Koh, Jeanette W. P. Teo, Tsz-Ying Yuen, Pui Lai Rachel Ee. Stapled β-Hairpin Antimicrobial Peptides with Improved Stability and Activity against Drug-Resistant Gram-Negative Bacteria. Journal of Medicinal Chemistry 2023, 66 (13) , 8498-8509. https://doi.org/10.1021/acs.jmedchem.3c00140
- Ramya Modi, Nick McKee, Ning Zhang, Amir Alwali, Samantha Nelson, Aditi Lohar, Raluca Ostafe, Donna D. Zhang, Elizabeth I. Parkinson. Stapled Peptides as Direct Inhibitors of Nrf2-sMAF Transcription Factors. Journal of Medicinal Chemistry 2023, 66 (9) , 6184-6192. https://doi.org/10.1021/acs.jmedchem.2c02037
- Marshall Case, Tejas Navaratna, Jordan Vinh, Greg Thurber. Rapid Evaluation of Staple Placement in Stabilized α Helices Using Bacterial Surface Display. ACS Chemical Biology 2023, 18 (4) , 905-914. https://doi.org/10.1021/acschembio.3c00048
- Christian O. Blanco, Deryn E. Fogg. Water-Accelerated Decomposition of Olefin Metathesis Catalysts. ACS Catalysis 2023, 13 (2) , 1097-1102. https://doi.org/10.1021/acscatal.2c05573
- Xinting Li, Timothy W. Craven, Paul M. Levine. Cyclic Peptide Screening Methods for Preclinical Drug Discovery. Journal of Medicinal Chemistry 2022, 65 (18) , 11913-11926. https://doi.org/10.1021/acs.jmedchem.2c01077
- Christina Helmling Christian N. Cunningham . mRNA Display and Its Growing Potential in the Discovery of De Novo Therapeutic Peptide Candidates. , 27-53. https://doi.org/10.1021/bk-2022-1417.ch002
- Edyta Gendaszewska-Darmach, Malgorzata A. Garstka, Katarzyna M. Błażewska. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. Journal of Medicinal Chemistry 2021, 64 (14) , 9677-9710. https://doi.org/10.1021/acs.jmedchem.1c00410
- Christian O. Blanco, Joshua Sims, Daniel L. Nascimento, Alexandre Y. Goudreault, Stephan N. Steinmann, Carine Michel, Deryn E. Fogg. The Impact of Water on Ru-Catalyzed Olefin Metathesis: Potent Deactivating Effects Even at Low Water Concentrations. ACS Catalysis 2021, 11 (2) , 893-899. https://doi.org/10.1021/acscatal.0c04279
- Alexandre Y. Goudreault, Daniel M. Walden, Daniel L. Nascimento, Adrian G. Botti, Stephan N. Steinmann, Carine Michel, Deryn E. Fogg. Hydroxide-Induced Degradation of Olefin Metathesis Catalysts: A Challenge for Metathesis in Alkaline Media. ACS Catalysis 2020, 10 (6) , 3838-3843. https://doi.org/10.1021/acscatal.9b05163
- Tsz Ying Yuen, Christopher J. Brown, Yaw Sing Tan, Charles W. Johannes. Synthesis of Chiral Alkenyl Cyclopropane Amino Acids for Incorporation into Stapled Peptides. The Journal of Organic Chemistry 2020, 85 (3) , 1556-1566. https://doi.org/10.1021/acs.joc.9b02659
- Patrick G. Dougherty, Ashweta Sahni, Dehua Pei. Understanding Cell Penetration of Cyclic Peptides. Chemical Reviews 2019, 119 (17) , 10241-10287. https://doi.org/10.1021/acs.chemrev.9b00008
- Yuteng Wu, Amandeep Kaur, Elaine Fowler, Mareike M. Wiedmann, Reginald Young, Warren R. J. D. Galloway, Lasse Olsen, Hannah F. Sore, Anasuya Chattopadhyay, Terence T.-L. Kwan, Wenshu Xu, Stephen J. Walsh, Peterson de Andrade, Matej Janecek, Senthil Arumugam, Laura S. Itzhaki, Yu Heng Lau, David R. Spring. Toolbox of Diverse Linkers for Navigating the Cellular Efficacy Landscape of Stapled Peptides. ACS Chemical Biology 2019, 14 (3) , 526-533. https://doi.org/10.1021/acschembio.9b00063
