Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Time-Resolved Analysis of the Structural Dynamics of Assembling Gold Nanoparticles

  • Stefan Merkens
    Stefan Merkens
    CIC nanoGUNE, Tolosa Hiribidea 76, 20018 Donostia - San Sebastián, Spain
    The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
  • Mohammad Vakili
    Mohammad Vakili
    The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
  • Ana Sánchez-Iglesias
    Ana Sánchez-Iglesias
    CIC biomaGUNE and CIBER-BBN, Paseo Miramón 182, 20014, Donostia - San Sebastián, Spain
  • Lucio Litti
    Lucio Litti
    Dipartimento di Scienze Chimiche, Univerisità degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
    More by Lucio Litti
  • Yunyun Gao
    Yunyun Gao
    Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
    More by Yunyun Gao
  • Paul V. Gwozdz
    Paul V. Gwozdz
    Center for Hybrid Nanostructures (CHyN), University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
  • Lewis Sharpnack
    Lewis Sharpnack
    Beamline ID02, The European Synchrotron (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France
  • Robert H. Blick
    Robert H. Blick
    Center for Hybrid Nanostructures (CHyN), University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
  • Luis M. Liz-Marzán
    Luis M. Liz-Marzán
    CIC biomaGUNE and CIBER-BBN, Paseo Miramón 182, 20014, Donostia - San Sebastián, Spain
    Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
  • Marek Grzelczak*
    Marek Grzelczak
    Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
    Donostia International Physics Center (DIPC), Manuel Lardizabal Ibilbidea 4, 20018 Donostia - San Sebastián, Spain
    *E-mail: [email protected] (M.G.).
  • , and 
  • Martin Trebbin*
    Martin Trebbin
    Department of Chemistry, The State University of New York at Buffalo, 760 Natural Sciences Complex, Buffalo, New York 14260-3000, United States
    The Hamburg Centre for Ultrafast Imaging (CUI), University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
    *E-mail: [email protected] (M.T.).
Cite this: ACS Nano 2019, 13, 6, 6596–6604
Publication Date (Web):May 16, 2019
https://doi.org/10.1021/acsnano.9b00575
Copyright © 2019 American Chemical Society

    Article Views

    2527

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The hydrophobic collapse is a structural transition of grafted polymer chains in a poor solvent. Although such a transition seems an intrinsic event during clustering of polymer-stabilized nanoparticles in the liquid phase, it has not been resolved in real time. In this work, we implemented a microfluidic 3D-flow-focusing mixing reactor equipped with real-time analytics, small-angle X-ray scattering (SAXS), and UV–vis–NIR spectroscopy to study the early stage of cluster formation for polystyrene-stabilized gold nanoparticles. The polymer shell dynamics obtained by in situ SAXS analysis and numerical simulation of the solvent composition allowed us to map the interaction energy between the particles at early state of solvent mixing, 30 ms behind the crossing point. We found that the rate of hydrophobic collapse depends on water concentration, ranging between 100 and 500 nm/s. Importantly, we confirmed that the polymer shell collapses prior to the commencement of clustering.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.9b00575.

    • Calculation of water amount in mixed solution; effect of gas bubbles and requirement of spectral data processing; additional time-resolved optical experiments showing the effect of Au@PS and water concentration and solvent exchange on cluster size and morphology; (static) SAXS reference experiments and fitting of scattering data; theoretical modeling of the interparticle interaction energy (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 30 publications.

    1. Carlos L. Bassani, Greg van Anders, Uri Banin, Dmitry Baranov, Qian Chen, Marjolein Dijkstra, Michael S. Dimitriyev, Efi Efrati, Jordi Faraudo, Oleg Gang, Nicola Gaston, Ramin Golestanian, G. Ivan Guerrero-Garcia, Michael Gruenwald, Amir Haji-Akbari, Maria Ibáñez, Matthias Karg, Tobias Kraus, Byeongdu Lee, Reid C. Van Lehn, Robert J. Macfarlane, Bortolo M. Mognetti, Arash Nikoubashman, Saeed Osat, Oleg V. Prezhdo, Grant M. Rotskoff, Leonor Saiz, An-Chang Shi, Sara Skrabalak, Ivan I. Smalyukh, Mario Tagliazucchi, Dmitri V. Talapin, Alexei V. Tkachenko, Sergei Tretiak, David Vaknin, Asaph Widmer-Cooper, Gerard C. L. Wong, Xingchen Ye, Shan Zhou, Eran Rabani, Michael Engel, Alex Travesset. Nanocrystal Assemblies: Current Advances and Open Problems. ACS Nano 2024, 18 (23) , 14791-14840. https://doi.org/10.1021/acsnano.3c10201
    2. Neda Iranpour Anaraki, Marianne Liebi, Kamran Iranshahi, Clément Blanchet, Peter Wick, Antonia Neels. Time-Resolved Study on Self-Assembling Behavior of PEGylated Gold Nanoparticles in the Presence of Human Serum Albumin: A System for Nanomedical Applications. ACS Applied Nano Materials 2022, 5 (12) , 18921-18929. https://doi.org/10.1021/acsanm.2c04628
    3. Pablo A. Mercadal, Juan C. Fraire, Eduardo A. Coronado. Simple Approach to Assess the Maximum Hot Spot SERS Enhancement Factors in Colloidal Dispersions of Gold Nanoparticle Aggregates. The Journal of Physical Chemistry C 2022, 126 (25) , 10524-10533. https://doi.org/10.1021/acs.jpcc.2c02299
    4. Lucio Litti, Stefano Trivini, Davide Ferraro, Javier Reguera. 3D Printed Microfluidic Device for Magnetic Trapping and SERS Quantitative Evaluation of Environmental and Biomedical Analytes. ACS Applied Materials & Interfaces 2021, 13 (29) , 34752-34761. https://doi.org/10.1021/acsami.1c09771
    5. Carlos Sanchez-Cano, Ramon A. Alvarez-Puebla, John M. Abendroth, Tobias Beck, Robert Blick, Yuan Cao, Frank Caruso, Indranath Chakraborty, Henry N. Chapman, Chunying Chen, Bruce E. Cohen, Andre L. C. Conceição, David P. Cormode, Daxiang Cui, Kenneth A. Dawson, Gerald Falkenberg, Chunhai Fan, Neus Feliu, Mingyuan Gao, Elisabetta Gargioni, Claus-C. Glüer, Florian Grüner, Moustapha Hassan, Yong Hu, Yalan Huang, Samuel Huber, Nils Huse, Yanan Kang, Ali Khademhosseini, Thomas F. Keller, Christian Körnig, Nicholas A. Kotov, Dorota Koziej, Xing-Jie Liang, Beibei Liu, Sijin Liu, Yang Liu, Ziyao Liu, Luis M. Liz-Marzán, Xiaowei Ma, Andres Machicote, Wolfgang Maison, Adrian P. Mancuso, Saad Megahed, Bert Nickel, Ferdinand Otto, Cristina Palencia, Sakura Pascarelli, Arwen Pearson, Oula Peñate-Medina, Bing Qi, Joachim Rädler, Joseph J. Richardson, Axel Rosenhahn, Kai Rothkamm, Michael Rübhausen, Milan K. Sanyal, Raymond E. Schaak, Heinz-Peter Schlemmer, Marius Schmidt, Oliver Schmutzler, Theo Schotten, Florian Schulz, A. K. Sood, Kathryn M. Spiers, Theresa Staufer, Dominik M. Stemer, Andreas Stierle, Xing Sun, Gohar Tsakanova, Paul S. Weiss, Horst Weller, Fabian Westermeier, Ming Xu, Huijie Yan, Yuan Zeng, Ying Zhao, Yuliang Zhao, Dingcheng Zhu, Ying Zhu, Wolfgang J. Parak. X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano 2021, 15 (3) , 3754-3807. https://doi.org/10.1021/acsnano.0c09563
    6. Maciej Bagiński, Adrián Pedrazo-Tardajos, Thomas Altantzis, Martyna Tupikowska, Andreas Vetter, Ewelina Tomczyk, Radius N.S. Suryadharma, Mateusz Pawlak, Aneta Andruszkiewicz, Ewa Górecka, Damian Pociecha, Carsten Rockstuhl, Sara Bals, Wiktor Lewandowski. Understanding and Controlling the Crystallization Process in Reconfigurable Plasmonic Superlattices. ACS Nano 2021, 15 (3) , 4916-4926. https://doi.org/10.1021/acsnano.0c09746
    7. Javier Aizpurua, (Research Professor, CFM-MPC)José M. Asua, (Polymat Scientific Director)Ricardo Díez Muiño, (DIPC Director)Hans J. Grande, (CIDETEC Director of Research & Technology)Luis M. Liz-Marzán, (ACS Nano Associate Editor, CIC biomaGUNE Scientific Director)José M. Pitarke, (CIC nanoGUNE Director)Daniel Sánchez-Portal (CFM-MPC Director). San Sebastian, a City of (Nano)Science and Technology. ACS Nano 2019, 13 (11) , 12254-12256. https://doi.org/10.1021/acsnano.9b08789
    8. Theyencheri Narayanan. Recent advances in synchrotron scattering methods for probing the structure and dynamics of colloids. Advances in Colloid and Interface Science 2024, 325 , 103114. https://doi.org/10.1016/j.cis.2024.103114
    9. Huibin He, Xiaoxue Shen, Zhihong Nie. Engineering interactions between nanoparticles using polymers. Progress in Polymer Science 2023, 143 , 101710. https://doi.org/10.1016/j.progpolymsci.2023.101710
    10. Stefan Merkens, Giuseppe De Salvo, Joscha Kruse, Evgenii Modin, Christopher Tollan, Marek Grzelczak, Andrey Chuvilin. Quantification of reagent mixing in liquid flow cells for Liquid Phase-TEM. Ultramicroscopy 2023, 245 , 113654. https://doi.org/10.1016/j.ultramic.2022.113654
    11. Huayang Wang, Hao Li, Pan Gu, Caili Huang, Senbin Chen, Chenglong Hu, Eunji Lee, Jiangping Xu, Jintao Zhu. Electric, magnetic, and shear field-directed assembly of inorganic nanoparticles. Nanoscale 2023, 15 (5) , 2018-2035. https://doi.org/10.1039/D2NR05821A
    12. Jingwen Wang, Yapeng Zheng, Wei Ren, Edison Huixiang Ang, Lei Song, Jixin Zhu, Yuan Hu. Intrinsic ionic confinement dynamic engineering of ionomers with low dielectric-k, high healing and stretchability for electronic device reconfiguration. Chemical Engineering Journal 2023, 453 , 139837. https://doi.org/10.1016/j.cej.2022.139837
    13. Xiaobing Zuo, Byeongdu Lee. Practical and theoretical aspects of synchrotron small-angle X-ray scattering experiment on colloidal solutions. 2023, 13-38. https://doi.org/10.1016/B978-0-12-822425-0.00050-6
    14. Taís C. Ribeiro, Rafael M. Sábio, Gabriela C. Carvalho, Bruno Fonseca-Santos, Marlus Chorilli. Exploiting mesoporous silica, silver and gold nanoparticles for neurodegenerative diseases treatment. International Journal of Pharmaceutics 2022, 624 , 121978. https://doi.org/10.1016/j.ijpharm.2022.121978
    15. Marius Schumacher, Dorleta Jimenez de Aberasturi, Jan‐Philip Merkl, Leonardo Scarabelli, Elisa Lenzi, Malou Henriksen‐Lacey, Luis M. Liz‐Marzán, Horst Weller. Robust Encapsulation of Biocompatible Gold Nanosphere Assemblies for Bioimaging via Surface Enhanced Raman Scattering. Advanced Optical Materials 2022, 10 (14) https://doi.org/10.1002/adom.202102635
    16. Gabriel Davi Marena, Matheus Aparecido dos Santos Ramos, Gabriela Corrêa Carvalho, José Alberto Paris Junior, Flávia Aparecida Resende, Ione Corrêa, Gabriela Yuki Bressanim Ono, Victor Hugo Sousa Araujo, Bruna Almeida Furquim de Camargo, Tais Maria Bauab, Marlus Chorilli. Natural product‐based nanomedicine applied to fungal infection treatment: A review of the last 4 years. Phytotherapy Research 2022, 36 (7) , 2710-2745. https://doi.org/10.1002/ptr.7460
