ACS Publications. Most Trusted. Most Cited. Most Read
PT-Symmetric Absorber-Laser Enables Electromagnetic Sensors with Unprecedented Sensitivity
My Activity
    Article

    PT-Symmetric Absorber-Laser Enables Electromagnetic Sensors with Unprecedented Sensitivity
    Click to copy article linkArticle link copied!

    • Mohamed Farhat
      Mohamed Farhat
      Computer, Electrical, and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
    • Minye Yang
      Minye Yang
      Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
      More by Minye Yang
    • Zhilu Ye
      Zhilu Ye
      Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
      More by Zhilu Ye
    • Pai-Yen Chen*
      Pai-Yen Chen
      Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
      *E-mail: [email protected]
      More by Pai-Yen Chen
    Other Access OptionsSupporting Information (1)

    ACS Photonics

    Cite this: ACS Photonics 2020, 7, 8, 2080–2088
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsphotonics.0c00514
    Published July 7, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Achieving extraordinarily high sensitivity is a long-sought goal in the development of novel and more capable electromagnetic sensors. We present here how a coherent perfect absorber-laser (CPAL) enabled by parity-time (PT) symmetry breaking may be exploited to build ultrasensitive monochromatic electromagnetic sensors that use radio waves, microwaves, terahertz radiations, or light. We argue the possibility of using such CPAL sensors to detect extremely small-scale perturbations of admittance or refractive index caused by, for example, low-density gas molecules and microscopic properties, as they may drastically vary the system’s output intensity from very low (coherent absorption) to high (lasing). We derive the physical bounds on CPAL sensors, showing that their sensitivity and resolvability may go well beyond traditional electromagnetic sensors, such as sensors based on Fabry–Perot cavities.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsphotonics.0c00514.

    • Additional experimental and computational details (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 80 publications.

    1. Zhichao Li, Ciril S. Prasad, Xielin Wang, Ding Zhang, Gururaj V. Naik. Sensing beyond the Exceptional Point for High Detectivity. ACS Photonics 2024, 11 (8) , 2954-2960. https://doi.org/10.1021/acsphotonics.3c01662
    2. Xiang Ni, Simon Yves, Alex Krasnok, Andrea Alù. Topological Metamaterials. Chemical Reviews 2023, 123 (12) , 7585-7654. https://doi.org/10.1021/acs.chemrev.2c00800
    3. Robert Duggan, Sander A. Mann, Andrea Alù. Limitations of Sensing at an Exceptional Point. ACS Photonics 2022, 9 (5) , 1554-1566. https://doi.org/10.1021/acsphotonics.1c01535
    4. Xiao Xiao, Yunsheng Fang, Xiao Xiao, Jing Xu, Jun Chen. Machine-Learning-Aided Self-Powered Assistive Physical Therapy Devices. ACS Nano 2021, 15 (12) , 18633-18646. https://doi.org/10.1021/acsnano.1c10676
    5. Zhilu Ye, Xinran Li, Kun Zhao, Wang Zhan, Qi Zhang, Lei Lei, Minye Yang, Ming Liu, Xiaohui Zhang. Sensitive and reliable wireless monitoring of foot pressure and temperature for diabetic foot ulcer management and prevention. Sensors and Actuators A: Physical 2025, 387 , 116411. https://doi.org/10.1016/j.sna.2025.116411
