ACS Publications. Most Trusted. Most Cited. Most Read
My Activity

Strong Carbon Nanotube Fibers by Drawing Inspiration from Polymer Fiber Spinning

View Author Information
IMDEA Materials Institute, c/Eric Kandel 2, Getafe 28906, Madrid, Spain
*Address correspondence to [email protected]
Cite this: ACS Nano 2015, 9, 7, 7392–7398
Publication Date (Web):June 17, 2015
Copyright © 2015 American Chemical Society

    Article Views





    Read OnlinePDF (5 MB)
    Supporting Info (2)»


    Abstract Image

    We present a method to spin highly oriented continuous fibers of adjustable carbon nanotube (CNT) type, with mechanical properties in the high-performance range. By lowering the concentration of nanotubes in the gas phase, through either reduction of the precursor feed rate or increase in carrier gas flow rate, the density of entanglements is reduced and the CNT aerogel can thus be drawn (up to 18 draw ratio) and wound at fast rates (>50 m/min). This is achieved without affecting the synthesis process, as demonstrated by Raman spectroscopy, and implies that the parameters controlling composition in terms of CNT diameter and number of layers are decoupled from those fixing CNT orientation. Applying polymer fiber wet-spinning principles then, strong CNT fibers (1 GPa/SG) are produced under dilute conditions and high draw ratios, corresponding to highly aligned fibers (from wide- and small-angle X-ray scattering). This is demonstrated for fibers either made up of predominantly single-wall CNTs (SWCNTs) or predominantly multiwall CNTs (MWCNTs), which surprisingly have very similar tensile properties. Finally, we show that postspin densification has no substantial effect on either alignment or properties (mechanical and electrical). These results demonstrate a route to control CNT assembly and reinforce their potential as a high-performance fiber.

    Supporting Information

    Jump To

    Additional sample characterization by Raman spectroscopy (full spectra), details of aerogel diameter determination, calculation of reaction conversion rates, examples of azimuthal profiles of (002) CNT reflection, histograms of tensile strength, modulus, and strain of different fibers. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b02408.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

    Cited By

    This article is cited by 107 publications.

    1. Eric R. Meshot, Alexander Baker, Daniel Malone, Sean Hayes, Haley Hamza, Cheng Wang, Matthew A. Marcus, Xavier Lepró. High-Resolution X-ray Spectromicroscopy Reveals Process-Structure Correlations in sub-5-μm Diameter Carbon Nanotube-Polymer Composite Dry-Spun Yarns. ACS Nano 2023, 17 (11) , 10589-10597.
    2. Farial Islam Farha, Xiaoxiao Wei, Qin Zhang, Wei Liu, Wei Chen, Li Liu, Fujun Xu. Microstructural Tuning of Twisted Carbon Nanotube Yarns through the Wet-Compression Process: Implications for Multifunctional Textiles. ACS Applied Nano Materials 2022, 5 (8) , 11071-11079.
    3. Liron Issman, Philipp A. Kloza, Jeronimo Terrones Portas, Brian Collins, Afshin Pendashteh, Martin Pick, Juan J. Vilatela, James A. Elliott, Adam Boies. Highly Oriented Direct-Spun Carbon Nanotube Textiles Aligned by In Situ Radio-Frequency Fields. ACS Nano 2022, 16 (6) , 9583-9597.
    4. Tianyu Guo, Zhangmin Wan, Yan Yu, Hui Chen, Zhifeng Wang, Dagang Li, Junlong Song, Orlando J. Rojas, Yongcan Jin. Mechanisms of Strain-Induced Interfacial Strengthening of Wet-Spun Filaments. ACS Applied Materials & Interfaces 2022, 14 (14) , 16809-16819.
    5. Sung-Hyun Lee, Junbeom Park, Sook Young Moon, Sei Young Lee, Seung Min Kim. Strong and Highly Conductive Carbon Nanotube Fibers as Conducting Wires for Wearable Electronics. ACS Applied Nano Materials 2021, 4 (4) , 3833-3842.
