ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework

View Author Information
Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
§ Laboratory for Computational and Theoretical Chemistry of Advanced Materials, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
# Shanghai Key Laboratory of Functional Materials Chemistry and School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332-0400, United States
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
*W.R.D. E-mail: [email protected]
*J.-L.B. E-mail: [email protected]
*M.F.C. E-mail: [email protected]
Cite this: ACS Nano 2018, 12, 1, 385–391
Publication Date (Web):December 20, 2017
https://doi.org/10.1021/acsnano.7b06529
Copyright © 2017 American Chemical Society

    Article Views

    7957

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMA) and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) onto a Au(111) surface in ultrahigh vacuum followed by annealing to facilitate Schiff-base condensations between monomers. Scanning tunneling spectroscopy (STS) experiments conducted on isolated TAPP precursor molecules and the covalently linked COF networks yield similar transport (HOMO–LUMO) gaps of 1.85 ± 0.05 eV and 1.98 ± 0.04 eV, respectively. The COF orbital energy alignment, however, undergoes a significant downward shift compared to isolated TAPP molecules due to the electron-withdrawing nature of the imine bond formed during COF synthesis. Direct imaging of the COF local density of states (LDOS) via dI/dV mapping reveals that the COF HOMO and LUMO states are localized mainly on the porphyrin cores and that the HOMO displays reduced symmetry. DFT calculations reproduce the imine-induced negative shift in orbital energies and reveal that the origin of the reduced COF wave function symmetry is a saddle-like structure adopted by the porphyrin macrocycle due to its interactions with the Au(111) substrate.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.7b06529.

    • Details on DFT calculations, saddle structure of porphyrin on Au(111), and DOS plots (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 66 publications.

    1. Chao Cheng, Hong Miao, Yaqin Chai, Ruo Yuan, Hongyan Liu. Highly Efficient Solar-Driven Photothermal–Photocatalytic System Based on Supramolecular Iron Phthalocyanine Organic Polymer/CoFe2O4/Polydopamine for Wastewater Purification. ACS Materials Letters 2024, 6 (1) , 132-139. https://doi.org/10.1021/acsmaterialslett.3c01202
    2. Kalipada Koner, Arnab Sadhukhan, Suvendu Karak, Himadri Sekhar Sasmal, Yutaro Ogaeri, Yusuke Nishiyama, Shuangjie Zhao, Miroslav Položij, Agnieszka Kuc, Thomas Heine, Rahul Banerjee. Bottom-Up Synthesis of Crystalline Covalent Organic Framework Nanosheets, Nanotubes, and Kippah Vesicles: An Odd–Even Effect Induction. Journal of the American Chemical Society 2023, 145 (26) , 14475-14483. https://doi.org/10.1021/jacs.3c03831
    3. Weikun Chen, Huifang Li, Xuefeng Liang, Yuanzheng Tang, Zhiming Liu, Yan He, Udo Schwingenschlögl. Interfacial Energy Level Modulation by Tuning the Electronic Character of Covalent Organic Frameworks: A Linker Functionalization Strategy. The Journal of Physical Chemistry C 2022, 126 (50) , 21496-21506. https://doi.org/10.1021/acs.jpcc.2c07472
    4. Zhiwei Huang, Munan Fang, Bin Tu, Jinlei Yang, Zhuang Yan, Haftu Gebrekiros Alemayehu, Zhiyong Tang, Lianshan Li. Essence of the Enhanced Osmotic Energy Conversion in a Covalent Organic Framework Monolayer. ACS Nano 2022, 16 (10) , 17149-17156. https://doi.org/10.1021/acsnano.2c07555
    5. Ling Li, Huan Li, Lin Shi, Lili Shi, Tao Li. Tin Porphyrin-Based Nanozymes with Unprecedented Superoxide Dismutase-Mimicking Activities. Langmuir 2022, 38 (23) , 7272-7279. https://doi.org/10.1021/acs.langmuir.2c00778
    6. Austin M. Evans, Michael J. Strauss, Amanda R. Corcos, Zoheb Hirani, Woojung Ji, Leslie S. Hamachi, Xavier Aguilar-Enriquez, Anton D. Chavez, Brian J. Smith, William R. Dichtel. Two-Dimensional Polymers and Polymerizations. Chemical Reviews 2022, 122 (1) , 442-564. https://doi.org/10.1021/acs.chemrev.0c01184
    7. Jie Zhang, Xueying Fan, Xiaodong Meng, Ji Zhou, Manyun Wang, Shang Chen, Yawen Cao, Yu Chen, Christopher W. Bielawski, Jianxin Geng. Ice-Templated Large-Scale Preparation of Two-Dimensional Sheets of Conjugated Polymers: Thickness-Independent Flexible Supercapacitance. ACS Nano 2021, 15 (5) , 8870-8882. https://doi.org/10.1021/acsnano.1c01459
    8. Bing Sun, Xinle Li, Tiantian Feng, Songliang Cai, Teresa Chen, Chenhui Zhu, Jian Zhang, Dong Wang, Yi Liu. Resistive Switching Memory Performance of Two-Dimensional Polyimide Covalent Organic Framework Films. ACS Applied Materials & Interfaces 2020, 12 (46) , 51837-51845. https://doi.org/10.1021/acsami.0c15789
    9. Huifang Li, Hong Li, Sangni Xun, Jean-Luc Brédas. Doping Modulation of the Charge Injection Barrier between a Covalent Organic Framework Monolayer and Graphene. Chemistry of Materials 2020, 32 (21) , 9228-9237. https://doi.org/10.1021/acs.chemmater.0c02913
    10. Daniel J. Rizzo, Qingqing Dai, Christopher Bronner, Gregory Veber, Brian J. Smith, Michio Matsumoto, Simil Thomas, Giang D. Nguyen, Patrick R. Forrester, William Zhao, Jakob H. Jørgensen, William R. Dichtel, Felix R. Fischer, Hong Li, Jean-Luc Bredas, Michael F. Crommie. Revealing the Local Electronic Structure of a Single-Layer Covalent Organic Framework through Electronic Decoupling. Nano Letters 2020, 20 (2) , 963-970. https://doi.org/10.1021/acs.nanolett.9b03998
    11. K. Seufert, F. McBride, S. Jaekel, B. Wit, S. Haq, A. Steiner, P. Poli, M. Persson, R. Raval, L. Grill. Porphine Homocoupling on Au(111). The Journal of Physical Chemistry C 2019, 123 (27) , 16690-16698. https://doi.org/10.1021/acs.jpcc.9b02770
    12. Simil Thomas, Hong Li, Cheng Zhong, Michio Matsumoto, William R. Dichtel, Jean-Luc Bredas. Electronic Structure of Two-Dimensional π-Conjugated Covalent Organic Frameworks. Chemistry of Materials 2019, 31 (9) , 3051-3065. https://doi.org/10.1021/acs.chemmater.8b04986
    13. Borja Cirera, Bruno de la Torre, Daniel Moreno, Martin Ondráček, Radek Zbořil, Rodolfo Miranda, Pavel Jelínek, David Écija. On-Surface Synthesis of Gold Porphyrin Derivatives via a Cascade of Chemical Interactions: Planarization, Self-Metalation, and Intermolecular Coupling. Chemistry of Materials 2019, 31 (9) , 3248-3256. https://doi.org/10.1021/acs.chemmater.9b00125
    14. Haoyuan Li, Jean-Luc Brédas. Nanoscrolls Formed from Two-Dimensional Covalent Organic Frameworks. Chemistry of Materials 2019, 31 (9) , 3265-3273. https://doi.org/10.1021/acs.chemmater.9b00186
    15. Li-Mei Wang, Jie-Yu Yue, Xiaoyu Cao, Dong Wang. Insight into the Transimination Process in the Fabrication of Surface Schiff-Based Covalent Organic Frameworks. Langmuir 2019, 35 (19) , 6333-6339. https://doi.org/10.1021/acs.langmuir.9b00565
    16. Zhijing Feng, Simone Velari, Carlo Dri, Andrea Goldoni, Laerte L. Patera, Irene Regeni, Cristina Forzato, Federico Berti, Maria Peressi, Alessandro De Vita, Giovanni Comelli. Bifunctional Behavior of a Porphyrin in Hydrogen-Bonded Donor–Acceptor Molecular Chains on a Gold Surface. The Journal of Physical Chemistry C 2019, 123 (12) , 7088-7096. https://doi.org/10.1021/acs.jpcc.8b08939
    17. Po Ling Cheung, Sze Koon Lee, Clifford P. Kubiak. Facile Solvent-Free Synthesis of Thin Iron Porphyrin COFs on Carbon Cloth Electrodes for CO2 Reduction. Chemistry of Materials 2019, 31 (6) , 1908-1919. https://doi.org/10.1021/acs.chemmater.8b04370
    18. Qing Xu, Shanshan Tao, Qiuhong Jiang, Donglin Jiang. Ion Conduction in Polyelectrolyte Covalent Organic Frameworks. Journal of the American Chemical Society 2018, 140 (24) , 7429-7432. https://doi.org/10.1021/jacs.8b03814
    19. Yikuan Liu, Xiaona Liu, An Su, Chengtao Gong, Shenwei Chen, Liwei Xia, Chengwei Zhang, Xiaohuan Tao, Yue Li, Yonghe Li, Tulai Sun, Mengru Bu, Wei Shao, Jia Zhao, Xiaonian Li, Yongwu Peng, Peng Guo, Yu Han, Yihan Zhu. Revolutionizing the structural design and determination of covalent–organic frameworks: principles, methods, and techniques. Chemical Society Reviews 2024, 310 https://doi.org/10.1039/D3CS00287J
    20. Lifeng Hang, Meng Li, Yuxuan Zhang, Wuming Li, Laiping Fang, Yiyu Chen, Chunze Zhou, Hong Qu, Lianyi Shao, Guihua Jiang. Mn(II) Optimized Sono/Chemodynamic Effect of Porphyrin‐Metal–Organic Framework Nanosheets for MRI‐Guided Colon Cancer Therapy and Metastasis Suppression. Small 2023, 20 https://doi.org/10.1002/smll.202306364
    21. Guanglong Ding, JiYu Zhao, Kui Zhou, Qi Zheng, Su-Ting Han, Xiaojun Peng, Ye Zhou. Porous crystalline materials for memories and neuromorphic computing systems. Chemical Society Reviews 2023, 52 (20) , 7071-7136. https://doi.org/10.1039/D3CS00259D
    22. Zihao Liang, Baokun Liang, Li Gong, Yonghang Yang, Fengpiao Deng, Xinyu Wang, Yuanjun Xia, Zhipeng Zhou, Xin Dong, Jiaxing Lu, Wei Liu, Zhongke Yuan, Haoyuan Qi, Zhikun Zheng. On Water Growth of Continuous Thin Films of Two‐Dimensional Covalent Organic Frameworks with Large Single‐Crystal Domains. Chinese Journal of Chemistry 2023, 41 (19) , 2425-2431. https://doi.org/10.1002/cjoc.202300215
    23. Zhu Ding, Xusheng Li, Chenxu Kang, Sai Yan, Dandan Zhao, Houzhi Cai, Su-Yun Zhang, Yu-Jia Zeng. Single Ru atoms confined into MOF/C3N4 for dual improved photocatalytic carbon dioxide reduction and nitrogen fixation. Chemical Engineering Journal 2023, 473 , 145256. https://doi.org/10.1016/j.cej.2023.145256
    24. Safa Gaber, K. Mahira Bashri, Kayaramkodath Chandran Ranjeesh, Dinesh Shetty. 2D Covalent Organic Frameworks. 2023, 155-212. https://doi.org/10.1039/9781839169656-00155
    25. Roya Majidi, Ahmad I. Ayesh. Diboron-porphyrin monolayer: a cathode material for aluminum-ion batteries. Applied Physics A 2023, 129 (8) https://doi.org/10.1007/s00339-023-06810-y
    26. R.M. Tromer, M.L. Pereira, L.A. Ribeiro, D.S. Galvão. 2D Hemiporphyrazine: A new nanoporous material. Physica E: Low-dimensional Systems and Nanostructures 2023, 150 , 115705. https://doi.org/10.1016/j.physe.2023.115705
    27. Jinwei Fan, Zhuoqun Wang, Haoge Cheng, Dingguan Wang, Andrew Thye Shen Wee. On-Surface Synthesis and Applications of 2D Covalent Organic Framework Nanosheets. Electronic Materials 2023, 4 (2) , 49-61. https://doi.org/10.3390/electronicmat4020005
    28. José J. Ortiz-Garcia, Rebecca C. Quardokus. Synthesis of extended covalently bound porphyrins on the Au(111) surface. Materials Advances 2023, 4 (10) , 2379-2383. https://doi.org/10.1039/D3MA00081H
    29. Mingchao Shao, Yunqi Liu, Yunlong Guo. Customizable 2D Covalent Organic Frameworks for Optoelectronic Applications. Chinese Journal of Chemistry 2023, 41 (10) , 1260-1285. https://doi.org/10.1002/cjoc.202200664
    30. Lingling Wang, Lu Qi, Qinglei Zhang, Binghui Xue, Zhiqiang Zheng, Panchao Yin, Yurui Xue, Wenlong Yang, Yuliang Li. Scalable synthesis of soluble crystalline ionic-graphdiyne by controlled ion expansion. Chemical Science 2023, 14 (17) , 4612-4619. https://doi.org/10.1039/D3SC01393F
    31. Wei-Ting Chung, Islam M.A. Mekhemer, Mohamed Gamal Mohamed, Ahmed M. Elewa, Ahmed F.M. EL-Mahdy, Ho-Hsiu Chou, Shiao-Wei Kuo, Kevin C.-W. Wu. Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coordination Chemistry Reviews 2023, 483 , 215066. https://doi.org/10.1016/j.ccr.2023.215066
    32. José J. Ortiz-Garcia, Rebecca C. Quardokus. Influence of local chemical environment and external perturbations of porphyrins on surfaces. Journal of Vacuum Science & Technology A 2023, 41 (3) https://doi.org/10.1116/6.0002401
    33. Paul Leidinger, Mirco Panighel, Virginia Pérez Dieste, Ignacio J. Villar-Garcia, Pablo Vezzoni, Felix Haag, Johannes V. Barth, Francesco Allegretti, Sebastian Günther, Laerte L. Patera. Probing dynamic covalent chemistry in a 2D boroxine framework by in situ near-ambient pressure X-ray photoelectron spectroscopy. Nanoscale 2023, 15 (3) , 1068-1075. https://doi.org/10.1039/D2NR04949J
    34. Jian Jing, Weikun Chen, Zehua Huang, Luyan Huang, Xuefeng Liang, Yan He, Huifang Li. Electronic structure evolution induced by the charge redistribution during the construction of two-dimensional polymer networks from monomers to crystal frameworks. Physical Chemistry Chemical Physics 2022, 24 (45) , 28003-28011. https://doi.org/10.1039/D2CP04196K
    35. Maria Novoa-Cid, Arianna Melillo, Belén Ferrer, Mercedes Alvaro, Herme G. Baldovi. Photocatalytic Water Splitting Promoted by 2D and 3D Porphyrin Covalent Organic Polymers Synthesized by Suzuki-Miyaura Carbon-Carbon Coupling. Nanomaterials 2022, 12 (18) , 3197. https://doi.org/10.3390/nano12183197
    36. Changxia Li, Patrick Guggenberger, Seung Won Han, Wei‐Lu Ding, Freddy Kleitz. Ultrathin Covalent Organic Framework Anchored on Graphene for Enhanced Organic Pollutant Removal. Angewandte Chemie 2022, 134 (35) https://doi.org/10.1002/ange.202206564
    37. Changxia Li, Patrick Guggenberger, Seung Won Han, Wei‐Lu Ding, Freddy Kleitz. Ultrathin Covalent Organic Framework Anchored on Graphene for Enhanced Organic Pollutant Removal. Angewandte Chemie International Edition 2022, 61 (35) https://doi.org/10.1002/anie.202206564
    38. Yong Zhang, Jianchen Lu, Baijin Li, Weiben Chen, Wei Xiong, Zilin Ruan, Hui Zhang, Shijie Sun, Long Chen, Lei Gao, Jinming Cai. On-surface synthesis and characterization of nitrogen-doped covalent-organic frameworks on Ag(111) substrate. The Journal of Chemical Physics 2022, 157 (3) https://doi.org/10.1063/5.0099995
    39. Yifeng Zhang, Hangxi Liu, Feixue Gao, Xiaoli Tan, Yawen Cai, Baowei Hu, Qifei Huang, Ming Fang, Xiangke Wang. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem 2022, 4 (4) , 100078. https://doi.org/10.1016/j.enchem.2022.100078
    40. Liangjun Chen, Minchu Huang, Bo Chen, Chengtao Gong, Nanjun Li, Hongfei Cheng, Ye Chen, Yongwu Peng, Guodong Xu. Two-dimensional covalent organic framework nanosheets: Synthesis and energy-related applications. Chinese Chemical Letters 2022, 33 (6) , 2867-2882. https://doi.org/10.1016/j.cclet.2021.10.060