    6. Junming Li, Hengli Feng, Yachen Gao. Broadband perfect absorber based on Ni-Al 2 O 3 -Pt metamaterials for near-infrared applications. Physica Scripta 2025, 100 (5) , 055543. https://doi.org/10.1088/1402-4896/adcd0c
    7. Julio A. Iglesias Martínez, Mohamed Farhat, Ying Wu, Abdelkrim Khelif. Ultrasound underwater coherent perfect absorbers. Physical Review Applied 2025, 23 (5) https://doi.org/10.1103/PhysRevApplied.23.054023
    8. Minye Yang, Lukang Wang, Zhilu Ye, Qi Zhong, Baolong Jian, Xiaohui Zhang, Şahin K. Özdemir, Ming Liu. Electronic CPA‐Laser Having Enhanced Sensitivity and Tunability. Advanced Electronic Materials 2025, 11 (7) https://doi.org/10.1002/aelm.202400722
    9. Yun‐tuan Fang, Fan Bu, Sailing He. Abnormal Unidirectional Lasing from the Combined Effect of non‐Hermitian Modulated Bound States in the Continuum and Fabry–Pérot Resonance. Laser & Photonics Reviews 2025, 19 (7) https://doi.org/10.1002/lpor.202400964
    10. Yibo Liu, Liwei Duan, Qing-Hu Chen. Analytical study of the non-Hermitian semiclassical Rabi model. Physical Review Research 2025, 7 (2) https://doi.org/10.1103/PhysRevResearch.7.023004
    11. Tiecheng Wang. Unidirectional weak visibility in bandgap and singular scattering in conduction band of one-dimensional PT-symmetry photonic crystal. Waves in Random and Complex Media 2025, 35 (2) , 3241-3256. https://doi.org/10.1080/17455030.2022.2050440
    12. Liang Hu, Yunhui Li, Kejia Zhu, Hong Chen, Zhiwei Guo. Linewidth narrowing and enhanced sensing in non-Hermitian circuit systems via anti-PT symmetry. Applied Physics Letters 2025, 126 (9) https://doi.org/10.1063/5.0252180
    13. Tingting Shi, Vasilii Smirnov, Kaiye Shi, Wei Zhang. Enhanced response at exceptional points in multiqubit systems for sensing. Physical Review A 2025, 111 (3) https://doi.org/10.1103/PhysRevA.111.032203
    14. Vinh Le Duc, Hong Nguyen Thi, Khoa Doan Quoc. Phase dependence of entanglement generation in a PT-symmetric system of two micro-cavities. Optical and Quantum Electronics 2025, 57 (2) https://doi.org/10.1007/s11082-025-08045-y
    15. Tiantian Wang, Qingjie Liu, Tong Li, Yingquan Ao. Scattering singularities in Fano-resonant multilayer grating structure with phase-change materials. Optics & Laser Technology 2025, 181 , 111602. https://doi.org/10.1016/j.optlastec.2024.111602
    16. Chengnian Huang, Zhihao Lan, Menglin L. N. Chen, Wei E. I. Sha. Extraction of power transmission parameters from PT-symmetric waveguides. Optics Express 2025, 33 (2) , 3162. https://doi.org/10.1364/OE.549572
    17. Zuoxian Wang, Zihua Liang, Jinsheng Hu, Peng Zhou, Lu Liu, Gen Hu, Weiyi Wang, Mao Ye. Sensing Applications of PT‐Symmetry in Non‐Hermitian Photonic Systems. Advanced Quantum Technologies 2025, 8 (1) https://doi.org/10.1002/qute.202400349
    18. Wenzheng Zhao, Yeang Zhang, Zixuan Gao, Delong Peng, Jun-long Kou, Yan-qing Lu, Ramy El-Ganainy, Şahin K. Özdemir, Qi Zhong. Exceptional points induced by unidirectional coupling in electronic circuits. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-53929-4
    19. Yao Zhang, Xiangbo Yang, Mengli Huang. A superior coherent perfect absorber and laser constructed from the periodic ring optical waveguide network based on extremum spontaneous PT-symmetric breaking points. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-78871-9
    20. Cuiping Liu, Dongyang Yan, Baoyin Sun, Yadong Xu, Fang Cao, Lei Gao, Jie Luo. Low-gain generalized PT symmetry for electromagnetic impurity-immunity via non-Hermitian doped zero-index materials. Photonics Research 2024, 12 (11) , 2424. https://doi.org/10.1364/PRJ.527478
    21. Pai-Yen Chen. PT-Symmetric Metasurfaces and Their Beamshaping and Beamfomring Applications. 2024, 760-762. https://doi.org/10.1109/ICEAA61917.2024.10701811
    22. Yichong Ren, Hongyi Pan, A. Enis Cetin, Pai-Yen Chen. Electromagnetically Unclonable Function with Immunity to Machine Learning Attacks. 2024, 758-759. https://doi.org/10.1109/ICEAA61917.2024.10702010
    23. Minye Yang, Qi Zhong, Zhilu Ye, Şahin K. Özdemir, Mohamed Farhat, Ramy El-Ganainy, Pai-Yen Chen. Experimental observation of coherent-perfect-absorber and laser points in anti-PT symmetry. Physical Review A 2024, 110 (3) https://doi.org/10.1103/PhysRevA.110.033504
    24. Sebastian A. Schulz, Rupert. F. Oulton, Mitchell Kenney, Andrea Alù, Isabelle Staude, Ayesheh Bashiri, Zlata Fedorova, Radoslaw Kolkowski, A. Femius Koenderink, Xiaofei Xiao, John Yang, William J. Peveler, Alasdair W. Clark, George Perrakis, Anna C. Tasolamprou, Maria Kafesaki, Anastasiia Zaleska, Wayne Dickson, David Richards, Anatoly Zayats, Haoran Ren, Yuri Kivshar, Stefan Maier, Xianzhong Chen, Muhammad Afnan Ansari, Yuhui Gan, Arseny Alexeev, Thomas F. Krauss, Andrea Di Falco, Sylvain D. Gennaro, Tomás Santiago-Cruz, Igal Brener, Maria V. Chekhova, Ren-Min Ma, Viola V. Vogler-Neuling, Helena C. Weigand, Ülle-Linda Talts, Irene Occhiodori, Rachel Grange, Mohsen Rahmani, Lei Xu, S. M. Kamali, E. Arababi, Andrei Faraon, Anthony C. Harwood, Stefano Vezzoli, Riccardo Sapienza, Philippe Lalanne, Alexandre Dmitriev, Carsten Rockstuhl, Alexander Sprafke, Kevin Vynck, Jeremy Upham, M. Zahirul Alam, Israel De Leon, Robert W. Boyd, Willie J. Padilla, Jordan M. Malof, Aloke Jana, Zijin Yang, Rémi Colom, Qinghua Song, Patrice Genevet, Karim Achouri, Andrey B. Evlyukhin, Ulrich Lemmer, Ivan Fernandez-Corbaton. Roadmap on photonic metasurfaces. Applied Physics Letters 2024, 124 (26) https://doi.org/10.1063/5.0204694
    25. Hudson Loughlin, Vivishek Sudhir. Exceptional-Point Sensors Offer No Fundamental Signal-to-Noise Ratio Enhancement. Physical Review Letters 2024, 132 (24) https://doi.org/10.1103/PhysRevLett.132.243601
    26. Haiyu Meng, Yee Sin Ang, Ching Hua Lee. Exceptional points in non-Hermitian systems: Applications and recent developments. Applied Physics Letters 2024, 124 (6) https://doi.org/10.1063/5.0183826
    27. Zhilu Ye, Minye Yang, Mohamed Farhat, Mark M.-C. Cheng, Pai-Yen Chen. Multimodal Wireless Wound Sensors via Higher-Order Parity-Time Symmetry. IEEE Sensors Journal 2024, 24 (1) , 741-749. https://doi.org/10.1109/JSEN.2023.3333292
    28. Shanfang Zhang, Rui Yang. Reconfigurable coherent perfect absorption of different polarized electromagnetic fields through vanadium-dioxide based asymmetry transmissive meta-surfaces sandwiched with graphene meta-gratings. Optics Express 2023, 31 (25) , 41816. https://doi.org/10.1364/OE.504084
    29. Tiecheng Wang, Yong Niu. Defect modes in defective one dimensional parity-time symmetric photonic crystal. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-48737-7
    30. Fangfang Ju, Chen Liu, Ying Cheng, Shengyou Qian, Xiaojun Liu. Acoustic coherent perfect absorption based on a PT symmetric coupled Mie resonator system. APL Materials 2023, 11 (12) https://doi.org/10.1063/5.0179484
    31. Zhouzhou Sun, Weixin Lu, Ping Bai. Theory on coherent perfect absorber and laser via a metamaterial slab with complex parameters. Europhysics Letters 2023, 144 (6) , 60001. https://doi.org/10.1209/0295-5075/ad12a2
    32. Miguel Mayosky, Alejandro Veiga, Carlos García Canal, Huner Fanchiotti. Feedback and PT symmetry in a class of active LCR circuits. International Journal of Circuit Theory and Applications 2023, 51 (11) , 4997-5008. https://doi.org/10.1002/cta.3715
    33. Jianhui Wu, Jie Li, Chi Zhang, Yulu Liu, Liangquan Xu, Weipeng Xuan, Hao Jin, Shurong Dong, Jikui Luo. Frequency tunable coherent perfect absorption and lasing in radio-frequency system for ultrahigh-sensitive sensing. Applied Physics Letters 2023, 123 (16) https://doi.org/10.1063/5.0173261
    34. Minye Yang, Zhilu Ye, Hongyi Pan, Mohamed Farhat, Ahmet Enis Cetin, Pai-Yen Chen. Electromagnetically unclonable functions generated by non-Hermitian absorber-emitter. Science Advances 2023, 9 (36) https://doi.org/10.1126/sciadv.adg7481
    35. Tianjing Guo, Christos Argyropoulos. Hybrid graphene-plasmon gratings. Journal of Applied Physics 2023, 134 (5) https://doi.org/10.1063/5.0152664
    36. Jeng Yi Lee, Pai-Yen Chen. Wave propagation, bi-directional reflectionless, and coherent perfect absorption-lasing in finite periodic PT-symmetric photonic systems. Nanophotonics 2023, 12 (15) , 3099-3108. https://doi.org/10.1515/nanoph-2023-0157
    37. Aodong Li, Heng Wei, Michele Cotrufo, Weijin Chen, Sander Mann, Xiang Ni, Bingcong Xu, Jianfeng Chen, Jian Wang, Shanhui Fan, Cheng-Wei Qiu, Andrea Alù, Lin Chen. Exceptional points and non-Hermitian photonics at the nanoscale. Nature Nanotechnology 2023, 18 (7) , 706-720. https://doi.org/10.1038/s41565-023-01408-0
    38. Jheng-Ying Wu, Yu-Fu Wang, Chia-You Liu, Shin-Chun Kuo, Tzu-Hsuan Chen, Jiun-Yun Li, Chin-Ya Huang, Chien-Hao Liu, Jung-Yen Yang, Chun-Chieh Chang, Tzu-Hsuan Chang. High-quality GeSn thin-film resonant cavities for short-wave infrared applications. Journal of Vacuum Science & Technology B 2023, 41 (4) https://doi.org/10.1116/6.0002525
    39. Zarko Sakotic, Predrag Stankovic, Vesna Bengin, Alex Krasnok, Andrea Alú, Nikolina Jankovic. Non‐Hermitian Control of Topological Scattering Singularities Emerging from Bound States in the Continuum. Laser & Photonics Reviews 2023, 17 (6) https://doi.org/10.1002/lpor.202200308
    40. Amir M. Jazayeri. Fixed points on band structures of non-Hermitian models: Extended states in the bandgap and ideal superluminal tunneling. Physical Review B 2023, 107 (14) https://doi.org/10.1103/PhysRevB.107.144302
    41. Trung D. Ha, Liang Zhu, Nabeel Alsaab, Pai-Yen Chen, Jay L. Guo. Optically Transparent Metasurface Radome for RCS Reduction and Gain Enhancement of Multifunctional Antennas. IEEE Transactions on Antennas and Propagation 2023, 71 (1) , 67-77. https://doi.org/10.1109/TAP.2022.3215247
    42. Guangtao Cao, Chen Zhao, Shaohua Dong, Kaipeng Liu, Yixuan Zeng, Qing Zhang, Yongzhe Zhang, Yi Li, Hongyi Zhu. Polarization-insensitive unidirectional meta-retroreflector. Optics & Laser Technology 2022, 156 , 108497. https://doi.org/10.1016/j.optlastec.2022.108497
    43. Tiecheng Wang, Xiang Gou. Band structures and scattering properties of the simplest one-dimensional $${\mathscr {P}}{\mathscr {T}}$$-symmetric photonic crystal. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-20559-z
    44. Hsin-Yu Wu, Frank Vollmer. Enhanced chiroptical responses through coherent perfect absorption in a parity-time symmetric system. Communications Physics 2022, 5 (1) https://doi.org/10.1038/s42005-022-00855-w
    45. Yong Cao, Zan Zhang, Xiaohui Ling. Enhancement of the conversion efficiency of optical spin-orbit interactions in PT symmetric systems. Optics Express 2022, 30 (24) , 43718. https://doi.org/10.1364/OE.476367
    46. Zhilu Ye, Minye Yang, Nabeel Alsaab, Pai-Yen Chen. A Wireless, Zero-Power and Multiplexed Sensor for Wound Monitoring. 2022, 1-4. https://doi.org/10.1109/SENSORS52175.2022.9967164
    47. Georgios Veronis, Yin Huang, Yuecheng Shen, Vahid Foroughi Nezhad, Chenglong You, , . Magneto-optical isolation and topological edge states at singular points in plasmonic structures. 2022, 77. https://doi.org/10.1117/12.2633235
    48. Min-ye Yang, Zhi-lu Ye, Liang Zhu, Mohamed Farhat, Pai-Yen Chen. Recent advances in coherent perfect absorber-lasers and their future applications. Journal of Central South University 2022, 29 (10) , 3203-3216. https://doi.org/10.1007/s11771-022-5160-0
    49. Maryam Sakhdari, Zhilu Ye, Mohamed Farhat, Pai-Yen Chen. Generalized Theory of PT-Symmetric Radio-Frequency Systems With Divergent Exceptional Points. IEEE Transactions on Antennas and Propagation 2022, 70 (10) , 9396-9405. https://doi.org/10.1109/TAP.2022.3179528
    50. Zitao Ji, Zhi-Yuan Li, Wenyao Liang. Graphene hyperbolic metamaterials: Fundamentals and applications. Europhysics Letters 2022, 140 (2) , 26001. https://doi.org/10.1209/0295-5075/ac970e
    51. Yiyun Chen, Yaping Zhang, Lingzhong Zhao, Guangfeng Wen, Lin Zhang, Qingtao Ba, Qilin Luo, Jingjing Yu, Shiyang Liu. Rectifying Nonreciprocal Perfect Absorber Based on Generalized Effective-Medium Theory for Composite Magnetic Metamaterials. Photonics 2022, 9 (10) , 699. https://doi.org/10.3390/photonics9100699
    52. Haotian Chen. Compact Fano-Type Liquid Metamaterial Resonator for High-Precision Temperature Sensing. Frontiers in Materials 2022, 9 https://doi.org/10.3389/fmats.2022.941395
    53. Zhilu Ye, Minye Yang, Pai-Yen Chen. Multi-Band Parity-Time-Symmetric Wireless Power Transfer Systems for ISM-Band Bio-Implantable Applications. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 2022, 6 (2) , 196-203. https://doi.org/10.1109/JERM.2021.3120621
    54. Ling-Ling Zhang, Xiao-Jun Liu. Acoustic Negative Refraction and Planar Focusing Based on Purely Imaginary Metamaterials. Applied Sciences 2022, 12 (12) , 5962. https://doi.org/10.3390/app12125962
    55. Ke Yin, Yuangen Huang, Chao Ma, Xianglin Hao, Xiaoke Gao, Xikui Ma, Tianyu Dong. Wireless real-time capacitance readout based on perturbed nonlinear parity-time symmetry. Applied Physics Letters 2022, 120 (19) https://doi.org/10.1063/5.0093982
    56. Minye Yang, Zhilu Ye, Nabeel Alsaab, Mohamed Farhat, Pai-Yen Chen. In-Vitro Demonstration of Ultra-Reliable, Wireless and Batteryless Implanted Intracranial Sensors Operated on Loci of Exceptional Points. IEEE Transactions on Biomedical Circuits and Systems 2022, 16 (2) , 287-295. https://doi.org/10.1109/TBCAS.2022.3164697
    57. Yin Huang, Yuecheng Shen, Georgios Veronis. Topological edge states at singular points in non-Hermitian plasmonic systems. Photonics Research 2022, 10 (3) , 747. https://doi.org/10.1364/PRJ.443928
    58. Minye Yang, Zhilu Ye, Mohamed Farhat, Pai-Yen Chen. Cascaded PT-symmetric artificial sheets: multimodal manipulation of self-dual emitter-absorber singularities, and unidirectional and bidirectional reflectionless transparencies. Journal of Physics D: Applied Physics 2022, 55 (8) , 085301. https://doi.org/10.1088/1361-6463/ac3300
    59. Chao Zhao, Bo Lv, Zeyu Pan, Zheng Zhu, Hanyang Li, Zenglin Li, Yicheng Li, Ying Wang, Hongyang Mu, Wenjia Li, Jinhui Shi. Highly sensitive gas sensor based on a parity-time-symmetric system. Journal of the Optical Society of America A 2022, 39 (2) , 227. https://doi.org/10.1364/JOSAA.443024
    60. Zhihan Lv, Jinkang Guo. Virtual Reality Neurorehabilitation. International Journal of Mental Health Promotion 2022, 24 (3) , 287-310. https://doi.org/10.32604/ijmhp.2022.019829
    61. Hui-Ying Fan, Jie Luo, . Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica 2022, 71 (24) , 247802. https://doi.org/10.7498/aps.71.20221706
    62. Jeng Yi Lee, Pai-Yen Chen. Optical forces and directionality in one-dimensional PT -symmetric photonics. Physical Review B 2021, 104 (24) https://doi.org/10.1103/PhysRevB.104.245426
    63. Jihoon Choi, Heeso Noh. Single-Port Coherent Perfect Loss in a Photonic Crystal Nanobeam Resonator. Nanomaterials 2021, 11 (12) , 3457. https://doi.org/10.3390/nano11123457
    64. Minye Yang, Zhilu Ye, Pai-Yen Chen. A Quantum-Inspired Biotelemetry System for Robust and Ultrasensitive Wireless Intracranial Pressure Monitoring. 2021, 1-4. https://doi.org/10.1109/SENSORS47087.2021.9639684
    65. Zhicheng Xiao, Andrea Alù. Tailoring exceptional points in a hybrid PT-symmetric and anti-PT-symmetric scattering system. Nanophotonics 2021, 10 (14) , 3723-3733. https://doi.org/10.1515/nanoph-2021-0245
    66. Mingzhao Song, Prasad Jayathurathnage, Esmaeel Zanganeh, Mariia Krasikova, Pavel Smirnov, Pavel Belov, Polina Kapitanova, Constantin Simovski, Sergei Tretyakov, Alex Krasnok. Wireless power transfer based on novel physical concepts. Nature Electronics 2021, 4 (10) , 707-716. https://doi.org/10.1038/s41928-021-00658-x
    67. Adipta Pal, Subhrajit Modak, Aradhya Shukla, Prasanta K. Panigrahi. PT-symmetry and supersymmetry: interconnection of broken and unbroken phases. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2021, 477 (2254) https://doi.org/10.1098/rspa.2021.0494
    68. Jeng Yi Lee, Pai-Yen Chen. Generalized parametric space, parity symmetry of reflection, and systematic design approach for parity-time-symmetric photonic systems. Physical Review A 2021, 104 (3) https://doi.org/10.1103/PhysRevA.104.033510
    69. Georgios Veronis, Yin Huang, Lanyan Wang, Yuecheng Shen, , . Switching between singular points and exceptional-point-enhanced sensing in non-Hermitian photonic structures. 2021, 60. https://doi.org/10.1117/12.2594327
    70. Zitao Ji, Wenyao Liang, Zhi-Yuan Li. Tunable directional emission based on graphene hyperbolic metamaterials. EPL (Europhysics Letters) 2021, 135 (4) , 44001. https://doi.org/10.1209/0295-5075/ac1fa2
    71. Zhilu Ye, Minye Yang, Liang Zhu, Pai-Yen Chen. PTX-symmetric metasurfaces for sensing applications. Frontiers of Optoelectronics 2021, 14 (2) , 211-220. https://doi.org/10.1007/s12200-021-1204-6
    72. Junxing Wang, Yun Shen, Xin Yu, Liner Zou, Shoujian Ouyang, Xiaohua Deng. Active control of parity-time symmetry phase transition in terahertz metasurface. Physics Letters A 2021, 400 , 127304. https://doi.org/10.1016/j.physleta.2021.127304
    73. M. Farhat, P.-Y. Chen, S. Guenneau, Y. Wu. Self-dual singularity through lasing and antilasing in thin elastic plates. Physical Review B 2021, 103 (13) https://doi.org/10.1103/PhysRevB.103.134101
    74. Marino Coppolaro, Massimo Moccia, Giuseppe Castaldi, Andrea Alu, Vincenzo Galdi. Surface-Wave Propagation on Non-Hermitian Metasurfaces With Extreme Anisotropy. IEEE Transactions on Microwave Theory and Techniques 2021, 69 (4) , 2060-2071. https://doi.org/10.1109/TMTT.2021.3057632
    75. Mohamed Farhat, Waqas W. Ahmad, Abdelkrim Khelif, Khaled N. Salama, Ying Wu. Enhanced acoustic pressure sensors based on coherent perfect absorber-laser effect. Journal of Applied Physics 2021, 129 (10) https://doi.org/10.1063/5.0041771
    76. Zhenya Dong, Han-Joon Kim, Hongjian Cui, Chenhui Li, Cheng-Wei Qiu, John S. Ho. Wireless Magnetic Actuation with a Bistable Parity-Time-Symmetric Circuit. Physical Review Applied 2021, 15 (2) https://doi.org/10.1103/PhysRevApplied.15.024023
    77. Yin Huang, Lanyan Wang, Yuecheng Shen, Georgios Veronis. Switching between singular points in non-PT-symmetric multilayer structures using phase-change materials. Optics Express 2021, 29 (1) , 454. https://doi.org/10.1364/OE.411742
    78. Minye Yang, Zhilu Ye, Mohamed Farhat, Pai-Yen Chen. Enhanced Radio-Frequency Sensors Based on a Self-Dual Emitter-Absorber. Physical Review Applied 2021, 15 (1) https://doi.org/10.1103/PhysRevApplied.15.014026
    79. Minye Yang, Zhilu Ye, Mohamed Farhat, Pai-Yen Chen. Ultrarobust Wireless Interrogation for Sensors and Transducers: A Non-Hermitian Telemetry Technique. IEEE Transactions on Instrumentation and Measurement 2021, 70 , 1-9. https://doi.org/10.1109/TIM.2021.3107057
    80. Mohamed Farhat, Sebastien Guenneau, Pai-Yen Chen, Ying Wu. Parity-Time Symmetry and Exceptional Points for Flexural-Gravity Waves in Buoyant Thin-Plates. Crystals 2020, 10 (11) , 1039. https://doi.org/10.3390/cryst10111039

    ACS Photonics

    Cite this: ACS Photonics 2020, 7, 8, 2080–2088
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsphotonics.0c00514
    Published July 7, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    1966

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.