ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Room-Temperature Electrocaloric Effect in Layered Ferroelectric CuInP2S6 for Solid-State Refrigeration

  • Mengwei Si
    Mengwei Si
    School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
    Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
    More by Mengwei Si
  • Atanu K. Saha
    Atanu K. Saha
    School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
  • Pai-Ying Liao
    Pai-Ying Liao
    School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
    Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
  • Shengjie Gao
    Shengjie Gao
    School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, United States
    Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
    More by Shengjie Gao
  • Sabine M. Neumayer
    Sabine M. Neumayer
    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
  • Jie Jian
    Jie Jian
    School of Materials Science and Engineering, Purdue University, West Lafayette, Indiana 47907, United States
    More by Jie Jian
  • Jingkai Qin
    Jingkai Qin
    School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
    Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
    More by Jingkai Qin
  • Nina Balke Wisinger
    Nina Balke Wisinger
    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
  • Haiyan Wang
    Haiyan Wang
    School of Materials Science and Engineering, Purdue University, West Lafayette, Indiana 47907, United States
    More by Haiyan Wang
  • Petro Maksymovych
    Petro Maksymovych
    Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
  • Wenzhuo Wu
    Wenzhuo Wu
    School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907, United States
    Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
    More by Wenzhuo Wu
  • Sumeet K. Gupta
    Sumeet K. Gupta
    School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
  • , and 
  • Peide D. Ye*
    Peide D. Ye
    School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
    Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
    *E-mail: [email protected]
    More by Peide D. Ye
Cite this: ACS Nano 2019, 13, 8, 8760–8765
Publication Date (Web):August 2, 2019
https://doi.org/10.1021/acsnano.9b01491
Copyright © 2019 American Chemical Society

    Article Views

    3400

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A material with reversible temperature change capability under an external electric field, known as the electrocaloric effect (ECE), has long been considered as a promising solid-state cooling solution. However, electrocaloric (EC) performance of EC materials generally is not sufficiently high for real cooling applications. As a result, exploring EC materials with high performance is of great interest and importance. Here, we report on the ECE of ferroelectric materials with van der Waals layered structure (CuInP2S6 or CIPS in this work in particular). Over 60% polarization charge change is observed within a temperature change of only 10 K at Curie temperature. Large adiabatic temperature change (|ΔT|) of 3.3 K and isothermal entropy change (|ΔS|) of 5.8 J kg–1 K–1 at |ΔE| = 142.0 kV cm–1 and at 315 K (above and near room temperature) are achieved, with a large EC strength (|ΔT|/|ΔE|) of 29.5 mK cm kV–1. The ECE of CIPS is also investigated theoretically by numerical simulation, and a further EC performance projection is provided.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.9b01491.