- Alexander A. Vinogradov, Yizhen Yin, Hiroaki Suga. Macrocyclic Peptides as Drug Candidates: Recent Progress and Remaining Challenges. Journal of the American Chemical Society 2019, 141 (10) , 4167-4181. https://doi.org/10.1021/jacs.8b13178
- Thomas E. Speltz, Jeanne M. Danes, Joshua D. Stender, Jonna Frasor, Terry W. Moore. A Cell-Permeable Stapled Peptide Inhibitor of the Estrogen Receptor/Coactivator Interaction. ACS Chemical Biology 2018, 13 (3) , 676-684. https://doi.org/10.1021/acschembio.7b01016
- Huitong Ruan, Xishan Chen, Cao Xie, Beibei Li, Man Ying, Yu Liu, Mingfei Zhang, Xuesai Zhang, Changyou Zhan, Wuyuan Lu, and Weiyue Lu . Stapled RGD Peptide Enables Glioma-Targeted Drug Delivery by Overcoming Multiple Barriers. ACS Applied Materials & Interfaces 2017, 9 (21) , 17745-17756. https://doi.org/10.1021/acsami.7b03682
- Julia Kriegesmann, Thomas Schlatzer, Kateryna Che, Claudia Altdorf, Susanne Huhmann, Hanspeter Kählig, Dennis Kurzbach, Rolf Breinbauer, Christian F. W. Becker. Constraining and Modifying Peptides Using Pd‐Mediated Cysteine Allylation. ChemBioChem 2023, 24 (13) https://doi.org/10.1002/cbic.202300098
- Staci L. Haney, Sarah A. Holstein. Targeting the Isoprenoid Biosynthetic Pathway in Multiple Myeloma. International Journal of Molecular Sciences 2023, 24 (1) , 111. https://doi.org/10.3390/ijms24010111
- Srinivasaraghavan Kannan, Dilraj Lama, Yaw Sing Tan, Jianguo Li, Chandra S Verma. Stapled peptidomimetic therapeutics. 2022, 99-124. https://doi.org/10.1016/B978-0-12-820141-1.00022-4
- Suchetana Gupta, Noora Azadvari, Parisa Hosseinzadeh. Design of Protein Segments and Peptides for Binding to Protein Targets. BioDesign Research 2022, 2022 https://doi.org/10.34133/2022/9783197
- Arne Kuepper, Niall M McLoughlin, Saskia Neubacher, Alejandro Yeste-Vázquez, Estel Collado Camps, Chandran Nithin, Sunandan Mukherjee, Lucas Bethge, Janusz M Bujnicki, Roland Brock, Stefan Heinrichs, Tom N Grossmann. Constrained peptides mimic a viral suppressor of RNA silencing. Nucleic Acids Research 2021, 49 (22) , 12622-12633. https://doi.org/10.1093/nar/gkab1149
- Aimee J. Horsfall, Beth A. Vandborg, Zoya Kikhtyak, Denis B. Scanlon, Wayne D. Tilley, Theresa E. Hickey, John B. Bruning, Andrew D. Abell. A cell permeable bimane-constrained PCNA-interacting peptide. RSC Chemical Biology 2021, 2 (5) , 1499-1508. https://doi.org/10.1039/D1CB00113B
- Han-Ying Zhu, Meng Wu, Fei-Qiang Yu, Yan-Ni Zhang, Tong-Kuai Xi, Kai Chen, Ge-Min Fang. Chemical synthesis of thioether-bonded bicyclic peptides using tert-butylthio and Trt-protected cysteines. Tetrahedron Letters 2021, 67 , 152875. https://doi.org/10.1016/j.tetlet.2021.152875
- Huitong Ruan, Shengyu Yao, Songli Wang, Ruifeng Wang, Cao Xie, Haiyan Guo, Weiyue Lu. Stapled RAP12 peptide ligand of LRP1 for micelles-based multifunctional glioma-targeted drug delivery. Chemical Engineering Journal 2021, 403 , 126296. https://doi.org/10.1016/j.cej.2020.126296
- Jerome Hochman, Tomi Sawyer, Ruchia Duggal. Overcoming Cellular and Systemic Barriers to Design the Next Wave of Peptide Therapeutics. 2021, 201-227. https://doi.org/10.1007/978-1-0716-1250-7_10
- Qin Zhang, Lihua Wu, Baoling Bai, Dan Li, Ping Xiao, Qi Li, Zhen Zhang, Hui Wang, Long Li, Qian Jiang. Quantitative Proteomics Reveals Association of Neuron Projection Development Genes ARF4, KIF5B, and RAB8A With Hirschsprung Disease. Molecular & Cellular Proteomics 2021, 20 , 100007. https://doi.org/10.1074/mcp.RA120.002325
- Marie T. J. Bluntzer, James O'Connell, Terry S. Baker, Julien Michel, Alison N. Hulme. Designing stapled peptides to inhibit protein‐protein interactions: An analysis of successes in a rapidly changing field. Peptide Science 2021, 113 (1) https://doi.org/10.1002/pep2.24191
- Francesca Curreli, Sofia M. B. Victor, Shahad Ahmed, Aleksandra Drelich, Xiaohe Tong, Chien-Te K. Tseng, Christopher D. Hillyer, Asim K. Debnath, . Stapled Peptides Based on Human Angiotensin-Converting Enzyme 2 (ACE2) Potently Inhibit SARS-CoV-2 Infection In Vitro. mBio 2020, 11 (6) https://doi.org/10.1128/mBio.02451-20
- Aimee J. Horsfall, Kylie R. Dunning, Kelly L. Keeling, Denis B. Scanlon, Kate L. Wegener, Andrew D. Abell. A Bimane‐Based Peptide Staple for Combined Helical Induction and Fluorescent Imaging. ChemBioChem 2020, 21 (23) , 3423-3432. https://doi.org/10.1002/cbic.202000485
- Kenichi Kawano, Fumiaki Yokoyama, Jun Kawamoto, Takuya Ogawa, Tatsuo Kurihara, Shiroh Futaki. Development of a Simple and Rapid Method for In Situ Vesicle Detection in Cultured Media. Journal of Molecular Biology 2020, 432 (22) , 5876-5888. https://doi.org/10.1016/j.jmb.2020.09.009
- Catherine A. Hurd, Helen R. Mott, Darerca Owen. Therapeutic peptides targeting the Ras superfamily. Peptide Science 2020, 112 (6) https://doi.org/10.1002/pep2.24165
- Eric Valeur. Classes, Modes of Action and Selection of New Modalities in Drug Discovery. 2020, 277-316. https://doi.org/10.1039/9781839160691-00277
- Lukas J. Jongkind, Maryam Rahimi, David Poole, Stephanie J. Ton, Deryn E. Fogg, Joost N. H. Reek. Protection of Ruthenium Olefin Metathesis Catalysts by Encapsulation in a Self‐assembled Resorcinarene Capsule. ChemCatChem 2020, 12 (16) , 4019-4023. https://doi.org/10.1002/cctc.202000111
- Kristina Hetherington, Zsofia Hegedus, Thomas A. Edwards, Richard B. Sessions, Adam Nelson, Andrew J. Wilson. Stapled Peptides as HIF‐1α/p300 Inhibitors: Helicity Enhancement in the Bound State Increases Inhibitory Potency. Chemistry – A European Journal 2020, 26 (34) , 7638-7646. https://doi.org/10.1002/chem.202000417
- Srinivasaraghavan Kannan, Pietro G. A. Aronica, Simon Ng, Dawn Thean Gek Lian, Yuri Frosi, Sharon Chee, Jiang Shimin, Tsz Ying Yuen, Ahmad Sadruddin, Hung Yi Kristal Kaan, Arun Chandramohan, Jin Huei Wong, Yaw Sing Tan, Zi Wei Chang, Fernando J. Ferrer-Gago, Prakash Arumugam, Yi Han, Shiying Chen, Laurent Rénia, Christopher J. Brown, Charles W. Johannes, Brian Henry, David P. Lane, Tomi K. Sawyer, Chandra S. Verma, Anthony W. Partridge. Macrocyclization of an all- d linear α-helical peptide imparts cellular permeability. Chemical Science 2020, 11 (21) , 5577-5591. https://doi.org/10.1039/C9SC06383H
- Haley I. Merritt, Nicholas Sawyer, Paramjit S. Arora. Bent into shape: Folded peptides to mimic protein structure and modulate protein function. Peptide Science 2020, 112 (1) https://doi.org/10.1002/pep2.24145
- Nora Safa, Jeffery C. Anderson, Manibarathi Vaithiyanathan, Jacob H. Pettigrew, Gavin A. Pappas, Dong Liu, Ted J. Gauthier, Adam T. Melvin. CPProtectides: Rapid uptake of well‐folded β‐hairpin peptides with enhanced resistance to intracellular degradation. Peptide Science 2019, 111 (2) https://doi.org/10.1002/pep2.24092
- Helen R. Mott, Darerca Owen. Bioblockades join the assault on small G protein signalling. Seminars in Cancer Biology 2019, 54 , 149-161. https://doi.org/10.1016/j.semcancer.2018.01.001
- Jordan M. Fletcher, Katherine A. Horner, Gail J. Bartlett, Guto G. Rhys, Andrew J. Wilson, Derek N. Woolfson. De novo coiled-coil peptides as scaffolds for disrupting protein–protein interactions. Chemical Science 2018, 9 (39) , 7656-7665. https://doi.org/10.1039/C8SC02643B
- Leila Peraro, Joshua A. Kritzer. Neue Methoden und Designprinzipien für zellgängige Peptide. Angewandte Chemie 2018, 130 (37) , 12042-12057. https://doi.org/10.1002/ange.201801361
- Leila Peraro, Joshua A. Kritzer. Emerging Methods and Design Principles for Cell‐Penetrant Peptides. Angewandte Chemie International Edition 2018, 57 (37) , 11868-11881. https://doi.org/10.1002/anie.201801361
- Wenjun Li, Dongyuan Wang, Xiaodong Shi, Jingxu Li, Yue Ma, Yanding Wang, Tingting Li, Jianing Zhang, Rongtong Zhao, Zhiqiang Yu, Feng Yin, Zigang Li. A siRNA-induced peptide co-assembly system as a peptide-based siRNA nanocarrier for cancer therapy. Materials Horizons 2018, 5 (4) , 745-752. https://doi.org/10.1039/C8MH00392K
- Yang Jiang, Hongyi Long, Yujie Zhu, Yi Zeng. Macrocyclic peptides as regulators of protein-protein interactions. Chinese Chemical Letters 2018, 29 (7) , 1067-1073. https://doi.org/10.1016/j.cclet.2018.05.028
- Hajime Abe, Chihiro Sato, Yuki Ohishi, Masahiko Inouye. Metathesis‐Based Stapling of a Pyridine–Acetylene–Phenol Oligomer Having Alkenyl Side Chains after Intermolecular Templation by Native Saccharides. European Journal of Organic Chemistry 2018, 2018 (24) , 3131-3138. https://doi.org/10.1002/ejoc.201800531
- Miloš Erak, Kathrin Bellmann-Sickert, Sylvia Els-Heindl, Annette G. Beck-Sickinger. Peptide chemistry toolbox – Transforming natural peptides into peptide therapeutics. Bioorganic & Medicinal Chemistry 2018, 26 (10) , 2759-2765. https://doi.org/10.1016/j.bmc.2018.01.012
- Marta Ruiz-Santaquiteria, Sonia de Castro, Miguel A. Toro, Héctor de Lucio, Kilian Jesús Gutiérrez, Pedro A. Sánchez-Murcia, María Ángeles Jiménez, Federico Gago, Antonio Jiménez-Ruiz, María-José Camarasa, Sonsoles Velázquez. Trypanothione reductase inhibition and anti-leishmanial activity of all-hydrocarbon stapled α-helical peptides with improved proteolytic stability. European Journal of Medicinal Chemistry 2018, 149 , 238-247. https://doi.org/10.1016/j.ejmech.2018.02.071
- Bárbara Gomes, Marcelo T. Augusto, Mário R. Felício, Axel Hollmann, Octávio L. Franco, Sónia Gonçalves, Nuno C. Santos. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnology Advances 2018, 36 (2) , 415-429. https://doi.org/10.1016/j.biotechadv.2018.01.004
