ACS Publications. Most Trusted. Most Cited. Most Read
Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling
My Activity
    Article

    Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling
    Click to copy article linkArticle link copied!

    • Nayan P. Agarwal
      Nayan P. Agarwal
      Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
    • Michael Matthies
      Michael Matthies
      Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
    • Bastian Joffroy
      Bastian Joffroy
      Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
    • Thorsten L. Schmidt*
      Thorsten L. Schmidt
      Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry  and  B CUBE—Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, 01062, Germany
      *E-mail: [email protected]
    Other Access OptionsSupporting Information (2)

    ACS Nano

    Cite this: ACS Nano 2018, 12, 3, 2546–2553
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.7b08345
    Published February 16, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The programmability of DNA enables constructing nanostructures with almost any arbitrary shape, which can be decorated with many functional materials. Moreover, dynamic structures can be realized such as molecular motors and walkers. In this work, we have explored the possibility to synthesize the complementary sequences to single-stranded gap regions in the DNA origami scaffold cost effectively by a DNA polymerase rather than by a DNA synthesizer. For this purpose, four different wireframe DNA origami structures were designed to have single-stranded gap regions. This reduced the number of staple strands needed to determine the shape and size of the final structure after gap filling. For this, several DNA polymerases and single-stranded binding (SSB) proteins were tested, with T4 DNA polymerase being the best fit. The structures could be folded in as little as 6 min, and the subsequent optimized gap-filling reaction was completed in less than 3 min. The introduction of flexible gap regions results in fully collapsed or partially bent structures due to entropic spring effects. Finally, we demonstrated structural transformations of such deformed wireframe DNA origami structures with DNA polymerases including the expansion of collapsed structures and the straightening of curved tubes. We anticipate that this approach will become a powerful tool to build DNA wireframe structures more material-efficiently, and to quickly prototype and test new wireframe designs that can be expanded, rigidified, or mechanically switched. Mechanical force generation and structural transitions will enable applications in structural DNA nanotechnology, plasmonics, or single-molecule biophysics.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.7b08345.

    • Scaffold designs (ZIP)

    • Schematics or DNA origami wireframe structures; AGE films; tSEM micrographs; efficiency comparisons; other figures as described in the text (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 43 publications.