    17. Anan Yaghmur, Islam Hamad. Microfluidic Nanomaterial Synthesis and In Situ SAXS, WAXS, or SANS Characterization: Manipulation of Size Characteristics and Online Elucidation of Dynamic Structural Transitions. Molecules 2022, 27 (14) , 4602. https://doi.org/10.3390/molecules27144602
    18. Qi Cai, Valentina Castagnola, Luca Boselli, Alirio Moura, Hender Lopez, Wei Zhang, João M. de Araújo, Kenneth A. Dawson. A microfluidic approach for synthesis and kinetic profiling of branched gold nanostructures. Nanoscale Horizons 2022, 7 (3) , 288-298. https://doi.org/10.1039/D1NH00540E
    19. Kavitha Illath, Srabani Kar, Pallavi Gupta, Ashwini Shinde, Syrpailyne Wankhar, Fan-Gang Tseng, Ki-Taek Lim, Moeto Nagai, Tuhin Subhra Santra. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials 2022, 280 , 121247. https://doi.org/10.1016/j.biomaterials.2021.121247
    20. Susanne Seibt, Timothy Ryan. Microfluidics for Time-Resolved Small-Angle X-Ray Scattering. 2021https://doi.org/10.5772/intechopen.95059
    21. Daniel García‐Lojo, Evgeny Modin, Sergio Gómez‐Graña, Marianne Impéror‐Clerc, Andrey Chuvilin, Isabel Pastoriza‐Santos, Jorge Pérez‐Juste, Doru Constantin, Cyrille Hamon. Structure and Formation Kinetics of Millimeter‐Size Single Domain Supercrystals. Advanced Functional Materials 2021, 31 (27) https://doi.org/10.1002/adfm.202101869
    22. Tomke E. Glier, Mohammad Vakili, Martin Trebbin. Microfluidic synthesis of thermo-responsive block copolymer nano-objects via RAFT polymerization. Journal of Polymer Research 2020, 27 (11) https://doi.org/10.1007/s10965-020-02290-3
    23. Xi Mao, Zhengping Tan, Wei Lan, Huayang Wang, Haiying Tan, Fan Li, Ke Wang, Ming Wu, Xiaobing Luo, Lianbin Zhang, Jiangping Xu, Jintao Zhu. Flow hydrodynamics-dependent assembly of polymer-tethered gold nanoparticles in microfluidic channels. Materials Chemistry Frontiers 2020, 4 (11) , 3240-3250. https://doi.org/10.1039/D0QM00456A
    24. Elizabeth Macias, Tommy Waltmann, Alex Travesset. Assembly of nanocrystal clusters by solvent evaporation: icosahedral order and the breakdown of the Maxwell regime. Soft Matter 2020, 16 (31) , 7350-7358. https://doi.org/10.1039/D0SM00838A
    25. Julia Nette, Philip D. Howes, Andrew J. deMello. Microfluidic Synthesis of Luminescent and Plasmonic Nanoparticles: Fast, Efficient, and Data‐Rich. Advanced Materials Technologies 2020, 5 (7) https://doi.org/10.1002/admt.202000060
    26. Huibin He, Jan‐Erik Ostwaldt, Christoph Hirschhäuser, Carsten Schmuck, Jochen Niemeyer. Dual pH‐Induced Reversible Self‐Assembly of Gold Nanoparticles by Surface Functionalization with Zwitterionic Ligands. Small 2020, 16 (28) https://doi.org/10.1002/smll.202001044
    27. Theyencheri Narayanan, Oleg Konovalov. Synchrotron Scattering Methods for Nanomaterials and Soft Matter Research. Materials 2020, 13 (3) , 752. https://doi.org/10.3390/ma13030752
    28. Peng Zhang, André Rothkirch, Marcus Koch, Stephan Roth, Tobias Kraus. Determination of the Surface Facets of Gold Nanorods in Wet‐Coated Thin Films with Grazing‐Incidence Wide Angle X‐Ray Scattering. Particle & Particle Systems Characterization 2019, 36 (12) https://doi.org/10.1002/ppsc.201900323
    29. Tommy Waltmannn, Alex Travesset. Assembly by solvent evaporation: equilibrium structures and relaxation times. Nanoscale 2019, 11 (40) , 18702-18714. https://doi.org/10.1039/C9NR05908C
    30. Lucio Litti, Moreno Meneghetti. Predictions on the SERS enhancement factor of gold nanosphere aggregate samples. Physical Chemistry Chemical Physics 2019, 21 (28) , 15515-15522. https://doi.org/10.1039/C9CP02015B