ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Magnetic Direct-Write Skyrmion Nanolithography

  • A. V. Ognev
    A. V. Ognev
    School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia
    More by A. V. Ognev
  • A. G. Kolesnikov
    A. G. Kolesnikov
    School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia
  • Yong Jin Kim
    Yong Jin Kim
    Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
    More by Yong Jin Kim
  • In Ho Cha
    In Ho Cha
    Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
    More by In Ho Cha
  • A. V. Sadovnikov
    A. V. Sadovnikov
    Laboratory “Metamaterials”, Saratov State University, Saratov 410012, Russia
    Kotel’nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia
  • S. A. Nikitov
    S. A. Nikitov
    Laboratory “Metamaterials”, Saratov State University, Saratov 410012, Russia
    Kotel’nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia
  • I. V. Soldatov
    I. V. Soldatov
    Leibniz Institute for Solid State and Material Research (IFW-Dresden), Dresden 01069, Germany
    Institute of Natural Sciences and Mathematic, Ural Federal University, Yekaterinburg 620075, Russia
  • A. Talapatra
    A. Talapatra
    Indian Institute of Technology, Hyderabad 502285, India
    More by A. Talapatra
  • J. Mohanty
    J. Mohanty
    Indian Institute of Technology, Hyderabad 502285, India
    More by J. Mohanty
  • M. Mruczkiewicz
    M. Mruczkiewicz
    Institute of Electrical Engineering, SAS, Bratislava 841 04, Slovakia
    Centre for Advanced Materials Application (CEMEA), Slovak Academy of Sciences, Bratislava 845 11, Slovakia
  • Y. Ge
    Y. Ge
    Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
    More by Y. Ge
  • N. Kerber
    N. Kerber
    Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
    More by N. Kerber
  • F. Dittrich
    F. Dittrich
    Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
    More by F. Dittrich
  • P. Virnau
    P. Virnau
    Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
    More by P. Virnau
  • M. Kläui
    M. Kläui
    Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
    More by M. Kläui
  • Young Keun Kim*
    Young Keun Kim
    Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
    *Email: [email protected]
  • , and 
  • A. S. Samardak*
    A. S. Samardak
    School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russia
    National Research South Ural State University, Chelyabinsk 454080, Russia
    *Email: [email protected]
Cite this: ACS Nano 2020, 14, 11, 14960–14970
Publication Date (Web):November 5, 2020
https://doi.org/10.1021/acsnano.0c04748
Copyright © 2020 American Chemical Society

    Article Views

    1934

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (4)»

    Abstract

    Abstract Image

    Magnetic skyrmions are stable spin textures with quasi-particle behavior and attract significant interest in fundamental and applied physics. The metastability of magnetic skyrmions at zero magnetic field is particularly important to enable, for instance, a skyrmion racetrack memory. Here, the results of the nucleation of stable skyrmions and formation of ordered skyrmion lattices by magnetic force microscopy in (Pt/CoFeSiB/W)n multilayers, exploiting the additive effect of the interfacial Dzyaloshinskii–Moriya interaction, are presented. The appropriate conditions under which skyrmion lattices are confined with a dense two-dimensional liquid phase are identified. A crucial parameter to control the skyrmion lattice characteristics and the number of scans resulting in the complete formation of a skyrmion lattice is the distance between two adjacent scanning lines of a magnetic force microscopy probe. The creation of skyrmion patterns with complex geometry is demonstrated, and the physical mechanism of direct magnetic writing of skyrmions is comprehended by micromagnetic simulations. This study shows a potential of a direct-write (maskless) skyrmion (topological) nanolithography with sub-100 nm resolution, where each skyrmion acts as a pixel in the final topological image.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.0c04748.

    • Magnetic hysteresis loops measured in OOP and IP geometries for samples with different number of stack’s repetition; surface topology and domain structure of the sample with n = 11; dependence of the normalized density of skyrmions on the local magnetic field spot size and micromagnetic profile of a domain wall; simulation of skyrmion lattice nucleation by means of a local magnetic field with increasing number of scanning passes; algorithm of optimized skyrmion lattice nucleation process (PDF)

    • Simulated scanning process by the MFM tip with Hlocal ≤ 0.5Hsat (AVI)

    • Simulated process of nucleation of the skyrmion lattice at a high local field (AVI)

    • Simulation results of one pass scanning along the Y direction to form a highly dense skyrmion lattice from the stripe domain structure realized after demagnetization (AVI)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 15 publications.

    1. Aleksandr V. Davydenko, Aleksei G. Kozlov, Nikolay N. Chernousov, Aleksandr A. Turpak, Konstantin S. Ermakov, Maksim E. Stebliy, Michail E. Letushev, Alexandr V. Sadovnikov, Aleksey P. Golikov, Alexey V. Ognev, Yoichi Shiota, Teruo Ono, Alexander S. Samardak. Giant Asymmetry of Domain Walls Propagation in Pd/Co/Pd(111) Epitaxial Structures with Different Interface Roughness. ACS Applied Electronic Materials 2024, 6 (2) , 1094-1103. https://doi.org/10.1021/acsaelm.3c01480
    2. Kilian D. Stenning, Jack C. Gartside, Troy Dion, Alexander Vanstone, Daan M. Arroo, Will R. Branford. Magnonic Bending, Phase Shifting and Interferometry in a 2D Reconfigurable Nanodisk Crystal. ACS Nano 2021, 15 (1) , 674-685. https://doi.org/10.1021/acsnano.0c06894
    3. Tomáš Ščepka, Juraj Feilhauer, Jaroslav Tóbik, Sergei Krylov, Tetiana Kalmykova, Vladimír Cambel, Michal Mruczkiewicz. Control of closure domain state circulation in coupled triangular permalloy elements using MFM tip. Journal of Applied Physics 2023, 134 (21) https://doi.org/10.1063/5.0166331
    4. Yuqing Ge, Jan Rothörl, Maarten A. Brems, Nico Kerber, Raphael Gruber, Takaaki Dohi, Mathias Kläui, Peter Virnau. Constructing coarse-grained skyrmion potentials from experimental data with Iterative Boltzmann Inversion. Communications Physics 2023, 6 (1) https://doi.org/10.1038/s42005-023-01145-9
    5. Fernando Ajejas, Yanis Sassi, William Legrand, Titiksha Srivastava, Sophie Collin, Aymeric Vecchiola, Karim Bouzehouane, Nicolas Reyren, Vincent Cros. Densely packed skyrmions stabilized at zero magnetic field by indirect exchange coupling in multilayers. APL Materials 2023, 11 (6) https://doi.org/10.1063/5.0139283
    6. J. Feilhauer, M. Zelent, Zhiwang Zhang, J. Christensen, M. Mruczkiewicz. Unidirectional spin-wave edge modes in magnonic crystal. APL Materials 2023, 11 (2) https://doi.org/10.1063/5.0134099
    7. Mangyuan Ma, Zizhao Pan, Fusheng Ma. Artificial skyrmion in magnetic multilayers. Journal of Applied Physics 2022, 132 (4) https://doi.org/10.1063/5.0095875
    8. M.V. Sapozhnikov, D.A. Tatarskiy, V.L. Mironov. Creating and detecting a magnetic bimeron by magnetic force microscope probe. Journal of Magnetism and Magnetic Materials 2022, 549 , 169043. https://doi.org/10.1016/j.jmmm.2022.169043
    9. Alexander S. Samardak, Alexey V. Ognev, Alexander G. Kolesnikov, Maksim E. Stebliy, Vadim Yu. Samardak, Ilia G. Iliushin, Anastasiia A. Pervishko, Dmitry Yudin, Mikhail Platunov, Teruo Ono, Fabrice Wilhelm, Andrey Rogalev. XMCD and ab initio study of interface-engineered ultrathin Ru/Co/W/Ru films with perpendicular magnetic anisotropy and strong Dzyaloshinskii–Moriya interaction. Physical Chemistry Chemical Physics 2022, 24 (14) , 8225-8232. https://doi.org/10.1039/D1CP05456B
    10. Gyu Won Kim, Jeong Kyu Lee, Taehyun Kim, Min Hyeok Lee, In Ho Cha, Jiung Cho, OukJae Lee, Young Keun Kim. Variation of spin-orbit torque and spin transport properties by V alloying in β-W-based magnetic heterostructures. Scripta Materialia 2022, 211 , 114486. https://doi.org/10.1016/j.scriptamat.2021.114486
    11. Hongrui Zhang, David Raftrey, Ying-Ting Chan, Yu-Tsun Shao, Rui Chen, Xiang Chen, Xiaoxi Huang, Jonathan T. Reichanadter, Kaichen Dong, Sandhya Susarla, Lucas Caretta, Zhen Chen, Jie Yao, Peter Fischer, Jeffrey B. Neaton, Weida Wu, David A. Muller, Robert J. Birgeneau, Ramamoorthy Ramesh. Room-temperature skyrmion lattice in a layered magnet (Fe 0.5 Co 0.5 ) 5 GeTe 2. Science Advances 2022, 8 (12) https://doi.org/10.1126/sciadv.abm7103
    12. A. S. Samardak, A. G. Kolesnikov, A. V. Davydenko, M. E. Steblii, A. V. Ognev. Topologically Nontrivial Spin Textures in Thin Magnetic Films. Physics of Metals and Metallography 2022, 123 (3) , 238-260. https://doi.org/10.1134/S0031918X22030097
    13. Takao Matsumoto, Naoya Shibata. Confinement of Magnetic Skyrmions to Corrals of Artificial Surface Pits with Complex Geometries. Frontiers in Physics 2022, 9 https://doi.org/10.3389/fphy.2021.774951
    14. Mateusz Zelent, Iuliia V. Vetrova, Jan Šoltýs, Xiaoguang Li, Yan Zhou, Vladislav A. Gubanov, Alexandr V. Sadovnikov, Tomas Šcepka, Jan Dérer, Roman Stoklas, Vladimír Cambel, Michal Mruczkiewicz. Skyrmion Formation in Nanodisks Using Magnetic Force Microscopy Tip. Nanomaterials 2021, 11 (10) , 2627. https://doi.org/10.3390/nano11102627
    15. Maarten A. Brems, Mathias Kläui, Peter Virnau. Circuits and excitations to enable Brownian token-based computing with skyrmions. Applied Physics Letters 2021, 119 (13) https://doi.org/10.1063/5.0063584

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect