Gold Nanorod Induced Warming of Embryos from the Cryogenic State Enhances Viability
Abstract

Zebrafish embryos can attain a stable cryogenic state by microinjection of cryoprotectants followed by rapid cooling, but the massive size of the embryo has consistently led to failure during the convective warming process. Here we address this zebrafish cryopreservation problem by using gold nanorods (GNRs) to assist in the warming process. Specifically, we microinjected the cryoprotectant propylene glycol into zebrafish embryos along with GNRs, and the samples were cooled at a rate of 90 000 °C/min in liquid nitrogen. We demonstrated the ability to unfreeze the zebrafish rapidly (1.4 × 107 °C/min) by irradiating the sample with a 1064 nm laser pulse for 1 ms due to the excitation of GNRs. This rapid warming process led to the outrunning of ice formation, which can damage the embryos. The results from 14 trials (n = 223) demonstrated viable embryos with consistent structure at 1 h (31%) and continuing development at 3 h (17%) and movement at 24 h (10%) postwarming. This compares starkly with 0% viability, structure, or movement at all time points in convectively warmed controls (n = 50, p < 0.001, ANOVA). Our nanoparticle-based warming process could be applied to the storage of fish, and with proper modification, can potentially be used for other vertebrate embryos.
Cited By
This article is cited by 34 publications.
- Kanav Khosla, Li Zhan, Aditya Bhati, Aiden Carley-Clopton, Mary Hagedorn, John Bischof. Characterization of Laser Gold Nanowarming: A Platform for Millimeter-Scale Cryopreservation. Langmuir 2019, 35 (23) , 7364-7375. https://doi.org/10.1021/acs.langmuir.8b03011
- Matthew R. Hauwiller, Justin C. Ondry, Cindy M. Chan, Prachi Khandekar, Jessica Yu, A. Paul Alivisatos. Gold Nanocrystal Etching as a Means of Probing the Dynamic Chemical Environment in Graphene Liquid Cell Electron Microscopy. Journal of the American Chemical Society 2019, 141 (10) , 4428-4437. https://doi.org/10.1021/jacs.9b00082
- Matthew R. Hauwiller, Layne B. Frechette, Matthew R. Jones, Justin C. Ondry, Grant M. Rotskoff, Phillip Geissler, A. Paul Alivisatos. Unraveling Kinetically-Driven Mechanisms of Gold Nanocrystal Shape Transformations Using Graphene Liquid Cell Electron Microscopy. Nano Letters 2018, 18 (9) , 5731-5737. https://doi.org/10.1021/acs.nanolett.8b02337
- Yilin Liu, Joseph Kangas, Yiru Wang, Kanav Khosla, Jacqueline Pasek-Allen, Aaron Saunders, Steven Oldenburg, John Bischof. Photothermal conversion of gold nanoparticles for uniform pulsed laser warming of vitrified biomaterials. Nanoscale 2020, 12 (23) , 12346-12356. https://doi.org/10.1039/D0NR01614D
- Luis B. Ferré, Michael E. Kjelland, Ahmed M. Taiyeb, Fernando Campos‐Chillon, Pablo J. Ross. Recent progress in bovine in vitro‐derived embryo cryotolerance: Impact of in vitro culture systems, advances in cryopreservation and future considerations. Reproduction in Domestic Animals 2020, 55 (6) , 659-676. https://doi.org/10.1111/rda.13667
- L. B. Ferré, M. E. Kjelland, L. B. Strøbech, P. Hyttel, P. Mermillod, P. J. Ross. Review: Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. animal 2020, 14 (5) , 991-1004. https://doi.org/10.1017/S1751731119002775
- Yi Hou, Chennan Lu, Mengjia Dou, Chenglin Zhang, Hao Chang, Jing Liu, Wei Rao. Soft liquid metal nanoparticles achieve reduced crystal nucleation and ultrarapid rewarming for human bone marrow stromal cell and blood vessel cryopreservation. Acta Biomaterialia 2020, 102 , 403-415. https://doi.org/10.1016/j.actbio.2019.11.023
- Daniel Castranova, Chongmin Wang. Zebrafish Breeding and Colony Management. 2020,,, 357-364. https://doi.org/10.1016/B978-0-12-812431-4.00031-2
- Nicola Rivers, Jonathan Daly, Peter Temple-Smith. New directions in assisted breeding techniques for fish conservation. Reproduction, Fertility and Development 2020, 32 (9) , 807. https://doi.org/10.1071/RD19457
- Sergii Boryshpolets, Vitaliy Kholodnyy, Jacky Cosson, Borys Dzyuba. Fish Sperm Quality Evaluation After Cryopreservation. 2020,,, 117-133. https://doi.org/10.1007/978-981-15-4025-7_5
- P. Routray. Cryopreservation and Storage of Oocytes, Embryos and Embryonic Cells of Fish. 2020,,, 313-336. https://doi.org/10.1007/978-981-15-4025-7_13
- Roman Franěk, Martin Pšenička. Cryopreservation of Germ Stem Cells in Fish. 2020,,, 285-312. https://doi.org/10.1007/978-981-15-4025-7_12
- Jing Yang, Lei Gao, Min Liu, Xiaojie Sui, Yingnan Zhu, Chiyu Wen, Lei Zhang. Advanced Biotechnology for Cell Cryopreservation. Transactions of Tianjin University 2019, 35 https://doi.org/10.1007/s12209-019-00227-6
- Anirudh Sharma, John C. Bischof, Erik B. Finger. Liver Cryopreservation for Regenerative Medicine Applications. Regenerative Engineering and Translational Medicine 2019, 188 https://doi.org/10.1007/s40883-019-00131-4
- Yue Cheng, Yunru Yu, Yuntian Zhang, Gang Zhao, Yuanjin Zhao. Cold‐Responsive Nanocapsules Enable the Sole‐Cryoprotectant‐Trehalose Cryopreservation of β Cell–Laden Hydrogels for Diabetes Treatment. Small 2019, 15 (50) , 1904290. https://doi.org/10.1002/smll.201904290
- Zoran Marinović, Qian Li, Jelena Lujić, Yoshiko Iwasaki, Zsolt Csenki, Béla Urbányi, Goro Yoshizaki, Ákos Horváth. Preservation of zebrafish genetic resources through testis cryopreservation and spermatogonia transplantation. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-50169-1
- Luca Cirino, Zhi-Hong Wen, Kevin Hsieh, Cheng-Liang Huang, Qi Lun Leong, Li-Hsueh Wang, Chii-Shiarng Chen, Jonathan Daly, Sujune Tsai, Chiahsin Lin. First instance of settlement by cryopreserved coral larvae in symbiotic association with dinoflagellates. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-55374-6
- Pierre Comizzoli, William V Holt. Breakthroughs and new horizons in reproductive biology of rare and endangered animal species. Biology of Reproduction 2019, 101 (3) , 514-525. https://doi.org/10.1093/biolre/ioz031
- Robert K. Browne, Aimee J. Silla, Rose Upton, Gina Della-Togna, Ruth Marcec-Greaves, Natalia V. Shishova, Victor K. Uteshev, Belin Proaño, Oscar D. Pérez, Nabil Mansour, Svetlana A. Kaurova, Edith N. Gakhova, Jacky Cosson, Borys Dyzuba, Ludmila I. Kramarova, Dale McGinnity, Manuel Gonzalez, John Clulow, Simon Clulow. Sperm collection and storage for the sustainable management of amphibian biodiversity. Theriogenology 2019, 133 , 187-200. https://doi.org/10.1016/j.theriogenology.2019.03.035
- Bo Sun, Ziyi Wang, Zhiyong Liu, Xianhua Tan, Xingyue Liu, Tielin Shi, Jianxin Zhou, Guanglan Liao. Tailoring of Silver Nanocubes with Optimized Localized Surface Plasmon in a Gap Mode for a Flexible MoS 2 Photodetector. Advanced Functional Materials 2019, 29 (26) , 1900541. https://doi.org/10.1002/adfm.201900541
- , Eugeniy F. Kopeika, Maryna P. Petrushko, , Volodymyr I. Piniaiev, , Taisiia O. Yurchuk, , Olena V. Pavlovich, , Konstantin B. Mikson, , Kyrylo I. Butskyi, , Hanna O. Hapon, , Anton Yu. Puhovkin, . Cryopreservation of Reproductive Cells and Embryos of Laboratory, Agricultural and Wild Animals. Problems of Cryobiology and Cryomedicine 2019, 29 (1) , 003-018. https://doi.org/10.15407/cryo29.01.003
- Sergei Amstislavsky, Valentina Mokrousova, Eugeny Brusentsev, Konstantin Okotrub, Pierre Comizzoli. Influence of Cellular Lipids on Cryopreservation of Mammalian Oocytes and Preimplantation Embryos: A Review. Biopreservation and Biobanking 2019, 17 (1) , 76-83. https://doi.org/10.1089/bio.2018.0039
- Mary Hagedorn, Zoltan Varga, Ronald B. Walter, Terrence R. Tiersch. Workshop report: Cryopreservation of aquatic biomedical models. Cryobiology 2019, 86 , 120-129. https://doi.org/10.1016/j.cryobiol.2018.10.264
- J. Clulow, R. Upton, V. L. Trudeau, S. Clulow. Amphibian Assisted Reproductive Technologies: Moving from Technology to Application. 2019,,, 413-463. https://doi.org/10.1007/978-3-030-23633-5_14
- Ian Mayer. The Role of Reproductive Sciences in the Preservation and Breeding of Commercial and Threatened Teleost Fishes. 2019,,, 187-224. https://doi.org/10.1007/978-3-030-23633-5_7
- Md Ariful Alam, Sheikh Mustafizur Rahman, Yoji Yamamoto, Ricardo Shohei Hattori, Toru Suzuki, Manabu Watanabe, Carlos Augusto Strüssmann. Optimization of protocols for microinjection-based delivery of cryoprotective agents into Japanese whiting Sillago japonica embryos. Cryobiology 2018, 85 , 25-32. https://doi.org/10.1016/j.cryobiol.2018.10.007
- Jonathan Daly, Nikolas Zuchowicz, C. Isabel Nuñez Lendo, Kanav Khosla, Claire Lager, E. Michael Henley, John Bischof, F. W. Kleinhans, Chiahsin Lin, Esther C. Peters, Mary Hagedorn. Successful cryopreservation of coral larvae using vitrification and laser warming. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-34035-0
- Siji Anil, David Rawson, Tiantian Zhang. Development of molecular markers for zebrafish ( Danio rerio ) ovarian follicle growth assessment following in-vitro culture in cryopreservation studies. Cryobiology 2018, 83 , 75-83. https://doi.org/10.1016/j.cryobiol.2018.05.004
- John C. Bischof, Kenneth R. Diller. From Nanowarming to Thermoregulation: New Multiscale Applications of Bioheat Transfer. Annual Review of Biomedical Engineering 2018, 20 (1) , 301-327. https://doi.org/10.1146/annurev-bioeng-071516-044532
- Meng Shi, Shangsheng Feng, Xiaohui Zhang, Changchun Ji, Feng Xu, Tian Jian Lu. Droplet based vitrification for cell aggregates: Numerical analysis. Journal of the Mechanical Behavior of Biomedical Materials 2018, 82 , 383-393. https://doi.org/10.1016/j.jmbbm.2018.03.026
- Y.S. Tian, J.J. Zhang, Z.T. Li, J. Tang, M.L. Cheng, Y.P. Wu, W.H. Ma, Z.F. Pang, W.S. Li, J.M. Zhai, B. Li. Effect of vitrification solutions on survival rate of cryopreserved Epinephelus moara embryos. Theriogenology 2018, 113 , 183-191. https://doi.org/10.1016/j.theriogenology.2018.03.010
- Estefania Paredes. Gamete Preservation. 2018,,, 769-775. https://doi.org/10.1016/B978-0-12-809633-8.20629-8
- Fazil Panhwar, Zhongrong Chen, S. M. Chapal Hossain, Meng Wang, Zeeshan Haider, Kashan Memon, Pengpeng Chen, Gang Zhao. Near-infrared laser mediated modulation of ice crystallization by two-dimensional nanosheets enables high-survival recovery of biological cells from cryogenic temperatures. Nanoscale 2018, 10 (25) , 11760-11774. https://doi.org/10.1039/C8NR01349G
- Megan Scudellari. Core Concept: Cryopreservation aims to engineer novel ways to freeze, store, and thaw organs. Proceedings of the National Academy of Sciences 2017, 114 (50) , 13060-13062. https://doi.org/10.1073/pnas.1717588114