    6. Joseph F. Moore, Erwan Paineau, Pascale Launois, Milo S. P. Shaffer. Continuous Binder-Free Fibers of Pure Imogolite Nanotubes. ACS Applied Materials & Interfaces 2021, 13 (15) , 17940-17947.
    7. Manishkumar D. Yadav, Kinshuk Dasgupta. Kinetics of Carbon Nanotube Aerogel Synthesis using Floating Catalyst Chemical Vapor Deposition. Industrial & Engineering Chemistry Research 2021, 60 (5) , 2187-2196.
    8. Adam J. Clancy, David B. Anthony, François De Luca. Metal Mimics: Lightweight, Strong, and Tough Nanocomposites and Nanomaterial Assemblies. ACS Applied Materials & Interfaces 2020, 12 (14) , 15955-15975.
    9. Eugene Oh, Hyunjung Cho, Juhan Kim, Ji Eun Kim, Youngjin Yi, Junwon Choi, Haemin Lee, Ye Hoon Im, Kun-Hong Lee, Won Jae Lee. Super-Strong Carbon Nanotube Fibers Achieved by Engineering Gas Flow and Postsynthesis Treatment. ACS Applied Materials & Interfaces 2020, 12 (11) , 13107-13115.
    10. Anastasiia Mikhalchan, Agnieszka M. Banas, Krzysztof Banas, Anna M. Borkowska, Michal Nowakowski, Mark B. H. Breese, Wojciech M. Kwiatek, Czeslawa Paluszkiewicz, Tong Earn Tay. Revealing Chemical Heterogeneity of CNT Fiber Nanocomposites via Nanoscale Chemical Imaging. Chemistry of Materials 2018, 30 (6) , 1856-1864.
    11. Daniel Iglesias, Evgeny Senokos, Belén Alemán, Laura Cabana, Cristina Navío, Rebeca Marcilla, Maurizio Prato, Juan J. Vilatela, and Silvia Marchesan . Gas-Phase Functionalization of Macroscopic Carbon Nanotube Fiber Assemblies: Reaction Control, Electrochemical Properties, and Use for Flexible Supercapacitors. ACS Applied Materials & Interfaces 2018, 10 (6) , 5760-5770.
    12. Manishkumar D. Yadav, Kinshuk Dasgupta, Ashwin W. Patwardhan, and Jyeshtharaj B. Joshi . High Performance Fibers from Carbon Nanotubes: Synthesis, Characterization, and Applications in Composites—A Review. Industrial & Engineering Chemistry Research 2017, 56 (44) , 12407-12437.
    13. Esmat Mehrjouei, Hamed Akbarzadeh, Amir Nasser Shamkhali, Mohsen Abbaspour, Sirous Salemi, and Pooya Abdi . Delivery of Cisplatin Anti-Cancer Drug from Carbon, Boron Nitride, and Silicon Carbide Nanotubes Forced by Ag-Nanowire: A Comprehensive Molecular Dynamics Study. Molecular Pharmaceutics 2017, 14 (7) , 2273-2284.
    14. Muhammad Mohsin Hossain, Md. Akherul Islam, Hossain Shima, Mudassir Hasan, and Moonyong Lee . Alignment of Carbon Nanotubes in Carbon Nanotube Fibers Through Nanoparticles: A Route for Controlling Mechanical and Electrical Properties. ACS Applied Materials & Interfaces 2017, 9 (6) , 5530-5542.
    15. Gengheng Zhou, Joon-Hyung Byun, Youngseok Oh, Byung-Mun Jung, Hwa-Jin Cha, Dong-Gi Seong, Moon-Kwang Um, Sangil Hyun, and Tsu-Wei Chou . Highly Sensitive Wearable Textile-Based Humidity Sensor Made of High-Strength, Single-Walled Carbon Nanotube/Poly(vinyl alcohol) Filaments. ACS Applied Materials & Interfaces 2017, 9 (5) , 4788-4797.
    16. Juan J. Vilatela and Rebeca Marcilla . Tough Electrodes: Carbon Nanotube Fibers as the Ultimate Current Collectors/Active Material for Energy Management Devices. Chemistry of Materials 2015, 27 (20) , 6901-6917.
    17. Philipp A. Kloza, James A. Elliott. Inverse projection of axisymmetric orientation distributions. Europhysics Letters 2023, 143 (2) , 22002.
    18. Rajath Alexander, Amit Kaushal, Jyoti Prakash, P. T. Rao, Debasis Sen, Kinshuk Dasgupta. Porosity control of CNT aerogel and its conversion to CNT fiber in floating catalyst chemical vapour deposition. Journal of Porous Materials 2023, 30 (2) , 507-520.
    19. Hui Li, Yalong Liu, Siqi Liu, Pengcheng Li, Chun Zhang, Chaobin He. Wet-spun flexible carbon nanotubes/polyaniline fibers for wearable thermoelectric energy harvesting. Composites Part A: Applied Science and Manufacturing 2023, 166 , 107386.
    20. Sidra Saleemi, Hafiz Abdul Mannan, Alamin Idris, Wei Liu, Fujun Xu. Synergistic effect of esterification and densification on structural modification of CNT yarn for efficient interfacial performance. Chemical Papers 2023, 77 (1) , 75-87.
    21. Masoud Yekani Fard, Alek Pensky. Stochastic multiscale multimode interlaminar fracture toughness of buckypaper nanocomposites. International Journal of Mechanical Sciences 2023, 237 , 107798.
    22. Anastasiia Mikhalchan, Afshin Pendashteh, Juan J. Vilatela. Properties, applications and industrialization of carbon nanotube materials from hydrocarbons cracking. 2023, 193-251.
    23. Michael W.J. Glerum, Adam M. Boies. Reactor processes for value added carbon synthesis and turquoise hydrogen. 2023, 133-192.
    24. Xiao Zhang, Michael De Volder, Wenbin Zhou, Liron Issman, Xiaojun Wei, Adarsh Kaniyoor, Jeronimo Terrones Portas, Fiona Smail, Zibo Wang, Yanchun Wang, Huaping Liu, Weiya Zhou, James Elliott, Sishen Xie, Adam Boies. Simultaneously enhanced tenacity, rupture work, and thermal conductivity of carbon nanotube fibers by raising effective tube portion. Science Advances 2022, 8 (50)
    25. Zhifu Yin, Ao Ding, Hui Zhang, Wang Zhang. The Relevant Approaches for Aligning Carbon Nanotubes. Micromachines 2022, 13 (11) , 1863.
    26. Rajath Alexander, Amit Kaushal, Avik Das, Jitendra Bahadur, Kinshuk Dasgupta. Does carrier gas have a role on the yield and alignment of CNT fibers. Diamond and Related Materials 2022, 129 , 109395.
    27. Anastasiia Mikhalchan, Cristina Madrona, Luis Arévalo, Marc Malfois, Juan J. Vilatela. Improved alignment and stress transfer in CNT fibre fabrics studied by in situ X-ray and Raman during wet-drawing. Carbon 2022, 197 , 368-377.
    28. Seo Gyun Kim, Gyeong Min Choi, Hyeon Dam Jeong, Dongju Lee, Sungyong Kim, Ki-Hyun Ryu, Suhun Lee, Jungwon Kim, Jun Yeon Hwang, Nam Dong Kim, Dae-Yoon Kim, Heon Sang Lee, Bon-Cheol Ku. Hierarchical structure control in solution spinning for strong and multifunctional carbon nanotube fibers. Carbon 2022, 196 , 59-69.
    29. Bharath Natarajan. Processing-structure-mechanical property relationships in direct formed carbon nanotube articles and their composites: A review. Composites Science and Technology 2022, 225 , 109501.
    30. Jianpeng Wu, Yu Wang, Junshuo Zhang, Chunyu Zhao, Ziyang Fan, Quan Shu, Xiaokang He, Shouhu Xuan, Xinglong Gong. A lightweight aramid-based structural composite with ultralow thermal conductivity and high-impact force dissipation. Matter 2022, 5 (7) , 2265-2284.
    31. Jae Ho Kim, Sung-Jun Koo, Jae Yeong Cheon, Yeonsu Jung, Sungok Cho, Daseul Lee, Jin Woo Choi, Taehoon Kim, Myungkwan Song. Self-powered and flexible integrated solid-state fiber-shaped energy conversion and storage based on CNT Yarn with efficiency of 5.5%. Nano Energy 2022, 96 , 107054.
    32. Lele Li, Zikai Du, Baojie Sun, Wenyue Li, Liang Jiang, Yanfen Zhou, Jianwei Ma, Shaojuan Chen, Feng-Lei Zhou. Fabrication of electrically conductive poly(styrene-b-ethylene-ran-butylene-b-styrene)/multi-walled carbon nanotubes composite fiber and its application in ultra-stretchable strain sensor. European Polymer Journal 2022, 169 , 111121.
    33. Takayuki Watanabe, Satoshi Yamazaki, Satoshi Yamashita, Takumi Inaba, Shun Muroga, Takahiro Morimoto, Kazufumi Kobashi, Toshiya Okazaki. Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods. Nanomaterials 2022, 12 (4) , 593.
    34. Eric Abraham Hurtado-Aviles, María Vila, Juan José Vilatela, Hilario Martines-Arano, Jhovani Bornacelli, José Antonio García-Merino, Felipe Cervantes-Sodi, Carlos Torres-Torres. Structured light using carbon nanostructures driven by Kerr nonlinearities and a magnetic field. Physical Chemistry Chemical Physics 2022, 24 (2) , 1081-1090.
    35. Hang Zhan, Yu Wen Chen, Qiang Qiang Shi, Yu Zhang, Run Wei Mo, Jian Nong Wang. Highly aligned and densified carbon nanotube films with superior thermal conductivity and mechanical strength. Carbon 2022, 186 , 205-214.
    36. Jiaojiao Wang, Jingna Zhao, Liming Zhao, Qian Lu, Tao Zhou, Zhenzhong Yong, Pengfei Wang, Xiaohua Zhang, Qingwen Li. Interfacial-bubbling-induced nondestructive expansion to reconstruct superstrong and multifunctional carbon nanotube fibers. Carbon 2021, 184 , 24-33.
    37. Adarsh Kaniyoor, Thurid S. Gspann, Jenifer E. Mizen, James A. Elliott. Quantifying alignment in carbon nanotube yarns and similar two‐dimensional anisotropic systems. Journal of Applied Polymer Science 2021, 138 (37)
    38. Anastasiia Mikhalchan, María Vila, Luis Arévalo, Juan J. Vilatela. Simultaneous improvements in conversion and properties of molecularly controlled CNT fibres. Carbon 2021, 179 , 417-424.
    39. Tao Zhou, Yutao Niu, Zhi Li, Huifang Li, Zhenzhong Yong, Kunjie Wu, Yongyi Zhang, Qingwen Li. The synergetic relationship between the length and orientation of carbon nanotubes in direct spinning of high-strength carbon nanotube fibers. Materials & Design 2021, 203 , 109557.
    40. Kunjie Wu, Yutao Niu, Yongyi Zhang, Zhenzhong Yong, Qingwen Li. Continuous growth of carbon nanotube films: From controllable synthesis to real applications. Composites Part A: Applied Science and Manufacturing 2021, 144 , 106359.
    41. Hyeon Dam Jeong, Seo Gyun Kim, Gyeong Min Choi, Minji Park, Bon-Cheol Ku, Heon Sang Lee. Theoretical and experimental investigation of the wet-spinning process for mechanically strong carbon nanotube fibers. Chemical Engineering Journal 2021, 412 , 128650.
    42. Sung-Hyun Lee, Junbeom Park, Ji Hong Park, Dong-Myeong Lee, Anna Lee, Sook Young Moon, Sei Young Lee, Hyeon Su Jeong, Seung Min Kim. Deep-injection floating-catalyst chemical vapor deposition to continuously synthesize carbon nanotubes with high aspect ratio and high crystallinity. Carbon 2021, 173 , 901-909.
    43. Yufang Cao, Tao Zhou, Kunjie Wu, Zhenzhong Yong, Yongyi Zhang. Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries. RSC Advances 2021, 11 (12) , 6628-6643.
    44. Jae Ho Kim, Soon Kyu Hong, Seok-Ju Yoo, Chae Young Woo, Jin Woo Choi, Daseul Lee, Jae-Wook Kang, Hyung Woo Lee, Myungkwan Song. Pt-free, cost-effective and efficient counter electrode with carbon nanotube yarn for solid-state fiber dye-sensitized solar cells. Dyes and Pigments 2021, 185 , 108855.
    45. Jin Zhang, Xi Zhang, Chenyu Wang, Feihan Li, Ziwen Qiao, Liangdan Zeng, Zhonghan Wang, He Liu, Jianxun Ding, Huanghao Yang. Conductive Composite Fiber with Optimized Alignment Guides Neural Regeneration under Electrical Stimulation. Advanced Healthcare Materials 2021, 10 (3)
    46. Fabrizio Sarasini, Claudia Sergi, Francesca Sbardella, Jacopo Tirillò. Recent toughening strategies in carbon fiber reinforced composites. 2021, 405-437.
    47. Taehoon Kim, Jongseon Shin, Kyunbae Lee, Yeonsu Jung, Sang Bok Lee, Seung Jae Yang. A universal surface modification method of carbon nanotube fibers with enhanced tensile strength. Composites Part A: Applied Science and Manufacturing 2021, 140 , 106182.
    48. Pallvi Dariyal, Abhishek K. Arya, B. P. Singh, S. R. Dhakate. A review on conducting carbon nanotube fibers spun via direct spinning technique. Journal of Materials Science 2021, 56 (2) , 1087-1115.
    49. Min Ho Jee, Doo Hyun Baik. Morphological and Electrical Properties of Multi-Walled Carbon Nanotube-based Fiber Using General Wet-spinning and Alkaline Post-treatment Methods. Fibers and Polymers 2020, 21 (11) , 2456-2461.
    50. Xinrong Jiang, Wenbin Gong, Shuxuan Qu, Danrui Wang, Tong Liu, Qingwen Li, Gengheng Zhou, Weibang Lu. Understanding the influence of single-walled carbon nanotube dispersion states on the microstructure and mechanical properties of wet-spun fibers. Carbon 2020, 169 , 17-24.
    51. Federico Cesano, Mohammed Jasim Uddin, Karen Lozano, Marco Zanetti, Domenica Scarano. All-Carbon Conductors for Electronic and Electrical Wiring Applications. Frontiers in Materials 2020, 7
    52. Evgeny Senokos, Moumita Rana, Maria Vila, Julio Fernandez-Cestau, Rubén D. Costa, Rebeca Marcilla, Juan Jose Vilatela. Transparent and flexible high-power supercapacitors based on carbon nanotube fibre aerogels. Nanoscale 2020, 12 (32) , 16980-16986.
    53. Manish Pandey, Ryo Abe, Naofumi Okamoto, Yuki Sekimoto, Kotaro Nishioka, Yasuo Okajima, Masakazu Nakamura. Fabrication of ribbon-like films of orientation-controlled carbon nanotube/polymer composite using a robotic dispenser. Applied Physics Express 2020, 13 (6) , 065503.
    54. Guangfeng Hou, Mark J. Schulz. Carbon nanotube fibers spun directly from furnace. 2020, 37-59.
    55. Menghe Miao. Carbon nanotube yarn structures and properties. 2020, 137-182.
    56. Juan C. Fernández-Toribio, Anastasiia Mikhalchan, Cleis Santos, Álvaro Ridruejo, Juan J. Vilatela. Understanding cooperative loading in carbon nanotube fibres through in-situ structural studies during stretching. Carbon 2020, 156 , 430-437.
    57. Jaegeun Lee, Dong-Myeong Lee, Yeonsu Jung, Junbeom Park, Hun Su Lee, Young-Kwan Kim, Chong Rae Park, Hyeon Su Jeong, Seung Min Kim. Direct spinning and densification method for high-performance carbon nanotube fibers. Nature Communications 2019, 10 (1)
    58. X. Rodiles, V. Reguero, M. Vila, B. Alemán, L. Arévalo, F. Fresno, V. A. de la Peña O’Shea, J. J. Vilatela. Carbon nanotube synthesis and spinning as macroscopic fibers assisted by the ceramic reactor tube. Scientific Reports 2019, 9 (1)
    59. Fiona Smail, Adam Boies, Alan Windle. Direct spinning of CNT fibres: Past, present and future scale up. Carbon 2019, 152 , 218-232.
    60. Junbeom Park, Jaegeun Lee, Dong-Myeong Lee, Sung-Hyun Lee, Hyeon Su Jeong, Kun-Hong Lee, Seung Min Kim. Mathematical model for the dynamic mechanical behavior of carbon nanotube yarn in analogy with hierarchically structured bio-materials. Carbon 2019, 152 , 151-158.
    61. Adarsh Kaniyoor, John Bulmer, Thurid Gspann, Jenifer Mizen, James Ryley, Patrick Kiley, Jeronimo Terrones, Cesar Miranda-Reyes, Giorgio Divitini, Martin Sparkes, Bill O'Neill, Alan Windle, James A. Elliott. High throughput production of single-wall carbon nanotube fibres independent of sulfur-source. Nanoscale 2019, 11 (39) , 18483-18495.
    62. Hayder Baqer Abdullah, Irmawati Ramli, Ismayadi Ismail, Nor Azah Yusof. Synthesis and mechanism perspectives of a carbon nanotube aerogel via a floating catalyst chemical vapour deposition method. Bulletin of Materials Science 2019, 42 (5)
    63. Anastasiia Mikhalchan, Juan José Vilatela. A perspective on high-performance CNT fibres for structural composites. Carbon 2019, 150 , 191-215.
    64. Wei Tan, Joe C. Stallard, Fiona R. Smail, Adam M. Boies, Norman A. Fleck. The mechanical and electrical properties of direct-spun carbon nanotube mat-epoxy composites. Carbon 2019, 150 , 489-504.
    65. Yunfu Ou, Carlos González, Juan José Vilatela. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils. Composites Part A: Applied Science and Manufacturing 2019, 124 , 105477.
    66. Chong Xie, Shenghui Yang, Jian-Wen Shi, Xifei Li, Chunming Niu. A double-walled carbon nanotubes conducting wire prepared by dip-coating. Materials Research Express 2019, 6 (9) , 0950b7.
    67. Lee Weller, Fiona R. Smail, James A. Elliott, Alan H. Windle, Adam M. Boies, Simone Hochgreb. Mapping the parameter space for direct-spun carbon nanotube aerogels. Carbon 2019, 146 , 789-812.
    68. Hai M. Duong, Thang Q. Tran, Reed Kopp, Sandar Myo Myint, Liu Peng. Direct Spinning of Horizontally Aligned Carbon Nanotube Fibers and Films From the Floating Catalyst Method. 2019, 3-29.
    69. Guangfeng Hou, Vianessa Ng, Rui Chen, Devika Chauhan, Chenhao Xu, Sergey Yarmolenko, Svitlana Fialkova, Mark J. Schulz. Carbon Nanotube Hybrid Materials. 2019, 77-90.
    70. Belén Alemán, Juan J. Vilatela. Multiscale Engineering of Carbon Nanotube Fibers. 2019, 113-147.
    71. Rui Chen, Devika Chauhan, Chenhao Xu, Vianessa Ng, Guangfeng Hou, Vesselin Shanov, David Mast, Svitlana Fialkova, Mark J. Schulz. Floating Catalyst Reactor Design and Safety Features for Carbon Nanotube Synthesis. 2019, 851-866.
    72. Evgeny Senokos, Rebeca Marcilla, Juan J. Vilatela. Materials science of multifunctional supercapacitors based on nanocarbon networks. 2019, 249-278.
    73. Alfonso Monreal-Bernal, Juan J. Vilatela, Rubén D. Costa. CNT fibres as dual counter-electrode/current-collector in highly efficient and stable dye-sensitized solar cells. Carbon 2019, 141 , 488-496.
    74. Hamed Khoshnevis, Thang Q. Tran, Sandar Myo Mint, Ali Zadhoush, Hai M. Duong, Mostafa Youssefi. Effect of alignment and packing density on the stress relaxation process of carbon nanotube fibers spun from floating catalyst chemical vapor deposition method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018, 558 , 570-578.
    75. Belén Alemán, Maria Vila, Juan J. Vilatela. Surface Chemistry Analysis of Carbon Nanotube Fibers by X‐Ray Photoelectron Spectroscopy. physica status solidi (a) 2018, 215 (19)
    76. Yeonsu Jung, Young Shik Cho, Jae Won Lee, Jun Young Oh, Chong Rae Park. How can we make carbon nanotube yarn stronger?. Composites Science and Technology 2018, 166 , 95-108.
    77. Juan C. Fernández-Toribio, Belén Alemán, Álvaro Ridruejo, Juan J. Vilatela. Tensile properties of carbon nanotube fibres described by the fibrillar crystallite model. Carbon 2018, 133 , 44-52.
    78. Chae Bin Kim, Yong-Mun Choi, Hyun Ju Kim, Haena Lee, Nam-Ho You, Jae Kwan Lee, Bon-Cheol Ku, Munju Goh. Liquid Crystallinity of p-Aramid/Multi-walled Carbon Nanotube Composites. Fibers and Polymers 2018, 19 (6) , 1359-1362.
    79. J.C. Stallard, W. Tan, F.R. Smail, T.S. Gspann, A.M. Boies, N.A. Fleck. The mechanical and electrical properties of direct-spun carbon nanotube mats. Extreme Mechanics Letters 2018, 21 , 65-75.
    80. Alfonso Monreal‐Bernal, Juan J. Vilatela. Large‐Area Schottky Junctions between ZnO and Carbon Nanotube Fibres. ChemPlusChem 2018, 83 (4) , 285-293.
    81. Robert J. Headrick, Dmitri E. Tsentalovich, Julián Berdegué, Elie Amram Bengio, Lucy Liberman, Olga Kleinerman, Matthew S. Lucas, Yeshayahu Talmon, Matteo Pasquali. Structure–Property Relations in Carbon Nanotube Fibers by Downscaling Solution Processing. Advanced Materials 2018, 30 (9)
    82. Weibang Lu, Qingwen Li, Tsu-Wei Chou. 1.2 Carbon Nanotube Based Fibers. 2018, 13-40.
    83. Min Lin, Xiaoyu Sun, Wen Xie, Zuoqi Zhang. Load-transfer and failure behaviors of crosslinked interfaces in collagen-mimic carbon nanotube bundles. International Journal of Mechanical Sciences 2018, 135 , 376-382.
    84. Razieh Beigmoradi, Abdolreza Samimi, Davod Mohebbi-Kalhori. Engineering of oriented carbon nanotubes in composite materials. Beilstein Journal of Nanotechnology 2018, 9 , 415-435.
    85. Ki-Ho Nam, Yong-O. Im, Hye Jin Park, Haena Lee, Junbeom Park, Sunho Jeong, Seung Min Kim, Nam-Ho You, Jae-Hak Choi, Haksoo Han, Kun-Hong Lee, Bon-Cheol Ku. Photoacoustic effect on the electrical and mechanical properties of polymer-infiltrated carbon nanotube fiber/graphene oxide composites. Composites Science and Technology 2017, 153 , 136-144.
    86. Afshin Pendashteh, Evgeny Senokos, Jesus Palma, Marc Anderson, Juan J. Vilatela, Rebeca Marcilla. Manganese dioxide decoration of macroscopic carbon nanotube fibers: From high-performance liquid-based to all-solid-state supercapacitors. Journal of Power Sources 2017, 372 , 64-73.
    87. Sung-Hyun Lee, Hye-Rim Kim, Taeseon Lee, Haemin Lee, Jinwoo Lee, Jaegeun Lee, Junbeom Park, Kun-Hong Lee. Synthesis of carbon nanotube fibers from carbon precursors with low decomposition temperatures using a direct spinning process. Carbon 2017, 124 , 219-227.
    88. Sepehr Nesaei, Mitch Rock, Yu Wang, Michael R. Kessler, Arda Gozen. Additive Manufacturing With Conductive, Viscoelastic Polymer Composites: Direct-Ink-Writing of Electrolytic and Anodic Poly(Ethylene Oxide) Composites. Journal of Manufacturing Science and Engineering 2017, 139 (11)
    89. Liang Kou, Yingjun Liu, Cheng Zhang, Le Shao, Zhanyuan Tian, Zengshe Deng, Chao Gao. A Mini Review on Nanocarbon-Based 1D Macroscopic Fibers: Assembly Strategies and Mechanical Properties. Nano-Micro Letters 2017, 9 (4)
    90. H. Yue, V. Reguero, E. Senokos, A. Monreal-Bernal, B. Mas, J.P. Fernández-Blázquez, R. Marcilla, J.J. Vilatela. Fractal carbon nanotube fibers with mesoporous crystalline structure. Carbon 2017, 122 , 47-53.
    91. Yuanyuan Li, Hongli Zhu, Yibo Wang, Upamanyu Ray, Shuze Zhu, Jiaqi Dai, Chaoji Chen, Kun Fu, Soo‐Hwan Jang, Doug Henderson, Teng Li, Liangbing Hu. Cellulose‐Nanofiber‐Enabled 3D Printing of a Carbon‐Nanotube Microfiber Network. Small Methods 2017, 1 (10)
    92. Ok-Kyung Park, Hoikil Choi, Hanbin Jeong, Yeonsu Jung, Jaesang Yu, Jae Kwan Lee, Jun Yeon Hwang, Seung Min Kim, Youngjin Jeong, Chong Rae Park, Morinobu Endo, Bon-Cheol Ku. High-modulus and strength carbon nanotube fibers using molecular cross-linking. Carbon 2017, 118 , 413-421.
    93. Evgeny Senokos, Víctor Reguero, Laura Cabana, Jesús Palma, Rebeca Marcilla, Juan José Vilatela. Large‐Area, All‐Solid, and Flexible Electric Double Layer Capacitors Based on CNT Fiber Electrodes and Polymer Electrolytes. Advanced Materials Technologies 2017, 2 (7)
    94. Bao Jun Han, Ting Liu, Zhi Juan Huang, De Ming Chen, Yi Song Zhu, Cai Ying Zhou, Ye Sheng Li, Yan Hong Yin, Zi Ping Wu. Preparation of flexible carbon nanotube ropes for low-voltage heat generator. Applied Physics Letters 2017, 110 (10)
    95. Qiang Zhang, Kewei Li, Qingxia Fan, Xiaogang Xia, Nan Zhang, Zhuojian Xiao, Wenbin Zhou, Feng Yang, Yanchun Wang, Huaping Liu, Weiya Zhou. Performance improvement of continuous carbon nanotube fibers by acid treatment. Chinese Physics B 2017, 26 (2) , 028802.
    96. Dawid Janas, Stefanie K. Kreft, Krzysztof K.K. Koziol. Printing of highly conductive carbon nanotubes fibres from aqueous dispersion. Materials & Design 2017, 116 , 16-20.
    97. Shuaishuai Han, Feng Hou, Xubo Yuan, Jiachen Liu, Xiao Yan, Shunquan Chen. Continuous hierarchical carbon nanotube/reduced graphene oxide hybrid films for supercapacitors. Electrochimica Acta 2017, 225 , 566-573.
    98. Junbeom Park, Sung-Hyun Lee, Jaegeun Lee, Dong-Myeong Lee, Hayoung Yu, Hyeon Su Jeong, Seung Min Kim, Kun-Hong Lee. Accurate measurement of specific tensile strength of carbon nanotube fibers with hierarchical structures by vibroscopic method. RSC Advances 2017, 7 (14) , 8575-8580.
    99. Anastasiia Mikhalchan, Thurid Gspann, Alan Windle. Aligned carbon nanotube–epoxy composites: the effect of nanotube organization on strength, stiffness, and toughness. Journal of Materials Science 2016, 51 (22) , 10005-10025.
    100. Juan C. Fernández-Toribio, Agustín Íñiguez-Rábago, Joaquim Vilà, Carlos González, Álvaro Ridruejo, Juan José Vilatela. A Composite Fabrication Sensor Based on Electrochemical Doping of Carbon Nanotube Yarns. Advanced Functional Materials 2016, 26 (39) , 7139-7147.
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Your Mendeley pairing has expired. Please reconnect