    • Additional details for DART-PFM measurement (raw data, temperature dependence, and thickness dependence) on CIPS, voltage-dependent PV measurement, ECE simulation method, and benchmarking of EC materials (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 68 publications.

    1. Qing Liu, Silin Cui, Renji Bian, Er Pan, Guiming Cao, Wenwu Li, Fucai Liu. The Integration of Two-Dimensional Materials and Ferroelectrics for Device Applications. ACS Nano 2024, 18 (3) , 1778-1819. https://doi.org/10.1021/acsnano.3c05711
    2. Hojoon Ryu, Junzhe Kang, Minseong Park, Byungjoon Bae, Zijing Zhao, Shaloo Rakheja, Kyusang Lee, Wenjuan Zhu. Low-Thermal-Budget Ferroelectric Field-Effect Transistors Based on CuInP2S6 and InZnO. ACS Applied Materials & Interfaces 2023, 15 (46) , 53671-53677. https://doi.org/10.1021/acsami.3c10582
    3. Jacob Parker, Matthew Gabel, Alexander B. C. Mantilla, Yi Gu. Optical Effects on Polarization States in van der Waals Ferroelectric α-In2Se3. The Journal of Physical Chemistry C 2023, 127 (45) , 22157-22163. https://doi.org/10.1021/acs.jpcc.3c05148
    4. Rahul Rao, Ryan Selhorst, Jie Jiang, Benjamin S. Conner, Ryan Siebenaller, Emmanuel Rowe, Andrea N. Giordano, Ruth Pachter, Michael A. Susner. Investigating Strain between Phase-Segregated Domains in Cu-Deficient CuInP2S6. Chemistry of Materials 2023, 35 (19) , 8020-8029. https://doi.org/10.1021/acs.chemmater.3c01238
    5. Ping Man, Lingli Huang, Jiong Zhao, Thuc Hue Ly. Ferroic Phases in Two-Dimensional Materials. Chemical Reviews 2023, 123 (18) , 10990-11046. https://doi.org/10.1021/acs.chemrev.3c00170
    6. Sixue Fang, Qing Dong, Zonglun Li, Hui Tian, Tingyu Liu, Ruixin Li, Xiaoling Jing, Lei Yue, Chenyi Li, Ran Liu, Quanjun Li, Bingbing Liu. Significant Enhancement of Optoelectronic Properties in CuInP2S6 via Pressure-Induced Structural Phase Transition. The Journal of Physical Chemistry C 2023, 127 (17) , 8383-8388. https://doi.org/10.1021/acs.jpcc.3c01557
    7. Huanfeng Zhu, Jialin Li, Qiang Chen, Wei Tang, Xinyi Fan, Fan Li, Linjun Li. Highly Tunable Lateral Homojunction Formed in Two-Dimensional Layered CuInP2S6 via In-Plane Ionic Migration. ACS Nano 2023, 17 (2) , 1239-1246. https://doi.org/10.1021/acsnano.2c09280
    8. Weijie Yang, Shengjie Chen, Xiangdong Ding, Jun Sun, Junkai Deng. Reducing Threshold of Ferroelectric Domain Switching in Ultrathin Two-Dimensional CuInP2S6 Ferroelectrics via Electrical–Mechanical Coupling. The Journal of Physical Chemistry Letters 2023, 14 (2) , 379-386. https://doi.org/10.1021/acs.jpclett.2c03628
    9. Jin Qian, Guohui Li, Kun Zhu, Guanglong Ge, Cheng Shi, Yang Liu, Fei Yan, Yanxia Li, Bo Shen, Jiwei Zhai, Zhenxiang Cheng. High Energy Storage Performance and Large Electrocaloric Response in Bi0.5Na0.5TiO3–Ba(Zr0.2Ti0.8)O3 Thin Films. ACS Applied Materials & Interfaces 2022, 14 (48) , 54012-54020. https://doi.org/10.1021/acsami.2c16006
    10. Sabine M. Neumayer, Mengwei Si, Junkang Li, Pai-Ying Liao, Lei Tao, Andrew O’Hara, Sokrates T. Pantelides, Peide D. Ye, Petro Maksymovych, Nina Balke. Ionic Control over Ferroelectricity in 2D Layered van der Waals Capacitors. ACS Applied Materials & Interfaces 2022, 14 (2) , 3018-3026. https://doi.org/10.1021/acsami.1c18683
    11. Zijing Zhao, Kai Xu, Hojoon Ryu, Wenjuan Zhu. Strong Temperature Effect on the Ferroelectric Properties of CuInP2S6 and Its Heterostructures. ACS Applied Materials & Interfaces 2020, 12 (46) , 51820-51826. https://doi.org/10.1021/acsami.0c13799
    12. Sabine M. Neumayer, John A. Brehm, Lei Tao, Andrew O’Hara, Panchapakesan Ganesh, Stephen Jesse, Michael A. Susner, Michael A. McGuire, Sokrates T. Pantelides, Petro Maksymovych, Nina Balke. Local Strain and Polarization Mapping in Ferrielectric Materials. ACS Applied Materials & Interfaces 2020, 12 (34) , 38546-38553. https://doi.org/10.1021/acsami.0c09246
    13. Wa Gao, Li Shi, Wentao Hou, Cheng Ding, Qi Liu, Ran Long, Haoqiang Chi, Yongcai Zhang, Xiaoyong Xu, Xueying Ma, Zheng Tang, Yong Yang, Xiaoyong Wang, Qing Shen, Yujie Xiong, Jinlan Wang, Zhigang Zou, Yong Zhou. Tandem Synergistic Effect of Cu‐In Dual Sites Confined on the Edge of Monolayer CuInP 2 S 6 toward Selective Photoreduction of CO 2 into Multi‐Carbon Solar Fuels. Angewandte Chemie International Edition 2024, 63 (9) https://doi.org/10.1002/anie.202317852
    14. Wa Gao, Li Shi, Wentao Hou, Cheng Ding, Qi Liu, Ran Long, Haoqiang Chi, Yongcai Zhang, Xiaoyong Xu, Xueying Ma, Zheng Tang, Yong Yang, Xiaoyong Wang, Qing Shen, Yujie Xiong, Jinlan Wang, Zhigang Zou, Yong Zhou. Tandem Synergistic Effect of Cu‐In Dual Sites Confined on the Edge of Monolayer CuInP 2 S 6 toward Selective Photoreduction of CO 2 into Multi‐Carbon Solar Fuels. Angewandte Chemie 2024, 136 (9) https://doi.org/10.1002/ange.202317852
    15. R. Yevych, V. Liubachko, Yu. Vysochanskii. Involvement of cationic sublattices in multiple polarization states in CuInP2S6 ferrielectrics. Low Temperature Physics 2024, 50 (1) , 73-81. https://doi.org/10.1063/10.0023895
    16. Yinchang Ma, Yuan Yan, Linqu Luo, Sebastian Pazos, Chenhui Zhang, Xiang Lv, Maolin Chen, Chen Liu, Yizhou Wang, Aitian Chen, Yan Li, Dongxing Zheng, Rongyu Lin, Hanin Algaidi, Minglei Sun, Jefferson Zhe Liu, Shaobo Tu, Husam N. Alshareef, Cheng Gong, Mario Lanza, Fei Xue, Xixiang Zhang. High-performance van der Waals antiferroelectric CuCrP2S6-based memristors. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-43628-x
    17. Minghao Shao, Yuzhe Yang, Ri He, Ruiting Zhao, X. Renshaw Wang, Zhicheng Zhong, Houfang Liu, Yi Yang, Tian‐Ling Ren. Anomalous Elastic Evolution Induced by Copper Hopping in van der Waals Ferroelectric CuInP 2 S 6. Advanced Electronic Materials 2023, 9 (12) https://doi.org/10.1002/aelm.202300352
    18. Aiping Cao, Shubing Li, Hongli Chen, Menghan Deng, Xionghu Xu, Liyan Shang, Yawei Li, Anyang Cui, Zhigao Hu. A polar-switchable and controllable negative phototransistor for information encryption. Materials Horizons 2023, 10 (11) , 5099-5109. https://doi.org/10.1039/D3MH01120H
    19. Yuehua Xu, Qianqian Long, Qiang Zeng, Daqing Li, Pengfei Li. Quaternary 2D monolayer Cu 2 Cl 2 Se 2 Hg 2 : anisotropic carrier mobility and tunable bandgap for transistor and photocatalytic applications. Journal of Physics: Condensed Matter 2023, 35 (39) , 395303. https://doi.org/10.1088/1361-648X/ace0ab
    20. Lei Zhao, Yunshan Liang, Jingyi Ma, Zhidong Pan, Xueting Liu, Mengmeng Yang, Yiming Sun, Wei Gao, Bo Li, Jingbo Li, Nengjie Huo. Ultra‐Steep‐Slope and High‐Stability of CuInP 2 S 6 /WS 2 Ferroelectric Negative Capacitor Transistors by Passivation Effect and Dual‐Gate Modulation. Advanced Functional Materials 2023, 33 (44) https://doi.org/10.1002/adfm.202306708
    21. Cheng Huang, Xiaojun Wang, Jinbo Zhao. Large electrocaloric effects induced by multidomain-to-monodomain transition in ferroelectrics with electrical inclusions. Frontiers in Energy Research 2023, 11 https://doi.org/10.3389/fenrg.2023.1257567
    22. Ri He, Hua Wang, Fucai Liu, Shi Liu, Houfang Liu, Zhicheng Zhong. Unconventional ferroelectric domain switching dynamics in CuIn P 2 S 6 from first principles. Physical Review B 2023, 108 (2) https://doi.org/10.1103/PhysRevB.108.024305
    23. Wenjuan Zhu, Xia Hong, Peide D. Ye, Yi Gu. 2D Piezoelectrics, pyroelectrics, and ferroelectrics. Journal of Applied Physics 2023, 133 (12) https://doi.org/10.1063/5.0149661
    24. Chao Liu, Ruiling Gao, Xuli Cheng, Xiaoqing Yang, Guanhua Qin, Heng Gao, Silvia Picozzi, Wei Ren. First-principles study of ferroelectricity, antiferroelectricity, and ferroelasticity in two-dimensional γ -AlOOH. Physical Review B 2023, 107 (12) https://doi.org/10.1103/PhysRevB.107.L121402
    25. Chuangye Song, Song Zhou, Xueyun Wang, Xiaoyue He, Kehui Wu. Variable thermal expansion in CuIn P 2 S 6 . Physical Review B 2023, 107 (4) https://doi.org/10.1103/PhysRevB.107.045406
    26. A. Kohutych, V. Liubachko, V. Hryts, Yu. Shiposh, M. Kundria, M. Medulych, K. Glukhov, R. Yevych, Yu. Vysochanskii. Phonon spectra and phase transitions in van der Waals ferroics MM’P 2 X 6. Molecular Crystals and Liquid Crystals 2022, 747 (1) , 14-22. https://doi.org/10.1080/15421406.2022.2066787
    27. Andrius Dziaugys, Juras Banys, Konstantin E. Glukhov, Yulian M. Vysochanskii. Crystal Structure and Phase Transitions in Layered Crystals of Ternary Phosphorous Chalcogenides. 2022, 1-40. https://doi.org/10.1002/9783527837175.ch1
    28. Andrius Dziaugys, Anna N. Morozovska, Nicholas V. Morozovsky, Yulian M. Vysochanskii. Application Examples of Ferroelectric 2 D Layered Indium Copper Thiophosphate Chalcogenide, CuInP 2 S 6. 2022, 359-369. https://doi.org/10.1002/9783527837175.ch11
    29. Hai-long Hu. Polymer nanocomposite dielectrics with high electrocaloric effect for flexible solid-state cooling devices. Journal of Central South University 2022, 29 (9) , 2857-2872. https://doi.org/10.1007/s11771-022-5151-1
    30. Wenjie Ming, Boyuan Huang, Sizheng Zheng, Yinxin Bai, Junling Wang, Jie Wang, Jiangyu Li. Flexoelectric engineering of van der Waals ferroelectric CuInP 2 S 6. Science Advances 2022, 8 (33) https://doi.org/10.1126/sciadv.abq1232
    31. Fei Xue, Yinchang Ma, Hua Wang, Linqu Luo, Yang Xu, Thomas D. Anthopoulos, Mario Lanza, Bin Yu, Xixiang Zhang. Two-dimensional ferroelectricity and antiferroelectricity for next-generation computing paradigms. Matter 2022, 5 (7) , 1999-2014. https://doi.org/10.1016/j.matt.2022.05.021
    32. Anubhab Dey, Wenjing Yan, Nilanthy Balakrishnan, Shihong Xie, Zakhar R Kudrynskyi, Oleg Makarovskiy, Faguang Yan, Kaiyou Wang, Amalia Patanè. Memristive effects due to charge transfer in graphene gated through ferroelectric CuInP 2 S 6. 2D Materials 2022, 9 (3) , 035003. https://doi.org/10.1088/2053-1583/ac6191
    33. Ping Wang, Yang Yang, Er Pan, Fucai Liu, Pulickel M. Ajayan, Jiadong Zhou, Zheng Liu. Emerging Phases of Layered Metal Chalcogenides. Small 2022, 18 (13) https://doi.org/10.1002/smll.202105215
    34. Adeel Liaqat, Yiheng Yin, Sabir Hussain, Wen Wen, Juanxia Wu, Yuzheng Guo, Chunhe Dang, Ching-Hwa Ho, Zheng Liu, Peng Yu, Zhihai Cheng, Liming Xie. An all two-dimensional vertical heterostructure graphene/CuInP 2 S 6 /MoS 2 for negative capacitance field effect transistor. Nanotechnology 2022, 33 (12) , 125703. https://doi.org/10.1088/1361-6528/ac4063
    35. Andrew O'Hara, Nina Balke, Sokrates T. Pantelides. Unique Features of Polarization in Ferroelectric Ionic Conductors. Advanced Electronic Materials 2022, 8 (3) https://doi.org/10.1002/aelm.202100810
    36. Johannes Richter, Vadim Ohanyan, Jörg Schulenburg, Jürgen Schnack. Electric field driven flat bands: Enhanced magnetoelectric and electrocaloric effects in frustrated quantum magnets. Physical Review B 2022, 105 (5) https://doi.org/10.1103/PhysRevB.105.054420
    37. Sabine N. Neal, Sobhit Singh, Xiaochen Fang, Choongjae Won, Fei-ting Huang, Sang-Wook Cheong, Karin M. Rabe, David Vanderbilt, Janice L. Musfeldt. Vibrational properties of CuInP 2 S 6 across the ferroelectric transition. Physical Review B 2022, 105 (7) https://doi.org/10.1103/PhysRevB.105.075151
    38. Yunlong Wang, Yan Lu. Electric-field-based control of molecular magnetism in TMPc/Sc 2 CO 2 van der Waals systems. Materials Advances 2022, 3 (2) , 1064-1070. https://doi.org/10.1039/D1MA00643F
    39. Xiao-Qing Yan, Xin Zhao, Haijie Xu, Lei Zhang, Dongqi Liu, Yuchen Zhang, Changfu Huo, Fang Liu, Junfang Xie, Xiao Dong, Zhi-Bo Liu, Jian-Guo Tian. Temperature-tunable optical properties and carrier relaxation of CuInP 2 S 6 crystals under ferroelectric-paraelectric phase transition. Journal of Materials Chemistry C 2022, 10 (2) , 696-706. https://doi.org/10.1039/D1TC04984D
    40. Yijin Zhang, Rei Taniguchi, Satoru Masubuchi, Rai Moriya, Kenji Watanabe, Takashi Taniguchi, Takao Sasagawa, Tomoki Machida. Switchable out-of-plane shift current in ferroelectric two-dimensional material CuInP2S6. Applied Physics Letters 2022, 120 (1) https://doi.org/10.1063/5.0074371
    41. Pai-Ying Liao, Jing-Kai Qin, Gang Qiu, Yixiu Wang, Wenzhuo Wu, Peide D. Ye. Selenene and Tellurene. 2022, 197-224. https://doi.org/10.1016/B978-0-12-823824-0.00004-6
    42. Jin Qian, Guohui Li, Kun Zhu, Guanglong Ge, Cheng Shi, Yang Liu, Fei Yan, Yanxia Li, Bo Shen, Jiwei Zhai, Zhenxiang Cheng. High Energy Storage Performances and Large Electrocaloric Response in Bi0.5na0.5tio3-Ba(Zr0.2ti0.8)O3 Thin Films. SSRN Electronic Journal 2022, 57 https://doi.org/10.2139/ssrn.4127711
    43. Jin Qian, Guohui Li, Kun Zhu, Guanglong Ge, Cheng Shi, Yang Liu, Fei Yan, Yanxia Li, Bo Shen, Jiwei Zhai, Zhenxiang Cheng. High Energy Storage Performances and Large Electrocaloric Response in Bi0.5na0.5tio3-Ba(Zr0.2ti0.8)O3 Thin Films. SSRN Electronic Journal 2022, 30 https://doi.org/10.2139/ssrn.4177613
    44. Xiaowei Wang, Chao Zhu, Ya Deng, Ruihuan Duan, Jieqiong Chen, Qingsheng Zeng, Jiadong Zhou, Qundong Fu, Lu You, Song Liu, James H. Edgar, Peng Yu, Zheng Liu. Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21320-2