    1. Minhwan Chung, Kun Zhou, John T. Powell, Chenxiang Lin, Martin A. Schwartz. DNA-Based Molecular Clamp for Probing Protein Interactions and Structure under Force. ACS Nano 2024, 18 (40) , 27590-27596. https://doi.org/10.1021/acsnano.4c08663
    2. Wenyuan Zhang, Hongrui Wu, Wen Wang, Bryan Wei. Golden Gate Assembly of DNA Nanostructures. ACS Materials Letters 2023, 5 (12) , 3316-3320. https://doi.org/10.1021/acsmaterialslett.3c01113
    3. Rong Chen, Shuang Feng, Jieling Ren, Hong Kang, Yufan Yang, Ninuo Xia, Fang Fang, Bryan Wei. Enzymatic Assembly of DNA Nanostructures and Fragments with Sequence Overlaps. Journal of the American Chemical Society 2023, 145 (16) , 9176-9181. https://doi.org/10.1021/jacs.3c01214
    4. Pengfei Zhan, Andreas Peil, Qiao Jiang, Dongfang Wang, Shikufa Mousavi, Qiancheng Xiong, Qi Shen, Yingxu Shang, Baoquan Ding, Chenxiang Lin, Yonggang Ke, Na Liu. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chemical Reviews 2023, 123 (7) , 3976-4050. https://doi.org/10.1021/acs.chemrev.3c00028
    5. Andrea Doricchi, Casey M. Platnich, Andreas Gimpel, Friederikee Horn, Max Earle, German Lanzavecchia, Aitziber L. Cortajarena, Luis M. Liz-Marzán, Na Liu, Reinhard Heckel, Robert N. Grass, Roman Krahne, Ulrich F. Keyser, Denis Garoli. Emerging Approaches to DNA Data Storage: Challenges and Prospects. ACS Nano 2022, 16 (11) , 17552-17571. https://doi.org/10.1021/acsnano.2c06748
    6. Jae Young Lee, Myoungseok Kim, Chanseok Lee, Do-Nyun Kim. Characterizing and Harnessing the Mechanical Properties of Short Single-Stranded DNA in Structured Assemblies. ACS Nano 2021, 15 (12) , 20430-20441. https://doi.org/10.1021/acsnano.1c08861
    7. Yan Xiong, Zhiwei Lin, Deniz Mostarac, Brian Minevich, Qiuyuan Peng, Guolong Zhu, Pedro A. Sánchez, Sofia Kantorovich, Yonggang Ke, Oleg Gang. Divalent Multilinking Bonds Control Growth and Morphology of Nanopolymers. Nano Letters 2021, 21 (24) , 10547-10554. https://doi.org/10.1021/acs.nanolett.1c03009
    8. Yan Xiong, James Huang, Shih-Ting Wang, Sufi Zafar, Oleg Gang. Local Environment Affects the Activity of Enzymes on a 3D Molecular Scaffold. ACS Nano 2020, 14 (11) , 14646-14654. https://doi.org/10.1021/acsnano.0c03962
    9. Yuhang Dong, Chi Yao, Yi Zhu, Lu Yang, Dan Luo, Dayong Yang. DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chemical Reviews 2020, 120 (17) , 9420-9481. https://doi.org/10.1021/acs.chemrev.0c00294
    10. Chanseok Lee, Kyung Soo Kim, Young-Joo Kim, Jae Young Lee, Do-Nyun Kim. Tailoring the Mechanical Stiffness of DNA Nanostructures Using Engineered Defects. ACS Nano 2019, 13 (7) , 8329-8336. https://doi.org/10.1021/acsnano.9b03770
    11. Michael Matthies, Nayan P. Agarwal, Erik Poppleton, Foram M. Joshi, Petr Šulc, Thorsten L. Schmidt. Triangulated Wireframe Structures Assembled Using Single-Stranded DNA Tiles. ACS Nano 2019, 13 (2) , 1839-1848. https://doi.org/10.1021/acsnano.8b08009
    12. João D. G. Azevedo, Tiago Queirós, Filipe Camarneiro, Maria João Lopes, João Freitas, Agnes Purwidyantri, Praneetha Sundar Prakash, Soumya Chandrasekhar, Thorsten‐Lars Schmidt, Pedro Alpuim, Jana B. Nieder. Hybrid DNA Origami – Graphene Platform for Electrically‐Gated Nanoscale Motion. Advanced Materials Interfaces 2025, 12 (8) https://doi.org/10.1002/admi.202400617
    13. Yosuke Ochi, Wataru Kato, Yoichi Tsutsui, Yuki Gomibuchi, Daichi Tominaga, Keisuke Sakai, Takeshi Araki, Suzunosuke Yoshitake, Takuo Yasunaga, Yusuke V. Morimoto, Kazuhiro Maeda, Junichi Taira, Yusuke Sato. Wireframe DNA Origami Capable of Vertex‐protruding Transformation. ChemBioChem 2025, 14 https://doi.org/10.1002/cbic.202401071
    14. Hong Kang, Yuexuan Yang, Bryan Wei. Synthetic molecular switches driven by DNA-modifying enzymes. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-47742-2
    15. Yongpeng Zhang, Xuan Liu, Siqi Hou, Ranfeng Wu, Jing Yang, Cheng Zhang. Enzyme‐Programmed Self‐Assembly of Nanoparticles. ChemBioChem 2024, 25 (15) https://doi.org/10.1002/cbic.202400384
    16. Zhaorong Sun, Yingjie Ren, Wenjun Zhu, Yuliang Xiao, Han Wu. DNA nanotechnology-based nucleic acid delivery systems for bioimaging and disease treatment. The Analyst 2024, 149 (3) , 599-613. https://doi.org/10.1039/D3AN01871G
    17. Ruixin Li, Anirudh S. Madhvacharyula, Yancheng Du, Harshith K. Adepu, Jong Hyun Choi. Mechanics of dynamic and deformable DNA nanostructures. Chemical Science 2023, 14 (30) , 8018-8046. https://doi.org/10.1039/D3SC01793A
    18. Wenjing Jiang, Jingrou Li, Zi'an Lin, Jing Guo, Jiaxin Ma, Zhen Wang, Meizhou Zhang, Yuzhou Wu. Recent Advances of DNA Origami Technology and Its Application in Nanomaterial Preparation. Small Structures 2023, 4 (8) https://doi.org/10.1002/sstr.202200376
    19. Jianbang Wang, Zhenzhen Li, Itamar Willner. Dynamic Reconfigurable DNA Nanostructures, Networks and Materials. Angewandte Chemie 2023, 135 (18) https://doi.org/10.1002/ange.202215332
    20. Jianbang Wang, Zhenzhen Li, Itamar Willner. Dynamic Reconfigurable DNA Nanostructures, Networks and Materials. Angewandte Chemie International Edition 2023, 62 (18) https://doi.org/10.1002/anie.202215332
    21. Wen Wang, Yue Shen, Bryan Wei. Controllable dynamics of complex DNA nanostructures. Nanoscale 2023, 15 (10) , 4795-4800. https://doi.org/10.1039/D2NR05872C
    22. Kangchao Liao, Kuiting Chen, Chun Xie, Zhekun Chen, Linqiang Pan. Disassembly of DNA origami dimers controlled by programmable polymerase primers. Chemical Communications 2022, 58 (92) , 12879-12882. https://doi.org/10.1039/D2CC03684C
    23. Tanxi Bai, Jiayi Zhang, Kai Huang, Wen Wang, Bowen Chen, Yujie Li, Mengyao Zhao, Suoyu Zhang, Chenyou Zhu, Dongsheng Liu, Bryan Wei. Reconfiguration of DNA nanostructures induced by enzymatic ligation treatment. Nucleic Acids Research 2022, 50 (14) , 8392-8398. https://doi.org/10.1093/nar/gkac606
    24. Deniz Mostarac, Yan Xiong, Oleg Gang, Sofia Kantorovich. Nanopolymers for magnetic applications: how to choose the architecture?. Nanoscale 2022, 14 (31) , 11139-11151. https://doi.org/10.1039/D2NR01502A
    25. Soumya Chandrasekhar, Praneetha Sundar Prakash, Thorsten‐Lars Schmidt. Stability and Stabilization of DNA Nanostructures in Biomedical Applications. 2022, 333-377. https://doi.org/10.1002/9781119682561.ch16
    26. Melika Shahhosseini, Anjelica Kucinic, Peter Beshay, Wolfgang Pfeifer, Carlos Castro. Dynamic and Mechanical Applications of DNA Nanostructures in Biophysics. 2022, 101-133. https://doi.org/10.1002/9781119682561.ch5
    27. Fatih N. Gür, Susanne Kempter, Florian Schueder, Christoph Sikeler, Maximilian J. Urban, Ralf Jungmann, Philipp C. Nickels, Tim Liedl. Double‐ to Single‐Strand Transition Induces Forces and Motion in DNA Origami Nanostructures. Advanced Materials 2021, 33 (37) https://doi.org/10.1002/adma.202101986
    28. Michael Scheckenbach, Tom Schubert, Carsten Forthmann, Viktorija Glembockyte, Philip Tinnefeld. Selbstregeneration und Selbstheilung in DNA‐Origami‐Nanostrukturen. Angewandte Chemie 2021, 133 (9) , 4982-4990. https://doi.org/10.1002/ange.202012986
    29. Michael Scheckenbach, Tom Schubert, Carsten Forthmann, Viktorija Glembockyte, Philip Tinnefeld. Self‐Regeneration and Self‐Healing in DNA Origami Nanostructures. Angewandte Chemie International Edition 2021, 60 (9) , 4931-4938. https://doi.org/10.1002/anie.202012986
    30. Sha Sun, Shize Yang, Huolin L. Xin, Dmytro Nykypanchuk, Mingzhao Liu, Honghu Zhang, Oleg Gang. Valence-programmable nanoparticle architectures. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-16157-0
    31. Christian Heck, Dmitry Torchinsky, Gil Nifker, Felix Gularek, Yael Michaeli, Elmar Weinhold, Yuval Ebenstein. Label as you fold: methyltransferase-assisted functionalization of DNA nanostructures. Nanoscale 2020, 12 (39) , 20287-20291. https://doi.org/10.1039/D0NR03694C
    32. Kai He, Zhe Li, Longfei Liu, Mengxi Zheng, Chengde Mao. Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands. ChemBioChem 2020, 21 (15) , 2132-2136. https://doi.org/10.1002/cbic.202000106
    33. Qi Yan, Yaqi Wang, Jile Shi, Bryan Wei. Allostery of DNA nanostructures controlled by enzymatic modifications. Nucleic Acids Research 2020, 153 https://doi.org/10.1093/nar/gkaa488
    34. Yuki Suzuki, Ibuki Kawamata, Kohei Mizuno, Satoshi Murata. Large Deformation of a DNA‐Origami Nanoarm Induced by the Cumulative Actuation of Tension‐Adjustable Modules. Angewandte Chemie 2020, 132 (15) , 6289-6293. https://doi.org/10.1002/ange.201916233
    35. Yuki Suzuki, Ibuki Kawamata, Kohei Mizuno, Satoshi Murata. Large Deformation of a DNA‐Origami Nanoarm Induced by the Cumulative Actuation of Tension‐Adjustable Modules. Angewandte Chemie International Edition 2020, 59 (15) , 6230-6234. https://doi.org/10.1002/anie.201916233
    36. Petteri Piskunen, Sami Nummelin, Boxuan Shen, Mauri A. Kostiainen, Veikko Linko. Increasing Complexity in Wireframe DNA Nanostructures. Molecules 2020, 25 (8) , 1823. https://doi.org/10.3390/molecules25081823
    37. Tadija Kekic, Ivan Barisic. In silico modelling of DNA nanostructures. Computational and Structural Biotechnology Journal 2020, 18 , 1191-1201. https://doi.org/10.1016/j.csbj.2020.05.016
    38. Ali Jahanban-Esfahlan, Khaled Seidi, Mehdi Jaymand, Thorsten L. Schmidt, Hasan Majdi, Tahereh Javaheri, Rana Jahanban-Esfahlan, Peyman Zare. Dynamic DNA nanostructures in biomedicine: Beauty, utility and limits. Journal of Controlled Release 2019, 315 , 166-185. https://doi.org/10.1016/j.jconrel.2019.10.003
    39. Joshua A. Johnson, Abhilasha Dehankar, Ariel Robbins, Prerna Kabtiyal, Elizabeth Jergens, Kil Ho Lee, Ezekiel Johnston-Halperin, Michael Poirier, Carlos E. Castro, Jessica O. Winter. The path towards functional nanoparticle-DNA origami composites. Materials Science and Engineering: R: Reports 2019, 138 , 153-209. https://doi.org/10.1016/j.mser.2019.06.003
    40. Hyungmin Jun, Fei Zhang, Tyson Shepherd, Sakul Ratanalert, Xiaodong Qi, Hao Yan, Mark Bathe. Autonomously designed free-form 2D DNA origami. Science Advances 2019, 5 (1) https://doi.org/10.1126/sciadv.aav0655
    41. Genevieve C. Pugh, Jonathan R. Burns, Stefan Howorka. Comparing proteins and nucleic acids for next-generation biomolecular engineering. Nature Reviews Chemistry 2018, 2 (7) , 113-130. https://doi.org/10.1038/s41570-018-0015-9
    42. Heini Ijäs, Sami Nummelin, Boxuan Shen, Mauri A. Kostiainen, Veikko Linko. Dynamic DNA Origami Devices: from Strand-Displacement Reactions to External-Stimuli Responsive Systems. International Journal of Molecular Sciences 2018, 19 (7) , 2114. https://doi.org/10.3390/ijms19072114
    43. Samuel W Schaffter, Leopold N Green, Joanna Schneider, Hari K K Subramanian, Rebecca Schulman, Elisa Franco. T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures. Nucleic Acids Research 2018, 46 (10) , 5332-5343. https://doi.org/10.1093/nar/gky283

    ACS Nano

    Cite this: ACS Nano 2018, 12, 3, 2546–2553
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsnano.7b08345
    Published February 16, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    3040

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.