- Fergus S. McWhinnie, Kristel Sepp, Charlotte Wilson, Tilo Kunath, Ted R. Hupp, Terry S. Baker, Douglas R. Houston, Alison N. Hulme. Mono‐Substituted Hydrocarbon Diastereomer Combinations Reveal Stapled Peptides with High Structural Fidelity. Chemistry – A European Journal 2018, 24 (9) , 2094-2097. https://doi.org/10.1002/chem.201705983
- Heriberto Bruzzoni-Giovanelli, Valerie Alezra, Nicolas Wolff, Chang-Zhi Dong, Pierre Tuffery, Angelita Rebollo. Interfering peptides targeting protein–protein interactions: the next generation of drugs?. Drug Discovery Today 2018, 23 (2) , 272-285. https://doi.org/10.1016/j.drudis.2017.10.016
- Wenjun Li, Kuan Hu, Qingzhou Zhang, Dongyuan Wang, Yue Ma, Zhanfeng Hou, Feng Yin, Zigang Li. N terminal N -methylation modulates chiral centre induced helical (CIH) peptides’ biophysical properties. Chemical Communications 2018, 54 (15) , 1865-1868. https://doi.org/10.1039/C7CC09201F
- Ye Guo, Pan-Pan Zhou, Sen-Yan Zhang, Xiao-Wen Fan, Yu-Wei Dou, Xuan-Ling Shi. Generation of a long-acting fusion inhibitor against HIV-1. MedChemComm 2018, 9 (7) , 1226-1231. https://doi.org/10.1039/C8MD00124C
- Thomas E. Speltz, Christopher G. Mayne, Sean W. Fanning, Zamia Siddiqui, Emad Tajkhorshid, Geoffrey L. Greene, Terry W. Moore. A “cross-stitched” peptide with improved helicity and proteolytic stability. Organic & Biomolecular Chemistry 2018, 16 (20) , 3702-3706. https://doi.org/10.1039/C8OB00790J
- Shreya Mitra, Jeffrey E. Montgomery, Matthew J. Kolar, Gang Li, Kang J. Jeong, Bo Peng, Gregory L. Verdine, Gordon B. Mills, Raymond E. Moellering. Stapled peptide inhibitors of RAB25 target context-specific phenotypes in cancer. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-00888-8
- Eric Valeur, Stéphanie M. Guéret, Hélène Adihou, Ranganath Gopalakrishnan, Malin Lemurell, Herbert Waldmann, Tom N. Grossmann, Alleyn T. Plowright. Neue Modalitäten für schwierige Zielstrukturen in der Wirkstoffentwicklung. Angewandte Chemie 2017, 129 (35) , 10428-10459. https://doi.org/10.1002/ange.201611914
- Eric Valeur, Stéphanie M. Guéret, Hélène Adihou, Ranganath Gopalakrishnan, Malin Lemurell, Herbert Waldmann, Tom N. Grossmann, Alleyn T. Plowright. New Modalities for Challenging Targets in Drug Discovery. Angewandte Chemie International Edition 2017, 56 (35) , 10294-10323. https://doi.org/10.1002/anie.201611914
- Laura Dietrich, Bernd Rathmer, Kenneth Ewan, Tanja Bange, Stefan Heinrichs, Trevor C. Dale, Dennis Schade, Tom N. Grossmann. Cell Permeable Stapled Peptide Inhibitor of Wnt Signaling that Targets β-Catenin Protein-Protein Interactions. Cell Chemical Biology 2017, 24 (8) , 958-968.e5. https://doi.org/10.1016/j.chembiol.2017.06.013
- Jingxu Li, Yuan Tian, Dongyuan Wang, Yujie Wu, Xiyang Ye, Zigang Li. An in-tether sulfoxide chiral center influences the biophysical properties of the N-capped peptides. Bioorganic & Medicinal Chemistry 2017, 25 (6) , 1756-1761. https://doi.org/10.1016/j.bmc.2016.11.042
- Claire M. Grison, George M. Burslem, Jennifer A. Miles, Ludwig K. A. Pilsl, David J. Yeo, Zeynab Imani, Stuart L. Warriner, Michael E. Webb, Andrew J. Wilson. Double quick, double click reversible peptide “stapling”. Chemical Science 2017, 8 (7) , 5166-5171. https://doi.org/10.1039/C7SC01342F