    45. Xitao Liu, Zhenyue Wu, Tong Guan, Haidong Jiang, Peiqing Long, Xiaoqi Li, Chengmin Ji, Shuang Chen, Zhihua Sun, Junhua Luo. Giant room temperature electrocaloric effect in a layered hybrid perovskite ferroelectric: [(CH3)2CHCH2NH3]2PbCl4. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25644-x
    46. V. Haborets, K. Glukhov, J. Banys, Yu. Vysochanskii. Layered GeP 2 S 6 , GeP 2 Se 6 , GeP 2 Te 6 , SnP 2 S 6 , SnP 2 Se 6 , and SnP 2 Te 6 Polar Crystals with Semiconductor–Metal Transitions Induced by Pressure or Chemical Composition. Integrated Ferroelectrics 2021, 220 (1) , 90-99. https://doi.org/10.1080/10584587.2021.1921538
    47. Jiandong Yao, Guowei Yang. Multielement 2D layered material photodetectors. Nanotechnology 2021, 32 (39) , 392001. https://doi.org/10.1088/1361-6528/ac0a16
    48. Rongzhen Gao, Xiaoming Shi, Jing Wang, Guangzu Zhang, Houbing Huang. Designed Giant Room‐Temperature Electrocaloric Effects in Metal‐Free Organic Perovskite [MDABCO](NH 4 )I 3 by Phase–Field Simulations. Advanced Functional Materials 2021, 31 (38) https://doi.org/10.1002/adfm.202104393
    49. Ching-Hwa Ho, Shiun-Fang Hu, Hong-Wei Chang. Thermoreflectance characterization of the band-edge excitons observed in multilayered CuInP2S6. FlatChem 2021, 29 , 100290. https://doi.org/10.1016/j.flatc.2021.100290
    50. Fei Xue, Jr-Hau He, Xixiang Zhang. Emerging van der Waals ferroelectrics: Unique properties and novel devices. Applied Physics Reviews 2021, 8 (2) https://doi.org/10.1063/5.0028079
    51. Lu Qi, Shuangchen Ruan, Yu‐Jia Zeng. Review on Recent Developments in 2D Ferroelectrics: Theories and Applications. Advanced Materials 2021, 33 (13) https://doi.org/10.1002/adma.202005098
    52. Zhuangchai Lai, Apoorva Chaturvedi, Zhenyu Shi, Jiangqi Zhao, Thu Ha Tran, Bo Chen, Ying Huang, Xiehong Cao, Qiyuan He, Zhiyuan Zeng, Chaoliang Tan, Hua Zhang. High‐Yield Exfoliation of Ultrathin 2D Ni 3 Cr 2 P 2 S 9 and Ni 3 Cr 2 P 2 Se 9 Nanosheets. Small 2021, 17 (14) https://doi.org/10.1002/smll.202006866
    53. Yue Zhang, Taojian Fan, Sijie Yang, Fakun Wang, Sanjun Yang, Shuzhe Wang, Jianwei Su, Mei Zhao, Xiaozong Hu, Han Zhang, Tianyou Zhai. Recent Advances in 2D Layered Phosphorous Compounds. Small Methods 2021, 5 (4) https://doi.org/10.1002/smtd.202001068
    54. Matthew Gabel, Yi Gu. Understanding Microscopic Operating Mechanisms of a van der Waals Planar Ferroelectric Memristor. Advanced Functional Materials 2021, 31 (9) https://doi.org/10.1002/adfm.202009999
    55. Shuang Zhou, Lu You, Hailin Zhou, Yong Pu, Zhigang Gui, Junling Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Frontiers of Physics 2021, 16 (1) https://doi.org/10.1007/s11467-020-0986-0
    56. Sabine M. Neumayer, Michael A. Susner, Michael A. McGuire, Sokrates T. Pantelides, Sergiy Kalnaus, Petro Maksymovych, Nina Balke. Lowering of T c in Van Der Waals Layered Materials Under In-Plane Strain. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 2021, 68 (2) , 253-258. https://doi.org/10.1109/TUFFC.2020.3007290
    57. Bo Lin, Apoorva Chaturvedi, Jun Di, Lu You, Chen Lai, Ruihuan Duan, Jiadong Zhou, Baorong Xu, Zihao Chen, Pin Song, Juan Peng, Bowen Ma, Haishi Liu, Peng Meng, Guidong Yang, Hua Zhang, Zheng Liu, Fucai Liu. Ferroelectric-field accelerated charge transfer in 2D CuInP2S6 heterostructure for enhanced photocatalytic H2 evolution. Nano Energy 2020, 76 , 104972. https://doi.org/10.1016/j.nanoen.2020.104972