    41. Ji Zhou, Xingxin Shi, Xinyi Dong, Lei Sun, Donghai Shi, Xu Liang, Haijun Xu. Tuning the molecular electronic structure and macroscopic aggregates of [2 + 2]-type H 2 - and Zn(II)porphyrins through meso -substituents. Journal of Coordination Chemistry 2022, 75 (9-10) , 1230-1242. https://doi.org/10.1080/00958972.2022.2103687
    42. Antonios Raptakis, Alexander Croy, Arezoo Dianat, Rafael Gutierrez, Gianaurelio Cuniberti. Exploring the similarity of single-layer covalent organic frameworks using electronic structure calculations. RSC Advances 2022, 12 (20) , 12283-12291. https://doi.org/10.1039/D2RA01007K
    43. Congyong Wang, Zhicheng Zhang, Yating Zhu, Chenhuai Yang, Jishan Wu, Wenping Hu. 2D Covalent Organic Frameworks: From Synthetic Strategies to Advanced Optical‐Electrical‐Magnetic Functionalities. Advanced Materials 2022, 34 (17) https://doi.org/10.1002/adma.202102290
    44. Min Kyung Lee, Mohammadreza Shokouhimehr, Soo Young Kim, Ho Won Jang. Two‐Dimensional Metal–Organic Frameworks and Covalent–Organic Frameworks for Electrocatalysis: Distinct Merits by the Reduced Dimension. Advanced Energy Materials 2022, 12 (4) , 2003990. https://doi.org/10.1002/aenm.202003990
    45. Li Yang, Lei Sun, Yanliang Zhao, Jikai Sun, Qiwen Deng, Honglei Wang, Weiqiao Deng. Digital-intellectual design of microporous organic polymers. Physical Chemistry Chemical Physics 2021, 23 (40) , 22835-22853. https://doi.org/10.1039/D1CP03456A
    46. Patrick W. Fritz, Ali Coskun. The Prospect of Dimensionality in Porous Semiconductors. Chemistry – A European Journal 2021, 27 (27) , 7489-7501. https://doi.org/10.1002/chem.202005167
    47. Minghui Chen, Hongrui Li, Chenxi Liu, Jiayi Liu, Yaqing Feng, Andrew G.H. Wee, Bao Zhang. Porphyrin- and porphyrinoid-based covalent organic frameworks (COFs): From design, synthesis to applications. Coordination Chemistry Reviews 2021, 435 , 213778. https://doi.org/10.1016/j.ccr.2021.213778
    48. Yi-long Yan, Qiao-Jun Fang, Jin-kong Pan, Jun Yang, Le-le Zhang, Wei Zhang, Gui-lin Zhuang, Xing Zhong, Sheng-wei Deng, Jian-guo Wang. Efficient photocatalytic reduction of CO2 using Fe-based covalent triazine frameworks decorated with in situ grown ZnFe2O4 nanoparticles. Chemical Engineering Journal 2021, 408 , 127358. https://doi.org/10.1016/j.cej.2020.127358
    49. Yun Fan, Jia Zhang, Yu Shen, Bing Zheng, Weina Zhang, Fengwei Huo. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Research 2021, 14 (1) , 1-28. https://doi.org/10.1007/s12274-020-3082-4
    50. Xing Li, Hai-Sen Xu, Kai Leng, See Wee Chee, Xiaoxu Zhao, Noopur Jain, Hai Xu, Jingsi Qiao, Qiang Gao, In-Hyeok Park, Su Ying Quek, Utkur Mirsaidov, Kian Ping Loh. Partitioning the interlayer space of covalent organic frameworks by embedding pseudorotaxanes in their backbones. Nature Chemistry 2020, 12 (12) , 1115-1122. https://doi.org/10.1038/s41557-020-00562-5
    51. Orestis George Ziogos, Itsaso Blanco, Jochen Blumberger. Ultrathin porphyrin and tetra-indole covalent organic frameworks for organic electronics applications. The Journal of Chemical Physics 2020, 153 (4) https://doi.org/10.1063/5.0010164
    52. Jie Li, Xuechun Jing, Qingqing Li, Siwu Li, Xing Gao, Xiao Feng, Bo Wang. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chemical Society Reviews 2020, 49 (11) , 3565-3604. https://doi.org/10.1039/D0CS00017E
    53. Lu‐jie Wang, Rui‐lei Wang, Xiao Zhang, Jing‐lin Mu, Zi‐yan Zhou, Zhong‐min Su. Improved Photoreduction of CO 2 with Water by Tuning the Valence Band of Covalent Organic Frameworks. ChemSusChem 2020, 13 (11) , 2973-2980. https://doi.org/10.1002/cssc.202000103
    54. Gregory Veber, Christian S. Diercks, Cameron Rogers, Wade S. Perkins, Jim Ciston, Kyunghoon Lee, Juan Pablo Llinas, Alex Liebman-Peláez, Chenhui Zhu, Jeffrey Bokor, Felix R. Fischer. Reticular Growth of Graphene Nanoribbon 2D Covalent Organic Frameworks. Chem 2020, 6 (5) , 1125-1133. https://doi.org/10.1016/j.chempr.2020.01.022
    55. D. Rodríguez-San-Miguel, C. Montoro, F. Zamora. Covalent organic framework nanosheets: preparation, properties and applications. Chemical Society Reviews 2020, 49 (8) , 2291-2302. https://doi.org/10.1039/C9CS00890J
    56. Bojian Hu, Peiyi Wu. Facile synthesis of large-area ultrathin two-dimensional supramolecular nanosheets in water. Nano Research 2020, 13 (3) , 868-874. https://doi.org/10.1007/s12274-020-2709-9
    57. Vipin Mishra, Vivek K. Yadav, Jayant K. Singh, Thiruvancheril G. Gopakumar. Electronic Structure of a Semiconducting Imine‐Covalent Organic Framework. Chemistry – An Asian Journal 2019, 14 (24) , 4645-4650. https://doi.org/10.1002/asia.201900586
    58. Yu Zhong, Baorui Cheng, Chibeom Park, Ariana Ray, Sarah Brown, Fauzia Mujid, Jae-Ung Lee, Hua Zhou, Joonki Suh, Kan-Heng Lee, Andrew J. Mannix, Kibum Kang, S. J. Sibener, David A. Muller, Jiwoong Park. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 2019, 366 (6471) , 1379-1384. https://doi.org/10.1126/science.aax9385
    59. Sylvie Rangan, Peter Kim, Charles Ruggieri, Stephen Whitelam, Robert A. Bartynski. Growth of a highly ordered inhomogeneous kinetically trapped molecular monolayer. Physical Review B 2019, 100 (24) https://doi.org/10.1103/PhysRevB.100.245411
    60. Yong Liu, Xiaodong Yan, Tao Li, Wen-Da Zhang, Qiu-Ting Fu, Hui-Shu Lu, Xuan Wang, Zhi-Guo Gu. Three-dimensional porphyrin-based covalent organic frameworks with tetrahedral building blocks for single-site catalysis. New Journal of Chemistry 2019, 43 (43) , 16907-16914. https://doi.org/10.1039/C9NJ04017J
    61. Marina A. Solomos, F. James Claire, Thomas J. Kempa. 2D molecular crystal lattices: advances in their synthesis, characterization, and application. Journal of Materials Chemistry A 2019, 7 (41) , 23537-23562. https://doi.org/10.1039/C9TA06534B
    62. Ryota Sakamoto, Naoya Fukui, Hiroaki Maeda, Ryota Matsuoka, Ryojun Toyoda, Hiroshi Nishihara. The Accelerating World of Graphdiynes. Advanced Materials 2019, 31 (42) https://doi.org/10.1002/adma.201804211
    63. Corentin Pigot, Frédéric Dumur. Recent Advances of Hierarchical and Sequential Growth of Macromolecular Organic Structures on Surface. Materials 2019, 12 (4) , 662. https://doi.org/10.3390/ma12040662
    64. Luiza Buimaga-Iarinca, Cristian Morari. The effect of translation on the binding energy for transition-metal porphyrines adsorbed on Ag(111) surface. Beilstein Journal of Nanotechnology 2019, 10 , 706-717. https://doi.org/10.3762/bjnano.10.70
    65. Trinity Joshi, Chen Chen, Huifang Li, Christian S. Diercks, Gaoqiang Wang, Peter J. Waller, Hong Li, Jean‐Luc Bredas, Omar M. Yaghi, Michael F. Crommie. Local Electronic Structure of Molecular Heterojunctions in a Single‐Layer 2D Covalent Organic Framework. Advanced Materials 2019, 31 (3) https://doi.org/10.1002/adma.201805941
    66. Dengke Wang, Xiang Li, Ling-Ling Zheng, Lu-Mei Qin, Shuang Li, Peng Ye, Yan Li, Jian-Ping Zou. Size-controlled synthesis of CdS nanoparticles confined on covalent triazine-based frameworks for durable photocatalytic hydrogen evolution under visible light. Nanoscale 2018, 10 (41) , 19509-19516. https://doi.org/10.1039/C8NR06691D

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect