ACS Publications. Most Trusted. Most Cited. Most Read
Redox-Active Quasi-Solid-State Electrolytes for Thermal Energy Harvesting
My Activity
    Letter

    Redox-Active Quasi-Solid-State Electrolytes for Thermal Energy Harvesting
    Click to copy article linkArticle link copied!

    View Author Information
    ARC Centre of Excellence for Electromaterials Science, Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
    ARC Centre of Excellence for Electromaterials Science, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
    Other Access OptionsSupporting Information (1)

    ACS Energy Letters

    Cite this: ACS Energy Lett. 2016, 1, 4, 654–658
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsenergylett.6b00305
    Published September 1, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Thermoelectrochemical cells (TECs) are a promising and cost-effective approach to harvesting waste thermal energy. For the widespread uptake of this new technology and the development of flexible, leak-free devices, solidification of the redox electrolyte is key. Thus, here we report the first quasi-solid-state electrolyte incorporating the ferri/ferrocyanide redox couple within a cellulose matrix. The electrolyte with 5 wt % cellulose achieved an optimum balance of mechanical properties, Seebeck coefficients, and diffusion coefficients and supported power outputs comparable to those of the liquid electrolyte systems.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsenergylett.6b00305.

    • Experimental method for electrolyte preparation, SEM analysis, and electrochemical testing (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 108 publications.

    1. Carlos M. Andreu, Ana López-Hazas, Sonia Merino, Ester Vázquez, Oscar J. Dura. Enhancing Thermogalvanic Efficiency through Electrostatic Interaction in Cationic Hydrogels. ACS Applied Energy Materials 2025, 8 (2) , 1342-1348. https://doi.org/10.1021/acsaem.4c02835
    2. Wei Gao, Zhouyue Lei, Wenwen Chen, Yongping Chen. Hierarchically Anisotropic Networks to Decouple Mechanical and Ionic Properties for High-Performance Quasi-Solid Thermocells. ACS Nano 2022, 16 (5) , 8347-8357. https://doi.org/10.1021/acsnano.2c02606
    3. Mark A. Buckingham, Florence Stoffel, Shuai Zhang, Yuqing Liu, Frank Marken, Jun Chen, Leigh Aldous. Nanostructuring Electrode Surfaces and Hydrogels for Enhanced Thermocapacitance. ACS Applied Nano Materials 2022, 5 (1) , 438-445. https://doi.org/10.1021/acsanm.1c03273
    4. Matteo Massetti, Fei Jiao, Andrew J. Ferguson, Dan Zhao, Kosala Wijeratne, Alois Würger, Jeffrey L. Blackburn, Xavier Crispin, Simone Fabiano. Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chemical Reviews 2021, 121 (20) , 12465-12547. https://doi.org/10.1021/acs.chemrev.1c00218
    5. Mark A. Buckingham, Shuai Zhang, Yuqing Liu, Jun Chen, Frank Marken, Leigh Aldous. Thermogalvanic and Thermocapacitive Behavior of Superabsorbent Hydrogels for Combined Low-Temperature Thermal Energy Conversion and Harvesting. ACS Applied Energy Materials 2021, 4 (10) , 11204-11214. https://doi.org/10.1021/acsaem.1c02060
    6. Yimin Liang, Joseph Ka-Ho Hui, Masa-aki Morikawa, Hirotaka Inoue, Teppei Yamada, Nobuo Kimizuka. High Positive Seebeck Coefficient of Aqueous I–/I3– Thermocells Based on Host–Guest Interactions and LCST Behavior of PEGylated α-Cyclodextrin. ACS Applied Energy Materials 2021, 4 (5) , 5326-5331. https://doi.org/10.1021/acsaem.1c00844
    7. Ana L. Pires, Rui S. Costa, Clara Pereira, André M. Pereira. An Interdigital Planar Energy Harvesting/Storage Device Based On an Ionic Solid–Gel Polymer. ACS Applied Electronic Materials 2021, 3 (2) , 696-703. https://doi.org/10.1021/acsaelm.0c00853
    8. Ju Hyeon Kim, Tae June Kang. Diffusion and Current Generation in Porous Electrodes for Thermo-electrochemical Cells. ACS Applied Materials & Interfaces 2019, 11 (32) , 28894-28899. https://doi.org/10.1021/acsami.9b08381
    9. Hualong Ma, Xiaochen Wang, Yanqiu Peng, Hanqing Peng, Meixue Hu, Li Xiao, Gongwei Wang, Juntao Lu, Lin Zhuang. Powerful Thermogalvanic Cells Based on a Reversible Hydrogen Electrode and Gas-Containing Electrolytes. ACS Energy Letters 2019, 4 (8) , 1810-1815. https://doi.org/10.1021/acsenergylett.9b00944
    10. Chia‐Yu Lee, Shao‐Huan Hong, Cheng‐Liang Liu. Recent Progress in Polymer Gel‐Based Ionic Thermoelectric Devices: Materials, Methods, and Perspectives. Macromolecular Rapid Communications 2025, 451 https://doi.org/10.1002/marc.202400837
    11. Yuchen Li, Shuaihua Wang, Mao Yu, Huan Li, Benben Li, Kang Zhu, Weishu Liu. Multilayer Electrode Strategy Shorten Thermal Charging Time and Boost Energy Output in Gelatin‐Based i‐TE Cells. Advanced Energy Materials 2025, 15 (1) https://doi.org/10.1002/aenm.202402621
    12. Zhi Li, Yanyu Shen, Chengdong Fang, Yuqi Huang, Xiaoli Yu, Long Jiang. Thermo-electrochemical cells enable efficient and flexible power supplies: From materials to applications. Energy Storage Materials 2025, 74 , 103902. https://doi.org/10.1016/j.ensm.2024.103902
    13. Rebecca Haughton-James, Sireenya Mesawang, Mark A. Buckingham, Robert Taylor, Patrick E. Phelan, Leigh Aldous. Thermogalvanic bricks: optimising large dimension thermocells for air and water valorisation. Sustainable Energy & Fuels 2025, 64 https://doi.org/10.1039/D4SE01498G
    14. Wei Liu, Yi Fang, Xiaolin Lyu, Xiangfang Peng, Zhong-Zhen Luo, Zhigang Zou. Construction and application of thermogalvanic hydrogels. Soft Science 2024, 4 (4) https://doi.org/10.20517/ss.2024.59
    15. Jaejin Choi, Jeongmin Mo, Jaemin Jung, Yeongje Jeong, Jinhan Cho, Jaeyoung Jang. High‐Performance Quasi‐Solid‐State Thermogalvanic Cells with Metallized Fibril‐Based Textile Electrodes and Structure‐Breaking Salts. Advanced Energy Materials 2024, 9 https://doi.org/10.1002/aenm.202404151
    16. Jinpei Wang, Yuxin Song, Fanfei Yu, Yijun Zeng, Chenyang Wu, Xuezhi Qin, Liang Peng, Yitan Li, Yongsen Zhou, Ran Tao, Hangchen Liu, Hong Zhu, Ming Sun, Wanghuai Xu, Chao Zhang, Zuankai Wang. Ultrastrong, flexible thermogalvanic armor with a Carnot-relative efficiency over 8%. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-51002-8
    17. Jiafu Shen, Xi Huang, Yu Dai, Xiaojin Zhang, Fan Xia. N-type and P-type series integrated hydrogel thermoelectric cells for low-grade heat harvesting. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-53660-0
    18. Gilyong Shin, Jae Yoon Baek, Ju Hyeon Kim, Ju Hwan Lee, Hyeong Jun Kim, Byeong Jun So, Yuseung Choi, Sungryul Yun, Taewoo Kim, Jei Gyeong Jeon, Tae June Kang. Mechanically Adaptable High‐Performance p(SBMA‐MMA) Copolymer Hydrogel with Iron (II/III) Perchlorate for Wearable Thermocell Applications. Advanced Functional Materials 2024, 12 https://doi.org/10.1002/adfm.202412524
    19. Chia‐Yu Lee, Ching‐Chieh Hsu, Chia‐Hsin Wang, U‐Ser Jeng, Shih‐Huang Tung, Chi‐Chang Hu, Cheng‐Liang Liu. Exploring Pyrazine‐Based Organic Redox Couples for Enhanced Thermoelectric Performance in Wearable Energy Harvesters. Small 2024, 42 https://doi.org/10.1002/smll.202407622
    20. Zhiwei Li, Yinghong Xu, Xiaogang Zhang. Progresses and insights of thermoelectrochemical devices for low-grade heat harvesting: From mechanisms, materials to devices. EnergyChem 2024, 6 (5) , 100136. https://doi.org/10.1016/j.enchem.2024.100136
    21. Ziyao Xu, Shangchao Lin, Yisi Yin, Xiaokun Gu. Synergy between gelatin hydrogels and electrodes for adjustable and thermally stable ionic thermoelectric supercapacitors. Chemical Engineering Journal 2024, 493 , 152734. https://doi.org/10.1016/j.cej.2024.152734
    22. Heli Cheng, Zhenyu Wang, Zejiang Guo, Jiang Lou, Wenjia Han, Jun Rao, Feng Peng. Cellulose-based thermoelectric composites: A review on mechanism, strategies and applications. International Journal of Biological Macromolecules 2024, 275 , 132908. https://doi.org/10.1016/j.ijbiomac.2024.132908
    23. Xin Lu, Ziwei Mo, Zhaopeng Liu, Yifeng Hu, Chunyu Du, Lirong Liang, Zhuoxin Liu, Guangming Chen. Robust, Efficient, and Recoverable Thermocells with Zwitterion‐Boosted Hydrogel Electrolytes for Energy‐Autonomous and Wearable Sensing. Angewandte Chemie 2024, 136 (29) https://doi.org/10.1002/ange.202405357
    24. Xin Lu, Ziwei Mo, Zhaopeng Liu, Yifeng Hu, Chunyu Du, Lirong Liang, Zhuoxin Liu, Guangming Chen. Robust, Efficient, and Recoverable Thermocells with Zwitterion‐Boosted Hydrogel Electrolytes for Energy‐Autonomous and Wearable Sensing. Angewandte Chemie International Edition 2024, 63 (29) https://doi.org/10.1002/anie.202405357
    25. Ming Xiao, Panmeng Tao, Yuqin Wang, Wenqi Sha, Siliang Wang, Wei Zeng, Jinling Zhao, Limin Ruan. Intricate Ionic Behaviors in High‐Performance Self‐Powered Hydrothermal Chemical Generator Using Water and Iron (III) Gate. Small 2024, 20 (29) https://doi.org/10.1002/smll.202400477
    26. Tian Xu, Yang Tao, Yongxin Qian, Wang Li, Zheng Ma, Zusheng Zheng, Xin Li, Qinghui Jiang, Yubo Luo, Junyou Yang. Semi‐Solid Thermo‐Electrochemical Cell Based Wearable Power Generator for Body Heat Harvesting. Advanced Functional Materials 2024, 34 (25) https://doi.org/10.1002/adfm.202316068
    27. Shao-Huan Hong, Ching-Chieh Hsu, Tai-Hung Liu, Tai-Chou Lee, Shih-Huang Tung, Hsin-Lung Chen, Jiashing Yu, Cheng-Liang Liu. Extremely large Seebeck coefficient of gelatin methacryloyl (GelMA)-based thermogalvanic cells by the dual effect of ion-induced crystallization and nanochannel control. Materials Today Energy 2024, 42 , 101546. https://doi.org/10.1016/j.mtener.2024.101546
    28. Hang Yang, Ning Li, Kun Yang, Lei Sun, Hulin Zhang, Zhiyi Zhang, Xiaojing Cui. Coupling thermogalvanic and piezoresistive effects in a robust hydrogel for Deep-Learning-Assisted Self-Powered sign language and object recognition. Chemical Engineering Journal 2024, 488 , 150816. https://doi.org/10.1016/j.cej.2024.150816
    29. Ding Zhang, Yanjie Fang, Lili Liu, Yuetong Zhou, Peijia Bai, Qi Li, Jiaqi Guo, Rujun Ma. Boosting Thermoelectric Performance of Thermogalvanic Hydrogels by Structure Engineering Induced by Liquid Nitrogen Quenching. Advanced Energy Materials 2024, 14 (10) https://doi.org/10.1002/aenm.202303358
    30. Ruifeng Zhang, Minghao Yu, Zheng Li, Zhigang Chen, Ruguang Ma, Zhengying Wu. Research progress in thermo-electrochemical cells for harvesting low-grade waste heat. SCIENTIA SINICA Chimica 2024, 30 https://doi.org/10.1360/SSC-2023-0215
    31. Xinrui He, Hailong Sun, Zhipeng Li, Jie Song, Hezhang Li, Chao Wang, Yi Niu, Jing Jiang. Simultaneously Enhanced Energy Harvesting and Storage Performance Achieved by 3D Mix‐Phase Mose 2 ‐Nise/NF. Advanced Functional Materials 2024, 34 (7) https://doi.org/10.1002/adfm.202307835
    32. Qian Long, Geyuan Jiang, Jianhong Zhou, Dawei Zhao, Puyou Jia, Shuangxi Nie. Cellulose ionic gel and its sustainable thermoelectric devices – Design, applications and prospects. Nano Energy 2024, 120 , 109130. https://doi.org/10.1016/j.nanoen.2023.109130
    33. Xiaohan Sun, Ang Lu. Popular strategies for constructing polymer gel thermoelectric materials. Journal of Polymer Science 2024, 62 (2) , 266-279. https://doi.org/10.1002/pol.20230434
    34. Qikai Li, Dangkai Yu, Shuaihua Wang, Xinbo Zhang, Yuchen Li, Shien‐Ping Feng, Weishu Liu. High Thermopower of Agarose‐Based Ionic Thermoelectric Gel Through Micellization Effect Decoupling the Cation/Anion Thermodiffusion. Advanced Functional Materials 2023, 33 (49) https://doi.org/10.1002/adfm.202305835
    35. Ping-Fan Li, Ting-Yuan Hu, Tao Luo, Zhuang Liu, Xiao-Jie Ju, Rui Xie, Da-Wei Pan, Wei Wang, Liang-Yin Chu. Anti-freezing hydrogel thermocells with confined microcrystallization for enhanced low-grade heat harvest. Chemical Engineering Journal 2023, 478 , 147380. https://doi.org/10.1016/j.cej.2023.147380
    36. Rui S. Costa, Ana L. Pires, André M. Pereira, Clara R. Pereira. Multifunctional energy harvesting and storage textile technology based on thermionic effect. Journal of Power Sources 2023, 587 , 233712. https://doi.org/10.1016/j.jpowsour.2023.233712
    37. Yousef AlWeqayyan, Emmanuel Dasinor, Benjamin Obeng, Akhtar Abbas, Patrick Phelan. Experimental and simulated thermal resistance of thermogalvanic cells with triply periodic minimal surface structures. International Journal of Thermal Sciences 2023, 192 , 108430. https://doi.org/10.1016/j.ijthermalsci.2023.108430
    38. Bingchen Huo, Fengxia Kuang, Cun-Yue Guo. Design and Optimization Strategies for Flexible Quasi-Solid-State Thermo-Electrochemical Cells. Materials 2023, 16 (19) , 6574. https://doi.org/10.3390/ma16196574
    39. Lili Liu, Ding Zhang, Peijia Bai, Yin Mao, Qi Li, Jiaqi Guo, Yanjie Fang, Rujun Ma. Strong Tough Thermogalvanic Hydrogel Thermocell With Extraordinarily High Thermoelectric Performance. Advanced Materials 2023, 35 (32) https://doi.org/10.1002/adma.202300696
    40. Yudong Zong, Luzheng Chen, Xia Li, Qijun Ding, Wenjia Han, Jiang Lou. Highly robust and sensitive dual-network freeze-resistant organic hydrogel thermocells. Carbohydrate Polymers 2023, 314 , 120958. https://doi.org/10.1016/j.carbpol.2023.120958
    41. Jianing Li, Zhaosu Wang, Saeed Ahmed Khan, Ning Li, Zhiquan Huang, Hulin Zhang. Self-powered information conversion based on thermogalvanic hydrogel with interpenetrating networks for nursing aphasic patients. Nano Energy 2023, 113 , 108612. https://doi.org/10.1016/j.nanoen.2023.108612
    42. Jing Li, Shiyan Chen, Zhuotong Wu, Zhiliang Han, Xiangyang Qu, Mengtian Jin, Yuhang Jia, Zhou Zhou, Huaping Wang. Bacterial cellulose hydrogel-based wearable thermo-electrochemical cells for continuous body heat harvest. Nano Energy 2023, 112 , 108482. https://doi.org/10.1016/j.nanoen.2023.108482
    43. Kaixiang Jiang, Jianchao Jia, Yizhong Chen, Longbin Li, Chen Wu, Peng Zhao, Dong Yu Zhu, Wei Zeng. An Ionic Thermoelectric Generator with a Giant Output Power Density and High Energy Density Enabled by Synergy of Thermodiffusion Effect and Redox Reaction on Electrodes. Advanced Energy Materials 2023, 13 (21) https://doi.org/10.1002/aenm.202204357
    44. Jonghak Park, Younjeong Choe, Taewoo Kim. Investigation of the Effective Voltage and Performance of Thermocells. Journal of The Electrochemical Society 2023, 170 (5) , 054512. https://doi.org/10.1149/1945-7111/acd4ed
    45. Lingshuang Kong, Zhiang Yuan, Nianhua Sun, Junjie Ding, Sen Liu, Shaohua Zhang, Zhiqiang Lv, Wenlong Xu, Guijing Liu, Xiguang Liu. Advances in flexible hydrogels for light-thermal-electricity energy conversion and storage. Journal of Energy Storage 2023, 60 , 106618. https://doi.org/10.1016/j.est.2023.106618
    46. Jingyuan Zhao, Xuan Wu, Huimin Yu, Yida Wang, Pan Wu, Xiaofei Yang, Dewei Chu, Gary Owens, Haolan Xu. Regenerable aerogel‐based thermogalvanic cells for efficient low‐grade heat harvesting from solar radiation and interfacial solar evaporation systems. EcoMat 2023, 5 (3) https://doi.org/10.1002/eom2.12302
    47. Ziquan Zhou, Yanfen Wan, Jinyu Zi, Guomin Ye, Taosha Jin, Xuemin Geng, Wenbo Zhuang, Peng Yang. Flexible hydrogel with a coupling enhanced thermoelectric effect for low-grade heat harvest. Materials Today Sustainability 2023, 21 , 100293. https://doi.org/10.1016/j.mtsust.2022.100293
    48. Xiaofang Shi, Lin Ma, Yingjie Li, Zhenpu Shi, Qingcong Wei, Guanglei Ma, Weiwei Zhang, Yuming Guo, Peiyi Wu, Zhiguo Hu. Double Hydrogen‐bonding Reinforced High‐Performance Supramolecular Hydrogel Thermocell for Self‐powered Sensing Remote‐Controlled by Light. Advanced Functional Materials 2023, 33 (9) https://doi.org/10.1002/adfm.202211720
    49. Pengxiang Yin, Yu Geng, Lunyu Zhao, Qiujie Meng, Ziyan Xin, Liushan Luo, Bijia Wang, Zhiping Mao, Xiaofeng Sui, Wei Wu, Xueling Feng. Robust and flexible bacterial cellulose-based thermogalvanic cells for low-grade heat harvesting in extreme environments. Chemical Engineering Journal 2023, 457 , 141274. https://doi.org/10.1016/j.cej.2023.141274
    50. Qu Yue, Taotao Gao, Yujue Wang, Yan Meng, Xiaoqin Li, Hongyan Yuan, Dan Xiao. A Novel Gel Thermoelectric Chemical Cell for Harvesting Low‐Grade Heat Energy. ChemSusChem 2023, 16 (2) https://doi.org/10.1002/cssc.202201815
    51. Jennifer M. Pringle, Danah Al-Masri, Farzaneh Mahmoudi, Aliakbar Akbarzadeh, Patrick Phelan. Other technologies. 2023, 375-418. https://doi.org/10.1016/B978-0-12-818022-8.00007-7
    52. Yuchen Li, Qikai Li, Xinbo Zhang, Jiajia Zhang, Shuaihua Wang, Liuqin Lai, Kang Zhu, Weishu Liu. Realizing record-high output power in flexible gelatin/GTA-KCl-FeCN 4−/3− ionic thermoelectric cells enabled by extending the working temperature range. Energy & Environmental Science 2022, 15 (12) , 5379-5390. https://doi.org/10.1039/D2EE02792E
    53. Wei Gao, Yang Wang, Feili Lai. Thermoelectric energy harvesting for personalized healthcare. Smart Medicine 2022, 1 (1) https://doi.org/10.1002/SMMD.20220016
    54. Peng Peng, Jiaqian Zhou, Lirong Liang, Xuan Huang, Haicai Lv, Zhuoxin Liu, Guangming Chen. Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells. Nano-Micro Letters 2022, 14 (1) https://doi.org/10.1007/s40820-022-00824-6
    55. Isuru E. Gunathilaka, Abuzar Taheri, Jennifer M. Pringle, Maria Forsyth, Luke A. O’Dell. Probing the molecular interactions and physicochemical properties of a cobalt-based redox electrolyte system for thermo-electrochemical cells. Physical Chemistry Chemical Physics 2022, 24 (45) , 27772-27782. https://doi.org/10.1039/D2CP01149B
    56. Wei Gao, Haofei Meng, Yongping Chen, Xiangdong Liu. Quasi-solid n-type thermogalvanic thermocells with enhanced ionic conductivity for continuous low-grade heat harvesting. Applied Physics Letters 2022, 121 (20) https://doi.org/10.1063/5.0120728
    57. Xinrui He, Hailong Sun, Zhipeng Li, Xing Chen, Zhirong Wang, Yi Niu, Jing Jiang, Chao Wang. Redox-induced thermocells for low-grade heat harvesting: mechanism, progress, and their applications. Journal of Materials Chemistry A 2022, 10 (39) , 20730-20755. https://doi.org/10.1039/D2TA05742E
    58. Yudong Zong, Jiang Lou, Hongbing Li, Xia Li, Yifei Jiang, Qijun Ding, Zhuqing Liu, Wenjia Han. Bacterial cellulose-based dual chemical reaction coupled hydrogel thermocells for efficient heat harvesting. Carbohydrate Polymers 2022, 294 , 119789. https://doi.org/10.1016/j.carbpol.2022.119789
    59. Xiaoya Li, Jia Li, Jeonghun Yun, Angyin Wu, Caitian Gao, Seok Woo Lee. Continuous thermally regenerative electrochemical systems for directly converting low-grade heat to electricity. Nano Energy 2022, 101 , 107547. https://doi.org/10.1016/j.nanoen.2022.107547
    60. Igor Burmistrov, Rita Khanna, Nikolay Gorshkov, Nikolay Kiselev, Denis Artyukhov, Elena Boychenko, Andrey Yudin, Yuri Konyukhov, Maksim Kravchenko, Alexander Gorokhovsky, Denis Kuznetsov. Advances in Thermo-Electrochemical (TEC) Cell Performances for Harvesting Low-Grade Heat Energy: A Review. Sustainability 2022, 14 (15) , 9483. https://doi.org/10.3390/su14159483
    61. Ding Zhang, Yin Mao, Fei Ye, Qi Li, Peijia Bai, Wen He, Rujun Ma. Stretchable thermogalvanic hydrogel thermocell with record-high specific output power density enabled by ion-induced crystallization. Energy & Environmental Science 2022, 15 (7) , 2974-2982. https://doi.org/10.1039/D2EE00738J
    62. Jiaxin Bai, Yajie Hu, Tianlei Guang, Kaixuan Zhu, Haiyan Wang, Huhu Cheng, Feng Liu, Liangti Qu. Vapor and heat dual-drive sustainable power for portable electronics in ambient environments. Energy & Environmental Science 2022, 15 (7) , 3086-3096. https://doi.org/10.1039/D2EE00846G
    63. Wei Li, Jun Ma, Jingjing Qiu, Shiren Wang. Thermocells-enabled low-grade heat harvesting: challenge, progress, and prospects. Materials Today Energy 2022, 27 , 101032. https://doi.org/10.1016/j.mtener.2022.101032
    64. Zhouyue Lei, Wei Gao, Weiyan Zhu, Peiyi Wu. Anti‐Fatigue and Highly Conductive Thermocells for Continuous Electricity Generation. Advanced Functional Materials 2022, 32 (25) https://doi.org/10.1002/adfm.202201021
    65. Maria A. Trosheva, Mark A. Buckingham, Leigh Aldous. Direct measurement of the genuine efficiency of thermogalvanic heat-to-electricity conversion in thermocells. Chemical Science 2022, 13 (17) , 4984-4998. https://doi.org/10.1039/D1SC06340E
    66. Rahul Chauhan. Scanning prevalent technologies to promote scalable devising of DSSCs: An emphasis on dye component precisely with a shift to ambient algal dyes. Inorganic Chemistry Communications 2022, 139 , 109368. https://doi.org/10.1016/j.inoche.2022.109368
    67. Yuchen Li, Qikai Li, Xinbo Zhang, Biao Deng, Chenggong Han, Weishu Liu. 3D Hierarchical Electrodes Boosting Ultrahigh Power Output for Gelatin‐KCl‐FeCN 4−/3− Ionic Thermoelectric Cells. Advanced Energy Materials 2022, 12 (14) https://doi.org/10.1002/aenm.202103666
    68. Yudong Zong, Hongbing Li, Xia Li, Jiang Lou, Qijun Ding, Zhuqing Liu, Yifei Jiang, Wenjia Han. Bacterial cellulose-based hydrogel thermocells for low-grade heat harvesting. Chemical Engineering Journal 2022, 433 , 134550. https://doi.org/10.1016/j.cej.2022.134550
    69. Yuqing Liu, Shuai Zhang, Stephen Beirne, Kyuman Kim, Chunyan Qin, Yumeng Du, Yuetong Zhou, Zhenxiang Cheng, Gordon Wallace, Jun Chen. Wearable Photo‐Thermo‐Electrochemical Cells (PTECs) Harvesting Solar Energy. Macromolecular Rapid Communications 2022, 43 (6) https://doi.org/10.1002/marc.202200001
    70. Yang Han, Jian Zhang, Run Hu, Dongyan Xu. High-thermopower polarized electrolytes enabled by methylcellulose for low-grade heat harvesting. Science Advances 2022, 8 (7) https://doi.org/10.1126/sciadv.abl5318
    71. Chang Liu, Qikai Li, Sijia Wang, Weishu Liu, Nicholas X. Fang, Shien-Ping Feng. Ion regulation in double-network hydrogel module with ultrahigh thermopower for low-grade heat harvesting. Nano Energy 2022, 92 , 106738. https://doi.org/10.1016/j.nanoen.2021.106738
    72. Shuai Zhang, Yuqing Liu, Junnan Hao, Gordon G. Wallace, Stephen Beirne, Jun Chen. 3D‐Printed Wearable Electrochemical Energy Devices. Advanced Functional Materials 2022, 32 (3) https://doi.org/10.1002/adfm.202103092
    73. Wei Li, Santiago Garcia, Shiren Wang. Thermoelectric ionogel for low-grade heat harvesting. 2022, 63-86. https://doi.org/10.1016/B978-0-12-823690-1.00007-1
    74. Jiangjiang Duan, Boyang Yu, Xinyan Zhuang, Hui Wang, Jun Zhou. Liquid-state thermocells for low-grade heat harvesting. 2022, 141-162. https://doi.org/10.1016/B978-0-12-823690-1.00008-3
    75. Qu Yue, Taotao Gao, Yujue Wang, Yan Meng, Xiaoqin Li, Hongyan Yuan, Dan Xiao. The Improved Performance of Gel Thermoelectric Chemical Cells by Designing a Concentration Gradient of Electrolyte and Asymmetric Electrodes. SSRN Electronic Journal 2022, 53 https://doi.org/10.2139/ssrn.4012388
    76. Wei Gao, Zhouyue Lei, Chengbin Zhang, Xiangdong Liu, Yongping Chen. Stretchable and Freeze‐Tolerant Organohydrogel Thermocells with Enhanced Thermoelectric Performance Continually Working at Subzero Temperatures. Advanced Functional Materials 2021, 31 (43) https://doi.org/10.1002/adfm.202104071
    77. Dan Zhao, Alois Würger, Xavier Crispin. Ionic thermoelectric materials and devices. Journal of Energy Chemistry 2021, 61 , 88-103. https://doi.org/10.1016/j.jechem.2021.02.022
    78. Zhouyue Lei, Wei Gao, Peiyi Wu. Double-network thermocells with extraordinary toughness and boosted power density for continuous heat harvesting. Joule 2021, 5 (8) , 2211-2222. https://doi.org/10.1016/j.joule.2021.06.003
    79. Yuqing Liu, Hongbo Wang, Peter C. Sherrell, Lili Liu, Yong Wang, Jun Chen. Potentially Wearable Thermo‐Electrochemical Cells for Body Heat Harvesting: From Mechanism, Materials, Strategies to Applications. Advanced Science 2021, 8 (13) https://doi.org/10.1002/advs.202100669
    80. Weixian Zhao, Zhaochen Wang, Run Hu, Xiaobing Luo. Gel-based thermocells for low-grade heat harvesting. EPL (Europhysics Letters) 2021, 135 (2) , 26001. https://doi.org/10.1209/0295-5075/ac2075
    81. Bowen Lei, Shuxin Bai, Su Ju, Changping Yin, Chen Chen, Jianwei Zhang. Review on advances in thermoelectric conversion using ion-conducting polymers. Materials Research Express 2021, 8 (6) , 062001. https://doi.org/10.1088/2053-1591/ac0364
    82. Jiangjiang Duan, Boyang Yu, Liang Huang, Bin Hu, Ming Xu, Guang Feng, Jun Zhou. Liquid-state thermocells: Opportunities and challenges for low-grade heat harvesting. Joule 2021, 5 (4) , 768-779. https://doi.org/10.1016/j.joule.2021.02.009
    83. Boxuan Yang, Giuseppe Portale. Ionic thermoelectric materials for waste heat harvesting. Colloid and Polymer Science 2021, 299 (3) , 465-479. https://doi.org/10.1007/s00396-020-04792-4
    84. Yuetong Zhou, Yuqing Liu, Mark A. Buckingham, Shuai Zhang, Leigh Aldous, Stephen Beirne, Gordon Wallace, Jun Chen. The significance of supporting electrolyte on poly (vinyl alcohol)–iron(II)/iron(III) solid-state electrolytes for wearable thermo-electrochemical cells. Electrochemistry Communications 2021, 124 , 106938. https://doi.org/10.1016/j.elecom.2021.106938
    85. Qu Yue, Taotao Gao, Yujue Wang, Yan Meng, Xiaoqin Li, Hongyan Yuan, Dan Xiao. The Improved Performance of Gel Thermoelectric Chemical Cells by Designing a Concentration Gradient of Electrolyte and Asymmetric Electrodes. SSRN Electronic Journal 2021, 53 https://doi.org/10.2139/ssrn.3969614
    86. Yuqing Liu, Shuai Zhang, Yuetong Zhou, Mark A. Buckingham, Leigh Aldous, Peter C. Sherrell, Gordon G. Wallace, Gregory Ryder, Shaikh Faisal, David L. Officer, Stephen Beirne, Jun Chen. Advanced Wearable Thermocells for Body Heat Harvesting. Advanced Energy Materials 2020, 10 (48) https://doi.org/10.1002/aenm.202002539
    87. Boyang Yu, Jiangjiang Duan, Hengjiang Cong, Wenke Xie, Rong Liu, Xinyan Zhuang, Hui Wang, Bei Qi, Ming Xu, Zhong Lin Wang, Jun Zhou. Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting. Science 2020, 370 (6514) , 342-346. https://doi.org/10.1126/science.abd6749
    88. Luisa Consiglieri. Weak solutions for multiquasilinear elliptic–parabolic systems: application to thermoelectrochemical problems. Boletín de la Sociedad Matemática Mexicana 2020, 26 (2) , 535-562. https://doi.org/10.1007/s40590-019-00253-3
    89. Mark A. Buckingham, Samer Hammoud, Huanxin Li, Conor J. Beale, Jason T. Sengel, Leigh Aldous. A fundamental study of the thermoelectrochemistry of ferricyanide/ferrocyanide: cation, concentration, ratio, and heterogeneous and homogeneous electrocatalysis effects in thermogalvanic cells. Sustainable Energy & Fuels 2020, 4 (7) , 3388-3399. https://doi.org/10.1039/D0SE00440E
    90. Cheng-Gong Han, Xin Qian, Qikai Li, Biao Deng, Yongbin Zhu, Zhijia Han, Wenqing Zhang, Weichao Wang, Shien-Ping Feng, Gang Chen, Weishu Liu. Giant thermopower of ionic gelatin near room temperature. Science 2020, 368 (6495) , 1091-1098. https://doi.org/10.1126/science.aaz5045
    91. Ju Hyeon Kim, Ju Hwan Lee, Ramasubba Reddy Palem, Min-Soo Suh, Hong H. Lee, Tae June Kang. Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-45127-w
    92. Hemin Zhang, Dimitri Galayko, Philippe Basset. A self-sustained energy storage system with an electrostatic automatic switch and a buck converter for triboelectric nanogenerators. Journal of Physics: Conference Series 2019, 1407 (1) , 012016. https://doi.org/10.1088/1742-6596/1407/1/012016
    93. Hassan A.H. Alzahrani, Mark A. Buckingham, Frank Marken, Leigh Aldous. Success and failure in the incorporation of gold nanoparticles inside ferri/ferrocyanide thermogalvanic cells. Electrochemistry Communications 2019, 102 , 41-45. https://doi.org/10.1016/j.elecom.2019.03.007
    94. Jiangjiang Duan, Boyang Yu, Kang Liu, Jia Li, Peihua Yang, Wenke Xie, Guobin Xue, Rong Liu, Hui Wang, Jun Zhou. P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy 2019, 57 , 473-479. https://doi.org/10.1016/j.nanoen.2018.12.073
    95. Abuzar Taheri, Douglas R. MacFarlane, Cristina Pozo-Gonzalo, Jennifer M. Pringle. Application of a water-soluble cobalt redox couple in free-standing cellulose films for thermal energy harvesting. Electrochimica Acta 2019, 297 , 669-675. https://doi.org/10.1016/j.electacta.2018.11.208
    96. Matthew Russo, Holly Warren, Geoffrey M. Spinks, Douglas R. MacFarlane, Jennifer M. Pringle. Hydrogels Containing the Ferri/Ferrocyanide Redox Couple and Ionic Liquids for Thermocells. Australian Journal of Chemistry 2019, 72 (2) , 112. https://doi.org/10.1071/CH18395
    97. Jiangjiang Duan, Guang Feng, Boyang Yu, Jia Li, Ming Chen, Peihua Yang, Jiamao Feng, Kang Liu, Jun Zhou. Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-07625-9
    98. Kosala Wijeratne, Ujwala Ail, Robert Brooke, Mikhail Vagin, Xianjie Liu, Mats Fahlman, Xavier Crispin. Bulk electronic transport impacts on electron transfer at conducting polymer electrode–electrolyte interfaces. Proceedings of the National Academy of Sciences 2018, 115 (47) , 11899-11904. https://doi.org/10.1073/pnas.1806087115
    99. Abuzar Taheri, Douglas R. MacFarlane, Cristina Pozo‐Gonzalo, Jennifer M. Pringle. Quasi‐solid‐State Electrolytes for Low‐Grade Thermal Energy Harvesting using a Cobalt Redox Couple. ChemSusChem 2018, 11 (16) , 2788-2796. https://doi.org/10.1002/cssc.201800794
    100. Syed Waqar Hasan, Suhana Mohd. Said, Mohd. Faizul Mohd Sabri, Hasan Abbass Jaffery, Ahmad Shuhaimi Bin Abu Bakar. Thermally Resistive Electrospun Composite Membranes for Low‐Grade Thermal Energy Harvesting. Macromolecular Materials and Engineering 2018, 303 (3) https://doi.org/10.1002/mame.201700482
    Load all citations

    ACS Energy Letters

    Cite this: ACS Energy Lett. 2016, 1, 4, 654–658
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsenergylett.6b00305
    Published September 1, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    2469

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.