    58. M. A. Susner, R. Rao, A. T. Pelton, M. V. McLeod, B. Maruyama. Temperature-dependent Raman scattering and x-ray diffraction study of phase transitions in layered multiferroic CuCr P 2 S 6 . Physical Review Materials 2020, 4 (10) https://doi.org/10.1103/PhysRevMaterials.4.104003
    59. Ru-Ru Ma, Dong-Dong Xu, Zhao Guan, Xing Deng, Fangyu Yue, Rong Huang, Ye Chen, Ni Zhong, Ping-Hua Xiang, Chun-Gang Duan. High-speed ultraviolet photodetectors based on 2D layered CuInP2S6 nanoflakes. Applied Physics Letters 2020, 117 (13) https://doi.org/10.1063/5.0022097
    60. Hailong Hu, Fan Zhang, Shibin Luo, Jianling Yue, Chun-Hui Wang. Electrocaloric effect in relaxor ferroelectric polymer nanocomposites for solid-state cooling. Journal of Materials Chemistry A 2020, 8 (33) , 16814-16830. https://doi.org/10.1039/D0TA04465B
    61. Hojoon Ryu, Kai Xu, Dawei Li, Xia Hong, Wenjuan Zhu. Empowering 2D nanoelectronics via ferroelectricity. Applied Physics Letters 2020, 117 (8) https://doi.org/10.1063/5.0019555
    62. Zhizheng Sun, Hongfei Huang, Wei Xun, Shanjin Shi, Xiang Hao, Sheng Ju, Yinzhong Wu. First-principle study of sulfur vacancy and O 2 adsorption on the electronic and optical properties of ferroelectric CuInP 2 S 6 monolayer. Journal of Physics: Condensed Matter 2020, 32 (33) , 335001. https://doi.org/10.1088/1361-648X/ab87d0
    63. Hongbo Liu. Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure*. Chinese Physics B 2020, 29 (8) , 087701. https://doi.org/10.1088/1674-1056/ab942f
    64. Sabine M. Neumayer, Lei Tao, Andrew O'Hara, John Brehm, Mengwei Si, Pai-Ying Liao, Tianli Feng, Sergei V. Kalinin, Peide D. Ye, Sokrates T. Pantelides, Petro Maksymovych, Nina Balke. Alignment of Polarization against an Electric Field in van der Waals Ferroelectrics. Physical Review Applied 2020, 13 (6) https://doi.org/10.1103/PhysRevApplied.13.064063
    65. Sabine M. Neumayer, Stephen Jesse, Gabriel Velarde, Andrei L. Kholkin, Ivan Kravchenko, Lane W. Martin, Nina Balke, Peter Maksymovych. To switch or not to switch – a machine learning approach for ferroelectricity. Nanoscale Advances 2020, 2 (5) , 2063-2072. https://doi.org/10.1039/C9NA00731H
    66. John A. Brehm, Sabine M. Neumayer, Lei Tao, Andrew O’Hara, Marius Chyasnavichus, Michael A. Susner, Michael A. McGuire, Sergei V. Kalinin, Stephen Jesse, Panchapakesan Ganesh, Sokrates T. Pantelides, Petro Maksymovych, Nina Balke. Tunable quadruple-well ferroelectric van der Waals crystals. Nature Materials 2020, 19 (1) , 43-48. https://doi.org/10.1038/s41563-019-0532-z
    67. Rong-Zhen Gao, Jing Wang, Jun-Sheng Wang, Hou-Bing Huang, , . Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory. Acta Physica Sinica 2020, 69 (21) , 217801. https://doi.org/10.7498/aps.69.20201195
    68. V. Liubachko, A. Oleaga, A. Salazar, A. Kohutych, K. Glukhov, A. Pogodin, Yu. Vysochanskii. Cation role in the thermal properties of layered materials M 1 + M 3 + P 2 ( S , Se ) 6 ( M 1 + = Cu , Ag ; M 3 + = In , Bi ) . Physical Review Materials 2019, 3 (10) https://doi.org/10.1103/PhysRevMaterials.3.104415

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect