ACS Publications. Most Trusted. Most Cited. Most Read
Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers
My Activity

    Article

    Biexciton Emission from Edges and Grain Boundaries of Triangular WS2 Monolayers
    Click to copy article linkArticle link copied!

    View Author Information
    Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746, Republic of Korea
    § Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
    Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2016, 10, 2, 2399–2405
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b07214
    Published January 13, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Monolayer tungsten disulfides (WS2) constitute a high quantum yield two-dimensional (2D) system, and can be synthesized on a large area using chemical vapor deposition (CVD), suggesting promising nanophotonics applications. However, spatially nonuniform photoluminescence (PL) intensities and peak wavelengths observed in single WS2 grains have puzzled researchers, with the origins of variation in relative contributions of excitons, trions, and biexcitons to the PL emission not well understood. Here, we present nanoscale PL and Raman spectroscopy images of triangular CVD-grown WS2 monolayers of different sizes, with these images obtained under different temperatures and values of excitation power. Intense PL emissions were observed around the edges of individual WS2 grains and the grain boundaries between partly merged WS2 grains. The predominant origin of the main PL emission from these regions changed from neutral excitons to trions and biexcitons with increasing laser excitation power, with biexcitons completely dominating the PL emission for the high-power condition. The intense PL emission and the preferential formation of biexcitons in the edges and grain boundaries of monolayer WS2 were attributed to larger population of charge carriers caused by the excessive incorporation of growth promoters during the CVD, suggesting positive roles of excessive carriers in the PL efficiency of TMD monolayers. Our comprehensive nanoscale spectroscopic investigation sheds light on the dynamic competition between exciton complexes occurring in monolayer WS2, suggesting a rich variety of ways to engineer new nanophotonic functions using 2D transition metal dichalcogenide monolayers.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.5b07214.

    • Additional experimental data (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 237 publications.

    1. Yu Wang, Jun Nishida, Keiichi Nakamoto, Xu Yang, Yoshiki Sakuma, Wenjin Zhang, Takahiko Endo, Yasumitsu Miyata, Takashi Kumagai. Ultrafast Nano-Imaging of Spatially Modulated Many-Body Dynamics in CVD-Grown Monolayer WS2. ACS Photonics 2025, 12 (1) , 207-218. https://doi.org/10.1021/acsphotonics.4c01545
    2. Suvodeep Paul, Saheb Karak, Saswata Talukdar, Devesh Negi, Surajit Saha. Influence of Edges and Interlayer Electron–phonon Coupling in WS2/h-BN Heterostructure. ACS Applied Materials & Interfaces 2024, 16 (30) , 40077-40085. https://doi.org/10.1021/acsami.4c02629
    3. Chinh Tam Le, Je-Ho Lee, Nguyen The Hoang, Dinh Khoi Dang, Jungcheol Kim, Joon I. Jang, Maeng-Je Seong, Yong Soo Kim. Distinct Valley Polarization in Vertical Heterobilayers: Difference between Edge- and Center-Nucleated WS2/MoS2. ACS Applied Materials & Interfaces 2024, 16 (30) , 39528-39538. https://doi.org/10.1021/acsami.4c03379
    4. Abhilasha Bora, Larionette P. L. Mawlong, Abdul Kaium Mia, P. K. Giri. Manipulating Trion and Biexciton Emissions in Monolayer WS2 by Sandwiching with Ultrathin ZnO Layers for Excitonic Light Emission Applications. ACS Applied Nano Materials 2024, 7 (8) , 8612-8623. https://doi.org/10.1021/acsanm.3c06043
    5. Reynolds Dziobek-Garrett, Sachi Hilliard, Shreya Sriramineni, Ona Ambrozaite, Yifei Zhu, Bethany M. Hudak, Todd H. Brintlinger, Tomojit Chowdhury, Thomas J. Kempa. Controlling Morphology and Excitonic Disorder in Monolayer WSe2 Grown by Salt-Assisted CVD Methods. ACS Nanoscience Au 2023, 3 (6) , 441-450. https://doi.org/10.1021/acsnanoscienceau.3c00028
    6. Bayarjargal N. Tugchin, Nathan Doolaard, Angela I. Barreda, Zifei Zhang, Anastasia Romashkina, Stefan Fasold, Isabelle Staude, Falk Eilenberger, Thomas Pertsch. Photoluminescence Enhancement of Monolayer WS2 by n-Doping with an Optically Excited Gold Disk. Nano Letters 2023, 23 (23) , 10848-10855. https://doi.org/10.1021/acs.nanolett.3c03053
    7. Yanhui Lv, Mohamed Abid, H. H. Cheng, Cormac Ó Coileáin, R. G. S Sofin, Ching-Ray Chang, Han-Chun Wu. Strain-Dependent Optical Properties of Monolayer WSe2. The Journal of Physical Chemistry C 2023, 127 (46) , 22682-22691. https://doi.org/10.1021/acs.jpcc.3c06393
    8. Dongdong Liu, Yu Zhou, Shengqian Zheng, Xiaochi Liu, Jian Sun, Zhuolun Li, Zhenxiao Zhang, Zhineng Zhang, Shaolong Wang, Dongyu Cai, Yingchun Cheng, Wei Huang. Tunable van der Waals Doping in WS2/CrOCl Heterostructure by Interlayer Coupling Engineering. ACS Applied Electronic Materials 2023, 5 (7) , 3973-3980. https://doi.org/10.1021/acsaelm.3c00674
    9. Ruben Canton-Vitoria, Takato Hotta, Yuri Tanuma, Ioanna K. Sideri, Nikos Tagmatarchis, Chris Ewels, Ryo Kitaura. Localized Excitons in Zn-Porphyrin Covalently Functionalized MoS2 and WS2. The Journal of Physical Chemistry C 2023, 127 (22) , 10699-10708. https://doi.org/10.1021/acs.jpcc.2c08009
    10. Lin Pan, Peng Miao, Anke Horneber, Alfred J. Meixner, Pierre-Michel Adam, Dai Zhang. Nanometer-Scale Structure Property of WS2 Flakes by Nonlinear Optical Microscopy: Implications for Optical Frequency Converted Signals. ACS Applied Nano Materials 2023, 6 (8) , 6467-6473. https://doi.org/10.1021/acsanm.3c00804
    11. Runhan Xiao, Shuang Wang, Yan Chen, Tianhao Tan, Yanping Sui, Ziqiang Kong, Haomin Wang, Sunwen Zhao, Zhiying Chen, Yanhui Zhang, Dong Wang, Jianlu Wang, Guanghui Yu. Effect of Solution pH on the Synthesis of Two-Dimensional Molybdenum–Tungsten Sulfide Nanostructures. ACS Applied Nano Materials 2023, 6 (7) , 5963-5971. https://doi.org/10.1021/acsanm.3c00358
    12. Anupam Giri, Gyeongbae Park, Unyong Jeong. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chemical Reviews 2023, 123 (7) , 3329-3442. https://doi.org/10.1021/acs.chemrev.2c00455
    13. Jintao Yuan, Shangtong Zhou, Bohan Xiao, Lingjie Bao, Zikang Ai, Yuheng Shen, Guang Ran, Qijin Cheng. Monolayer WS2 Nanosheets Passivated with HfO2 for Enhanced Photodetectors. ACS Applied Nano Materials 2023, 6 (6) , 4594-4601. https://doi.org/10.1021/acsanm.3c00045
    14. Shuang Wang, Yan Chen, Tianhao Tan, Yanping Sui, Chuang Tian, Ziqiang Kong, Haomin Wang, Sunwen Zhao, Runhan Xiao, Zhiying Chen, Yanhui Zhang, Dong Wang, Jianlu Wang, Guanghui Yu. One-Step Synthesis of a Bilayer MoS2/WS2 Lateral Heterojunction for Photoelectric Detection. ACS Applied Nano Materials 2022, 5 (11) , 17203-17211. https://doi.org/10.1021/acsanm.2c04189
    15. Jinan Xie, Guodong Meng, Baiyi Chen, Zhe Li, Zongyou Yin, Yonghong Cheng. Vapor–Liquid–Solid Growth of Morphology-Tailorable WS2 toward P-Type Monolayer Field-Effect Transistors. ACS Applied Materials & Interfaces 2022, 14 (40) , 45716-45724. https://doi.org/10.1021/acsami.2c13812
    16. Yinggang Wang, Hiroshi Sugimoto, Minoru Fujii. Size-Dependent Mutual Charge Transfer between B- and P-Codoped Si Quantum Dots and Monolayer MoS2. The Journal of Physical Chemistry C 2022, 126 (38) , 16401-16408. https://doi.org/10.1021/acs.jpcc.2c04509
    17. Abhilasha Bora, Sumana Paul, Md Tarik Hossain, P. K. Giri. Quantitative Understanding of the Photoluminescence Modulation and Doping of Monolayer WS2 by Heterostructuring with Non-van der Waals 2D Bi2O2Se Quantum Dots. The Journal of Physical Chemistry C 2022, 126 (30) , 12623-12634. https://doi.org/10.1021/acs.jpcc.2c03245
    18. Rui Xu, Yingzhuo Lun, Lan Meng, Fei Pang, Yuhao Pan, Zhiyue Zheng, Le Lei, Sabir Hussain, Yan Jun Li, Yasuhiro Sugawara, Jiawang Hong, Wei Ji, Zhihai Cheng. Visualization of Strain-Engineered Nanopattern in Center-Confined Mesoscopic WS2 Monolayer Flakes. The Journal of Physical Chemistry C 2022, 126 (16) , 7184-7192. https://doi.org/10.1021/acs.jpcc.1c10538
    19. Ziyu Luo, Weihao Zheng, Nannan Luo, Bo Liu, Biyuan Zheng, Xing Yang, Delang Liang, Junyu Qu, Huawei Liu, Ying Chen, Ying Jiang, Shula Chen, Xiaolong Zou, Anlian Pan. Photoluminescence Lightening: Extraordinary Oxygen Modulated Dynamics in WS2 Monolayers. Nano Letters 2022, 22 (5) , 2112-2119. https://doi.org/10.1021/acs.nanolett.2c00462
    20. Wanli Yang, Tiantian Huang, Junbo He, Shuaijun Zhang, Yan Yang, Weiming Liu, Xun Ge, Rui Zhang, Mengxia Qiu, Yuxiang Sang, Xingjun Wang, Xiaohao Zhou, Tianxin Li, Congfeng Liu, Ning Dai, Xin Chen, Zhiyong Fan, Guozhen Shen. Monolayer WS2 Lateral Homosuperlattices with Two-dimensional Periodic Localized Photoluminescence. ACS Nano 2022, 16 (1) , 597-603. https://doi.org/10.1021/acsnano.1c07803
    21. Sophie L. Pain, Nicholas E. Grant, John D. Murphy. Room Temperature Enhancement of Electronic Materials by Superacid Analogues. ACS Nano 2022, 16 (1) , 1260-1270. https://doi.org/10.1021/acsnano.1c09085
    22. Weitao Su, Naresh Kumar, Haibo Shu, Ophélie Lancry, Marc Chaigneau. In Situ Visualization of Optoelectronic Behavior of Grain Boundaries in Monolayer WSe2 at the Nanoscale. The Journal of Physical Chemistry C 2021, 125 (48) , 26883-26891. https://doi.org/10.1021/acs.jpcc.1c08064
    23. Ping Man, David Srolovitz, Jiong Zhao, Thuc Hue Ly. Functional Grain Boundaries in Two-Dimensional Transition-Metal Dichalcogenides. Accounts of Chemical Research 2021, 54 (22) , 4191-4202. https://doi.org/10.1021/acs.accounts.1c00519
    24. Xi Yang, Zhihong Zhu, Fang Luo, Guang Wang, Gang Peng, Mengjian Zhu, Shiqiao Qin. Strain-Induced Alternating Photoluminescence Segmentation in Hexagonal Monolayer Tungsten Disulfide Grown by Physical Vapor Deposition. ACS Applied Materials & Interfaces 2021, 13 (38) , 46164-46170. https://doi.org/10.1021/acsami.1c13096
    25. Shengxia Zhang, Peipei Hu, Lijun Xu, Hailong Chen, Khan Maaz, Pengfei Zhai, Zongzhen Li, Li Liu, Wensi Ai, Jian Zeng, Jie Liu. Exciton Transitions in Monolayer WS2 Activated by Swift Heavy Ion Irradiation. The Journal of Physical Chemistry C 2021, 125 (37) , 20389-20396. https://doi.org/10.1021/acs.jpcc.1c04724
    26. Hao Yu, Hui Yan, Heng Li, Zhuocheng Li, Yanliu Bai, Hao Zhu, Shougen Yin. Spatially Graded Millimeter Sized Mo1–xWxS2 Monolayer Alloys: Synthesis and Memory Effect. ACS Applied Materials & Interfaces 2021, 13 (37) , 44693-44702. https://doi.org/10.1021/acsami.1c09176
    27. Sergii Golovynskyi, Oleksandr I. Datsenko, Dan Dong, Yan Lin, Iqra Irfan, Baikui Li, Danying Lin, Junle Qu. Trion Binding Energy Variation on Photoluminescence Excitation Energy and Power during Direct to Indirect Bandgap Crossover in Monolayer and Few-Layer MoS2. The Journal of Physical Chemistry C 2021, 125 (32) , 17806-17819. https://doi.org/10.1021/acs.jpcc.1c04334
    28. Michele Magnozzi, Theo Pflug, Marzia Ferrera, Simona Pace, Lorenzo Ramó, Markus Olbrich, Paolo Canepa, Hasret Ağircan, Alexander Horn, Stiven Forti, Ornella Cavalleri, Camilla Coletti, Francesco Bisio, Maurizio Canepa. Local Optical Properties in CVD-Grown Monolayer WS2 Flakes. The Journal of Physical Chemistry C 2021, 125 (29) , 16059-16065. https://doi.org/10.1021/acs.jpcc.1c04287
    29. Jingwei Wang, Mengjiao Han, Qun Wang, Yaqiang Ji, Xian Zhang, Run Shi, Zefei Wu, Liang Zhang, Abbas Amini, Liang Guo, Ning Wang, Junhao Lin, Chun Cheng. Strained Epitaxy of Monolayer Transition Metal Dichalcogenides for Wrinkle Arrays. ACS Nano 2021, 15 (4) , 6633-6644. https://doi.org/10.1021/acsnano.0c09983
    30. Hyun Goo Ji, Pablo Solís-Fernández, Ufuk Erkılıç, Hiroki Ago. Stacking Orientation-Dependent Photoluminescence Pathways in Artificially Stacked Bilayer WS2 Nanosheets Grown by Chemical Vapor Deposition: Implications for Spintronics and Valleytronics. ACS Applied Nano Materials 2021, 4 (4) , 3717-3724. https://doi.org/10.1021/acsanm.1c00192
    31. Alireza Fali, Tianyi Zhang, Jason Patrick Terry, Ethan Kahn, Kazunori Fujisawa, Bernd Kabius, Sandhaya Koirala, Yassamin Ghafouri, Da Zhou, Wenshen Song, Li Yang, Mauricio Terrones, Yohannes Abate. Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano 2021, 15 (2) , 2447-2457. https://doi.org/10.1021/acsnano.0c06148
    32. Mikhail Chubarov, Tanushree H. Choudhury, Danielle Reifsnyder Hickey, Saiphaneendra Bachu, Tianyi Zhang, Amritanand Sebastian, Anushka Bansal, Haoyue Zhu, Nicholas Trainor, Saptarshi Das, Mauricio Terrones, Nasim Alem, Joan M. Redwing. Wafer-Scale Epitaxial Growth of Unidirectional WS2 Monolayers on Sapphire. ACS Nano 2021, 15 (2) , 2532-2541. https://doi.org/10.1021/acsnano.0c06750
    33. Jubok Lee, Seok Joon Yun, Changwon Seo, Kiwon Cho, Tae Soo Kim, Gwang Hwi An, Kibum Kang, Hyun Seok Lee, Jeongyong Kim. Switchable, Tunable, and Directable Exciton Funneling in Periodically Wrinkled WS2. Nano Letters 2021, 21 (1) , 43-50. https://doi.org/10.1021/acs.nanolett.0c02619
    34. Ruijie Li, Yifei Li, Huifeng Tian, PeiChi Liao, Hanyu Wang, Shengnan Zhang, Zhixin Yao, Haicheng Wang, Shizhuo Liu, Guanwei Chen, Shulei Yu, Zhenjiang Li, Junjiang Liu, Zhi Xu, Fuhong Mei, Peizhi Liu, Junjie Guo, Kaihui Liu, Xiao Li, Lei Liu. Valley Polarization in Superacid-Treated Monolayer MoS2. ACS Applied Electronic Materials 2020, 2 (7) , 1981-1988. https://doi.org/10.1021/acsaelm.0c00277
    35. Yuanyuan Jin, Miao Cheng, Hang Liu, Miray Ouzounian, Travis Shihao Hu, Bingying You, Gonglei Shao, Xiao Liu, Yeru Liu, Huimin Li, Shisheng Li, Jie Guan, Song Liu. Na2SO4-Regulated High-Quality Growth of Transition Metal Dichalcogenides by Controlling Diffusion. Chemistry of Materials 2020, 32 (13) , 5616-5625. https://doi.org/10.1021/acs.chemmater.0c01089
    36. Pengfei Qi, Yang Luo, Wei Li, Yang Cheng, Hangyong Shan, Xingli Wang, Zheng Liu, Pulickel M. Ajayan, Jun Lou, Yanglong Hou, Kaihui Liu, Zheyu Fang. Remote Lightening and Ultrafast Transition: Intrinsic Modulation of Exciton Spatiotemporal Dynamics in Monolayer MoS2. ACS Nano 2020, 14 (6) , 6897-6905. https://doi.org/10.1021/acsnano.0c01165
    37. Kuang-I Lin, Shiue-Yuan Shiau, Shu-Bai Liu, Jia-Sian Yan, Jia-De Yan, Doreen Cheng, Han-Ching Chang, Chien-Liang Tu, Yung-Chen Cheng, Chang-Hsiao Chen. Fast Real-Space Imaging of the Exciton Complexes in WSe2 and WS2 Monolayers Using Multiphoton Microscopy. The Journal of Physical Chemistry C 2020, 124 (14) , 7979-7987. https://doi.org/10.1021/acs.jpcc.9b11848
    38. Ryan E. Wood, Lawson T. Lloyd, Fauzia Mujid, Lili Wang, Marco A. Allodi, Hui Gao, Richard Mazuski, Po-Chieh Ting, Saien Xie, Jiwoong Park, Gregory S. Engel. Evidence for the Dominance of Carrier-Induced Band Gap Renormalization over Biexciton Formation in Cryogenic Ultrafast Experiments on MoS2 Monolayers. The Journal of Physical Chemistry Letters 2020, 11 (7) , 2658-2666. https://doi.org/10.1021/acs.jpclett.0c00169
    39. Jingwei Wang, Yi Luo, Xiangbin Cai, Run Shi, Weijun Wang, Tianran Li, Zefei Wu, Xian Zhang, Ouwen Peng, Abbas Amini, Chunmei Tang, Kai Liu, Ning Wang, Chun Cheng. Multiple Regulation over Growth Direction, Band Structure, and Dimension of Monolayer WS2 by a Quartz Substrate. Chemistry of Materials 2020, 32 (6) , 2508-2517. https://doi.org/10.1021/acs.chemmater.9b05124
    40. Zhipeng Li, Tianmeng Wang, Chenhao Jin, Zhengguang Lu, Zhen Lian, Yuze Meng, Mark Blei, Mengnan Gao, Takashi Taniguchi, Kenji Watanabe, Tianhui Ren, Ting Cao, Sefaattin Tongay, Dmitry Smirnov, Lifa Zhang, Su-Fei Shi. Momentum-Dark Intervalley Exciton in Monolayer Tungsten Diselenide Brightened via Chiral Phonon. ACS Nano 2019, 13 (12) , 14107-14113. https://doi.org/10.1021/acsnano.9b06682
    41. Prasana Kumar Sahoo, Shahriar Memaran, Florence Ann Nugera, Yan Xin, Tania Díaz Márquez, Zhengguang Lu, Wenkai Zheng, Nikolai D. Zhigadlo, Dmitry Smirnov, Luis Balicas, Humberto Rodríguez Gutiérrez. Bilayer Lateral Heterostructures of Transition-Metal Dichalcogenides and Their Optoelectronic Response. ACS Nano 2019, 13 (11) , 12372-12384. https://doi.org/10.1021/acsnano.9b04957
    42. Xinyun Wang, Jiadong Dan, Zhenliang Hu, Jin Feng Leong, Qi Zhang, Ziyu Qin, Shisheng Li, Junpeng Lu, Stephen J. Pennycook, Wanxin Sun, Chorng Haur Sow. Defect Heterogeneity in Monolayer WS2 Unveiled by Work Function Variance. Chemistry of Materials 2019, 31 (19) , 7970-7978. https://doi.org/10.1021/acs.chemmater.9b02157
    43. Jian-An Ke, Slaven Garaj, Silvija Gradečak. Nanopores in 2D MoS2: Defect-Mediated Formation and Density Modulation. ACS Applied Materials & Interfaces 2019, 11 (29) , 26228-26234. https://doi.org/10.1021/acsami.9b03531
    44. Zhenliang Hu, Jose Avila, Xinyun Wang, Jin Feng Leong, Qi Zhang, Yanpeng Liu, Maria C. Asensio, Junpeng Lu, Alexandra Carvalho, Chorng Haur Sow, Antonio Helio Castro Neto. The Role of Oxygen Atoms on Excitons at the Edges of Monolayer WS2. Nano Letters 2019, 19 (7) , 4641-4650. https://doi.org/10.1021/acs.nanolett.9b01670
    45. Rafael G. Mendes, Jinbo Pang, Alicja Bachmatiuk, Huy Quang Ta, Liang Zhao, Thomas Gemming, Lei Fu, Zhongfan Liu, Mark H. Rümmeli. Electron-Driven In Situ Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures. ACS Nano 2019, 13 (2) , 978-995. https://doi.org/10.1021/acsnano.8b08079
    46. Jiake Li, Weitao Su, Fei Chen, Li Fu, Su Ding, Kaixin Song, Xiwei Huang, Lijie Zhang. Atypical Defect-Mediated Photoluminescence and Resonance Raman Spectroscopy of Monolayer WS2. The Journal of Physical Chemistry C 2019, 123 (6) , 3900-3907. https://doi.org/10.1021/acs.jpcc.8b11647
    47. Amritanand Sebastian, Fu Zhang, Akhil Dodda, Dan May-Rawding, He Liu, Tianyi Zhang, Mauricio Terrones, Saptarshi Das. Electrochemical Polishing of Two-Dimensional Materials. ACS Nano 2019, 13 (1) , 78-86. https://doi.org/10.1021/acsnano.8b08216
    48. Yongjun Lee, Jeongyong Kim. Controlling Lattice Defects and Inter-Exciton Interactions in Monolayer Transition Metal Dichalcogenides for Efficient Light Emission. ACS Photonics 2018, 5 (11) , 4187-4194. https://doi.org/10.1021/acsphotonics.8b00645
    49. Chanwoo Lee, Byeong Geun Jeong, Seok Joon Yun, Young Hee Lee, Seung Mi Lee, Mun Seok Jeong. Unveiling Defect-Related Raman Mode of Monolayer WS2 via Tip-Enhanced Resonance Raman Scattering. ACS Nano 2018, 12 (10) , 9982-9990. https://doi.org/10.1021/acsnano.8b04265
    50. Juhong Park, Min Su Kim, Bumsu Park, Sang Ho Oh, Shrawan Roy, Jeongyong Kim, Wonbong Choi. Composition-Tunable Synthesis of Large-Scale Mo1–xWxS2 Alloys with Enhanced Photoluminescence. ACS Nano 2018, 12 (6) , 6301-6309. https://doi.org/10.1021/acsnano.8b03408
    51. Taishen Li, Mingling Li, Yue Lin, Hongbing Cai, Yiming Wu, Huaiyi Ding, Siwen Zhao, Nan Pan, Xiaoping Wang. Probing Exciton Complexes and Charge Distribution in Inkslab-Like WSe2 Homojunction. ACS Nano 2018, 12 (5) , 4959-4967. https://doi.org/10.1021/acsnano.8b02060
    52. Ganesh Ghimire, Subash Adhikari, Seong Gi Jo, Hyun Kim, Jinbao Jiang, Jinsoo Joo, Jeongyong Kim. Local Enhancement of Exciton Emission of Monolayer MoS2 by Copper Phthalocyanine Nanoparticles. The Journal of Physical Chemistry C 2018, 122 (12) , 6794-6800. https://doi.org/10.1021/acs.jpcc.8b00092
    53. Matthew R. Rosenberger, Hsun-Jen Chuang, Kathleen M. McCreary, Aubrey T. Hanbicki, Saujan V. Sivaram, Berend T. Jonker. Nano-“Squeegee” for the Creation of Clean 2D Material Interfaces. ACS Applied Materials & Interfaces 2018, 10 (12) , 10379-10387. https://doi.org/10.1021/acsami.8b01224
    54. Liam P. McDonnell, Chung-Che Huang, Qingsong Cui, Dan W. Hewak, and David C. Smith . Probing Excitons, Trions, and Dark Excitons in Monolayer WS2 Using Resonance Raman Spectroscopy. Nano Letters 2018, 18 (2) , 1428-1434. https://doi.org/10.1021/acs.nanolett.7b05184
    55. Bo Peng, Qi Li, Xiao Liang, Peng Song, Jian Li, Keliang He, Deyi Fu, Yue Li, Chao Shen, Hailong Wang, Chuangtang Wang, Tao Liu, Li Zhang, Haipeng Lu, Xin Wang, Jianhua Zhao, Jianliang Xie, Mingzhong Wu, Lei Bi, Longjiang Deng, and Kian Ping Loh . Valley Polarization of Trions and Magnetoresistance in Heterostructures of MoS2 and Yttrium Iron Garnet. ACS Nano 2017, 11 (12) , 12257-12265. https://doi.org/10.1021/acsnano.7b05743
    56. Kyoung Chul Park, Changwon Seo, Gajendra Gupta, Jeongyong Kim, and Chang Yeon Lee . Efficient Energy Transfer (EnT) in Pyrene- and Porphyrin-Based Mixed-Ligand Metal–Organic Frameworks. ACS Applied Materials & Interfaces 2017, 9 (44) , 38670-38677. https://doi.org/10.1021/acsami.7b14135
    57. Wenting Zhang, Yue Lin, Qi Wang, Weijie Li, Zhifeng Wang, Jiangluqi Song, Xiaodong Li, Lijie Zhang, Lixin Zhu, and Xiaoliang Xu . Well-Hidden Grain Boundary in the Monolayer MoS2 Formed by a Two-Dimensional Core–Shell Growth Mode. ACS Nano 2017, 11 (10) , 10608-10615. https://doi.org/10.1021/acsnano.7b06232
    58. Shanghuai Feng, Ruilong Yang, Zhiyan Jia, Jianyong Xiang, Fusheng Wen, Congpu Mu, Anmin Nie, Zhisheng Zhao, Bo Xu, Chenggang Tao, Yongjun Tian, and Zhongyuan Liu . Strain Release Induced Novel Fluorescence Variation in CVD-Grown Monolayer WS2 Crystals. ACS Applied Materials & Interfaces 2017, 9 (39) , 34071-34077. https://doi.org/10.1021/acsami.7b09744
    59. Thuc Hue Ly, Seok Joon Yun, Quoc Huy Thi, and Jiong Zhao . Edge Delamination of Monolayer Transition Metal Dichalcogenides. ACS Nano 2017, 11 (7) , 7534-7541. https://doi.org/10.1021/acsnano.7b04287
    60. Krishna P. Dhakal, Shrawan Roy, Houk Jang, Xiang Chen, Won Seok Yun, Hyunmin Kim, JaeDong Lee, Jeongyong Kim, and Jong-Hyun Ahn . Local Strain Induced Band Gap Modulation and Photoluminescence Enhancement of Multilayer Transition Metal Dichalcogenides. Chemistry of Materials 2017, 29 (12) , 5124-5133. https://doi.org/10.1021/acs.chemmater.7b00453
    61. Yuewen Sheng, Xiaochen Wang, Kazunori Fujisawa, Siqi Ying, Ana Laura Elias, Zhong Lin, Wenshuo Xu, Yingqiu Zhou, Alexander M. Korsunsky, Harish Bhaskaran, Mauricio Terrones, and Jamie H. Warner . Photoluminescence Segmentation within Individual Hexagonal Monolayer Tungsten Disulfide Domains Grown by Chemical Vapor Deposition. ACS Applied Materials & Interfaces 2017, 9 (17) , 15005-15014. https://doi.org/10.1021/acsami.6b16287
    62. Guru P. Neupane, Minh Dao Tran, Seok Joon Yun, Hyun Kim, Changwon Seo, Jubok Lee, Gang Hee Han, A. K. Sood, and Jeongyong Kim . Simple Chemical Treatment to n-Dope Transition-Metal Dichalcogenides and Enhance the Optical and Electrical Characteristics. ACS Applied Materials & Interfaces 2017, 9 (13) , 11950-11958. https://doi.org/10.1021/acsami.6b15239
    63. Gopinath Danda, Paul Masih Das, Yung-Chien Chou, Jerome T. Mlack, William M. Parkin, Carl H. Naylor, Kazunori Fujisawa, Tianyi Zhang, Laura Beth Fulton, Mauricio Terrones, Alan T. Charlie Johnson, and Marija Drndić . Monolayer WS2 Nanopores for DNA Translocation with Light-Adjustable Sizes. ACS Nano 2017, 11 (2) , 1937-1945. https://doi.org/10.1021/acsnano.6b08028
    64. Ashwin Venkatakrishnan, Hou Chua, Pinxi Tan, Zhenliang Hu, Hongwei Liu, Yanpeng Liu, Alexandra Carvalho, Junpeng Lu, and Chorng Haur Sow . Microsteganography on WS2 Monolayers Tailored by Direct Laser Painting. ACS Nano 2017, 11 (1) , 713-720. https://doi.org/10.1021/acsnano.6b07118
    65. Ganguli Babu, Nirul Masurkar, Hesham Al Salem, and Leela Mohana Reddy Arava . Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis. Journal of the American Chemical Society 2017, 139 (1) , 171-178. https://doi.org/10.1021/jacs.6b08681
    66. Yongqing Cai, Hangbo Zhou, Gang Zhang, and Yong-Wei Zhang . Modulating Carrier Density and Transport Properties of MoS2 by Organic Molecular Doping and Defect Engineering. Chemistry of Materials 2016, 28 (23) , 8611-8621. https://doi.org/10.1021/acs.chemmater.6b03539
    67. Hye Min Oh, Hyun Jeong, Gang Hee Han, Hyun Kim, Jung Ho Kim, Si Young Lee, Seung Yol Jeong, Sooyeon Jeong, Doo Jae Park, Ki Kang Kim, Young Hee Lee, and Mun Seok Jeong . Modulating Electronic Properties of Monolayer MoS2 via Electron-Withdrawing Functional Groups of Graphene Oxide. ACS Nano 2016, 10 (11) , 10446-10453. https://doi.org/10.1021/acsnano.6b06319
    68. Min Su Kim, Shrawan Roy, Jubok Lee, Byung Gu Kim, Hyun Kim, Ji-Hoon Park, Seok Joon Yun, Gang Hee Han, Jae-Young Leem, and Jeongyong Kim . Enhanced Light Emission from Monolayer Semiconductors by Forming Heterostructures with ZnO Thin Films. ACS Applied Materials & Interfaces 2016, 8 (42) , 28809-28815. https://doi.org/10.1021/acsami.6b08003
    69. Hongwei Liu, Junpeng Lu, Kenneth Ho, Zhenliang Hu, Zhiya Dang, Alexandra Carvalho, Hui Ru Tan, Eng Soon Tok, and Chorng Haur Sow . Fluorescence Concentric Triangles: A Case of Chemical Heterogeneity in WS2 Atomic Monolayer. Nano Letters 2016, 16 (9) , 5559-5567. https://doi.org/10.1021/acs.nanolett.6b02111
    70. Shaojun Wang, Songlin Li, Thibault Chervy, Atef Shalabney, Stefano Azzini, Emanuele Orgiu, James A. Hutchison, Cyriaque Genet, Paolo Samorì, and Thomas W. Ebbesen . Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature. Nano Letters 2016, 16 (7) , 4368-4374. https://doi.org/10.1021/acs.nanolett.6b01475
    71. Min Su Kim, Changwon Seo, Hyun Kim, Jubok Lee, Dinh Hoa Luong, Ji-Hoon Park, Gang Hee Han, and Jeongyong Kim . Simultaneous Hosting of Positive and Negative Trions and the Enhanced Direct Band Emission in MoSe2/MoS2 Heterostacked Multilayers. ACS Nano 2016, 10 (6) , 6211-6219. https://doi.org/10.1021/acsnano.6b02213
    72. Hye Min Oh, Gang Hee Han, Hyun Kim, Jung Jun Bae, Mun Seok Jeong, and Young Hee Lee . Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy. ACS Nano 2016, 10 (5) , 5230-5236. https://doi.org/10.1021/acsnano.6b00895
    73. Kyoung-Duck Park, Omar Khatib, Vasily Kravtsov, Genevieve Clark, Xiaodong Xu, and Markus B. Raschke . Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control. Nano Letters 2016, 16 (4) , 2621-2627. https://doi.org/10.1021/acs.nanolett.6b00238
    74. Elham Rahmani, Ali Reyhani, Mohammad Reza Khanlary, Seyedeh Zahra Mortazavi, Mohammad Reza Mohammadi, Holger Dau, Mohammad Fardin Gholami, Alireza Beig Mohammadi, Jürgen P. Rabe, Majid Soleimani, Mehrdad Zarabadipoor. Phosphorus doped few layer WS2 flakes grown by chemical vapor deposition for hydrogen evolution reactions. Scientific Reports 2025, 15 (1) https://doi.org/10.1038/s41598-025-90341-4
    75. Nahide Karabulut, Büşra Aydin, Çağlar Duman. Numerical simulation of a graphene/n-WS 2 /a-Si:H(I)/p-cSi/Ag HIT solar cell. Modelling and Simulation in Materials Science and Engineering 2025, 33 (5) , 055012. https://doi.org/10.1088/1361-651X/addadd
    76. Frederico B. Sousa, Kazunori Fujisawa, Felipe Menescal, Matheus J. S. Matos, Marcos A. Pimenta, Helio Chacham, Mauricio Terrones, Leandro M. Malard, Bruno R. Carvalho. Optical spectroscopy of defects in atomically thin transition metal dichalcogenides. Applied Physics Reviews 2025, 12 (2) https://doi.org/10.1063/5.0251288
    77. Rohit R. Srivastava, Serene Kamal, Alexander Samokhvalov, Susanna M. Thon, Ramesh C. Budhani. Unveiling the photo-physical properties of NaCl promoted large area WS2 monolayers. Journal of Applied Physics 2025, 137 (20) https://doi.org/10.1063/5.0250016
    78. Sourav Paul, Subhendu Mishra, Abhijith M B, Prasenjit Ghosh, Punam Barman, Michael Altvater, Vineet Pandey, Prajna Paromita Chanda, Saranya Das, Ajit Roy, Nicholas R Glavin, Abhishek Kumar Singh, Vidya Kochat. Strain and Charge Doping Modulated Optical Emission Signatures of Polycrystalline WSe 2. Small 2025, 21 (19) https://doi.org/10.1002/smll.202411297
    79. Hongze Zhang, Yueying Cui, Chun Li, Juekuan Yang, Kedong Bi. Spin-orbit limited defect luminescence flip in monolayer MoxW1−xS2 alloy. Chemical Physics Letters 2025, 862 , 141850. https://doi.org/10.1016/j.cplett.2024.141850
    80. Andrey Kudlis, Ivan A. Aleksandrov, Mikhail M. Glazov, Ivan A. Shelykh. Theory of biexciton polaritons in transition metal dichalcogenide monolayers. Physical Review B 2025, 111 (11) https://doi.org/10.1103/PhysRevB.111.115401
    81. Junil Kim, Arindam Bala, Seungho Baek, Hyuk-Jun Kwon, Sunkook Kim. Oxygen effects on hopping transport in polycrystalline tungsten disulfide transistors via laser-assisted doping. Journal of Alloys and Compounds 2025, 1014 , 178576. https://doi.org/10.1016/j.jallcom.2025.178576
    82. Tianze Kan, Kaixi Shi, Fujun Liu, Jinhua Li, Xuan Fang. Cu‐Plasma‐Induced Interfacial Engineering for Nanosecond Scale WS 2 /CuO Heterojunction Photodetectors. Advanced Optical Materials 2025, 13 (6) https://doi.org/10.1002/adom.202402572
    83. Yingjie Huang, Yin Song, Shi Li, Xiaolu Bai, Weiqian Zhao, , . A noncollinear optical parametric amplifier based on an enhanced supercontinuum white light. 2024, 268. https://doi.org/10.1117/12.3037263
    84. Haoyu Dong, Songyang Li, Shuo Mi, Jianfeng Guo, Zhaxi Suonan, Hanxiang Wu, Yanyan Geng, Manyu Wang, Huiwen Xu, Li Guan, Fei Pang, Wei Ji, Rui Xu, Zhihai Cheng. Strain-engineered rippling at the bilayer-MoS2 interface identified by advanced atomic force microscopy. Frontiers of Physics 2024, 19 (6) https://doi.org/10.1007/s11467-024-1409-4
    85. Shrawan Roy, Xiaodong Yang, Jie Gao. Biaxial strain tuned upconversion photoluminescence of monolayer WS2. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-54185-8
    86. Faiha Mujeeb, Vikram Mahamiya, Arushi Singh, Mansi Kothari, Arindam Chowdhury, Alok Shukla, Subhabrata Dhar. Solving the puzzle of higher photoluminescence yield at the edges of MoS2 monolayers grown by chemical vapor deposition. Applied Physics Letters 2024, 125 (21) https://doi.org/10.1063/5.0226977
    87. Wei Li, Qiuyin Qin, Xin Li, Ying Huangfu, Dingyi Shen, Jialing Liu, Jia Li, Bo Li, Ruixia Wu, Xidong Duan. Robust Growth of 2D Transition Metal Dichalcogenide Vertical Heterostructures via Ammonium‐Assisted CVD Strategy. Advanced Materials 2024, 36 (46) https://doi.org/10.1002/adma.202408367
    88. Shuangping Han, Pengyu Zan, Yu Yan, Yaoxing Bian, Chengbing Qin, Liantuan Xiao. Gas pressure-sensitive regulation of exciton state of monolayer tungsten disulfide. Frontiers of Chemical Science and Engineering 2024, 18 (11) https://doi.org/10.1007/s11705-024-2483-4
    89. Suyash Rai, Anchal Srivastava. Low-temperature photoluminescence and Raman study of monolayer WSe2 for photocarrier dynamics and thermal conductivity. Journal of Applied Physics 2024, 136 (15) https://doi.org/10.1063/5.0223732
    90. Yuan Shang, Yuqiang Wu, Mengtao Sun. The super raman intensity induced by spin-orbit coupling effect in monolayer MoS2 and WS2 under varying pressures. Materials Today Physics 2024, 46 , 101507. https://doi.org/10.1016/j.mtphys.2024.101507
    91. Federico Ferrarese Lupi, Gianluca Milano, Angelo Angelini, Mateo Rosero‐Realpe, Bruno Torre, Erika Kozma, Christian Martella, Carlo Grazianetti. Synaptic Plasticity and Visual Memory in a Neuromorphic 2D Memitter Based on WS 2 Monolayers. Advanced Functional Materials 2024, 34 (32) https://doi.org/10.1002/adfm.202403158
    92. Frederico B. Sousa, Rafael Nadas, Rafael Martins, Ana P. M. Barboza, Jaqueline S. Soares, Bernardo R. A. Neves, Ive Silvestre, Ado Jorio, Leandro M. Malard. Disentangling doping and strain effects at defects of grown MoS 2 monolayers with nano-optical spectroscopy. Nanoscale 2024, 16 (27) , 12923-12933. https://doi.org/10.1039/D4NR00837E
    93. Ji‐Yun Moon, Seung‐Il Kim, Soheil Ghods, Seungil Park, Seunghan Kim, SooHyun Chang, Ho‐Chan Jang, Jun‐Hui Choi, Justin S. Kim, Sang‐Hoon Bae, Dongmok Whang, Tae‐Hoon Kim, Jae‐Hyun Lee. Nondestructive Single‐Atom‐Thick Crystallographic Scanner via Sticky‐Note‐Like van der Waals Assembling–Disassembling. Advanced Materials 2024, 36 (30) https://doi.org/10.1002/adma.202400091
    94. Jingwei Wang, Liqiong He, Yunhao Zhang, Huiyu Nong, Shengnan Li, Qinke Wu, Junyang Tan, Bilu Liu. Locally Strained 2D Materials: Preparation, Properties, and Applications. Advanced Materials 2024, 36 (23) https://doi.org/10.1002/adma.202314145
    95. H. Ağırcan, D. Convertino, A. Rossi, L. Martini, S. Pace, N. Mishra, K. Küster, U. Starke, G. Kartal Şireli, C. Coletti, S. Forti. Determination and investigation of defect domains in multi-shape monolayer tungsten disulfide. Nanoscale Advances 2024, 6 (11) , 2850-2859. https://doi.org/10.1039/D4NA00125G
    96. Michal Khenkin, Pranab K. Mohapatra, Boris Kaziev, Avinash Patsha, Daniel Beitner, Pini Shekhter, Assael Cohen, Debopriya Dutta, Mukundakumar Balasubrahmaniyam, Adina Golombek, Elad Koren, Tal Schwartz, Shachar Richter, Ariel Ismach. Langmuir-Blodgett organic films deposition for the formation of conformal 2D inorganic-organic heterostructures. Applied Surface Science 2024, 655 , 159587. https://doi.org/10.1016/j.apsusc.2024.159587
    97. Eunji Lee, Krishna Prasad Dhakal, Hwayoung Song, Heenang Choi, Taek‐Mo Chung, Saeyoung Oh, Hu Young Jeong, Juan M. Marmolejo‐Tejada, Martín A. Mosquera, Dinh Loc Duong, Kibum Kang, Jeongyong Kim. Anomalous Temperature and Polarization Dependences of Photoluminescence of Metal‐Organic Chemical Vapor Deposition‐Grown GeSe 2. Advanced Optical Materials 2024, 12 (2) https://doi.org/10.1002/adom.202301355
    98. Hai-Yang Liu, Xiao-Yue Fan, Hao-Jie Fan, Yang-Yang Li, Tian-Hong Tang, Gang Wang, . Influence of defects induced by plasma-bombarded monolayer WS<sub>2 </sub>on optical properties of bound excitons. Acta Physica Sinica 2024, 73 (13) , 137802. https://doi.org/10.7498/aps.73.20240475
    99. Krishna P. Dhakal, Eunji Lee, Tran Viet Anh, Ganesh Ghimire, Wooseon Choi, Young-Min Kim, Dinh Loc Duong, Jeongyong Kim. Investigation of exciton states of ReS2 by temperature- and polarization-dependent photoluminescence and oxygen plasma treatment. Applied Surface Science 2023, 638 , 158093. https://doi.org/10.1016/j.apsusc.2023.158093
    100. Xiaoyu Wei, Zijun Tang, Chenxu Liu, Huili Zhu, Changjie Zhou. Large-area WS2 Deposited on Sapphire and Its In-Plane Raman and PL Spectral Distributions. Journal of Physics: Conference Series 2023, 2553 (1) , 012053. https://doi.org/10.1088/1742-6596/2553/1/012053
    Load more citations

    ACS Nano

    Cite this: ACS Nano 2016, 10, 2, 2399–2405
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.5b07214
    Published January 13, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    8244

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.