ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Room-Temperature Valley Polarization and Coherence in Transition Metal Dichalcogenide–Graphene van der Waals Heterostructures

Cite this: ACS Photonics 2018, 5, 12, 5047–5054
Publication Date (Web):November 21, 2018
https://doi.org/10.1021/acsphotonics.8b01306
Copyright © 2018 American Chemical Society

    Article Views

    2604

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    van der Waals heterostructures made of graphene and transition metal dichalcogenides (TMDs) are an emerging platform for optoelectronic, -spintronic, and -valleytronic devices that could benefit from (i) strong light–matter interactions and spin–valley locking in TMDs and (ii) exceptional electron and spin transport in graphene. The operation of such devices requires significant valley polarization and valley coherence, ideally up to room temperature. Here, using a comprehensive Mueller polarimetry analysis, we report artifact-free room-temperature degrees of valley polarization up to 40% and, remarkably, of valley coherence up to 20% in monolayer tungsten disulfide (WS2)/graphene heterostructures. At a temperature of 20 K, we measure a record degree of valley coherence of 60%, a value that exceeds the degree of valley polarization (50%) and indicates that our samples are minimally affected by pure dephasing processes. Valley contrasts have been particularly elusive in molybdenum diselenide (MoSe2), even at cryogenic temperatures. Upon interfacing monolayer MoSe2 with graphene, the room-temperature degrees of valley polarization and coherence are as high as 14% and 20%, respectively. Our results are discussed in light of recent reports of highly efficient interlayer exciton and carrier transfer in TMD/graphene heterostructures and hold promise for room-temperature chiral light–matter interactions and opto-valleytronic devices.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsphotonics.8b01306.

    • Additional details on methods; Mueller polarimetry; full Mueller matrices measured on BN-capped WS2/Gr and BN-capped MoSe2/Gr; helicity-resolved PL spectra on WS2/graphene; low-temperature polarization-resolved PL on BN-capped WS2; high-resolution Raman measurements on WS2/Gr; optical characterization of BN-capped MoSe2/graphene (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 40 publications.

    1. Lei Huang, Xiaofan Zhu, Guohua Hu, Chunyu Deng, Yu Sun, Dongyu Wang, Mengjia Lu, Binfeng Yun, Ruohu Zhang, Yan Zhang, Yiping Cui. Electrical Switching of the Off-Resonance Room-Temperature Valley Polarization in Monolayer MoS2 by a Double-Resonance Chiral Microstructure. ACS Applied Materials & Interfaces 2022, 14 (19) , 22381-22388. https://doi.org/10.1021/acsami.2c03688
    2. Yuxiang Sang, Jiaoyang Guo, Hao Chen, Wanli Yang, Xin Chen, Fang Liu, Xingjun Wang. Measurement of Thermal Conductivity of Suspended and Supported Single-Layer WS2 Using Micro-photoluminescence Spectroscopy. The Journal of Physical Chemistry C 2022, 126 (15) , 6637-6645. https://doi.org/10.1021/acs.jpcc.2c00732
    3. Zachariah Hennighausen, Darshana Wickramaratne, Kathleen M. McCreary, Bethany M. Hudak, Todd Brintlinger, Hsun-Jen Chuang, Mehmet A. Noyan, Berend T. Jonker, Rhonda M. Stroud, Olaf M. van ’t Erve. Laser-Patterned Submicrometer Bi2Se3–WS2 Pixels with Tunable Circular Polarization at Room Temperature. ACS Applied Materials & Interfaces 2022, 14 (7) , 9504-9514. https://doi.org/10.1021/acsami.1c24205
    4. Gaohong Liu, Xuanli Zheng, Haiyang Liu, Jun Yin, Congming Ke, Weihuang Yang, Yaping Wu, Zhiming Wu, Xu Li, Chunmiao Zhang, Junyong Kang. Enhancement of Room-Temperature Photoluminescence and Valley Polarization of Monolayer and Bilayer WS2 via Chiral Plasmonic Coupling. ACS Applied Materials & Interfaces 2021, 13 (29) , 35097-35104. https://doi.org/10.1021/acsami.1c06622
    5. Sheng Liu, Andrés Granados del Águila, Xue Liu, Yihan Zhu, Yu Han, Apoorva Chaturvedi, Pu Gong, Hongyi Yu, Hua Zhang, Wang Yao, Qihua Xiong. Room-Temperature Valley Polarization in Atomically Thin Semiconductors via Chalcogenide Alloying. ACS Nano 2020, 14 (8) , 9873-9883. https://doi.org/10.1021/acsnano.0c02703
    6. Jiawei Sun, Huatian Hu, Deng Pan, Shunping Zhang, Hongxing Xu. Selectively Depopulating Valley-Polarized Excitons in Monolayer MoS2 by Local Chirality in Single Plasmonic Nanocavity. Nano Letters 2020, 20 (7) , 4953-4959. https://doi.org/10.1021/acs.nanolett.0c01019
    7. Sergii Morozov, Torgom Yezekyan, Christian Wolff, Sergey I. Bozhevolnyi, N. Asger Mortensen. Inducing room-temperature valley polarization of excitonic emission in transition metal dichalcogenide monolayers. npj 2D Materials and Applications 2024, 8 (1) https://doi.org/10.1038/s41699-024-00459-8
    8. Ramesh Rajarapu, Prahalad Kanti Barman, Bubunu Biswal, Saroj Poudyal, Renu Yadav, Mrinal Deka, Wahidur Rahman, Anusree S, Pramoda K. Nayak, Abhishek Misra. Robust valley quantum coherence in synthetic 3R -phase MoS2: A material for future valley based devices. Applied Physics Letters 2024, 124 (3) https://doi.org/10.1063/5.0187119
    9. Garima Gupta, Kenji Watanabe, Takashi Taniguchi, Kausik Majumdar. Observation of ~100% valley-coherent excitons in monolayer MoS2 through giant enhancement of valley coherence time. Light: Science & Applications 2023, 12 (1) https://doi.org/10.1038/s41377-023-01220-4
    10. Shreetu Shrestha, Mingxing Li, Suji Park, Xiao Tong, Donald DiMarzio, Mircea Cotlet. Room temperature valley polarization via spin selective charge transfer. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-40967-7
    11. G. Kourmoulakis, A. Michail, I. Paradisanos, X. Marie, M. M. Glazov, B. Jorissen, L. Covaci, E. Stratakis, K. Papagelis, J. Parthenios, G. Kioseoglou. Biaxial strain tuning of exciton energy and polarization in monolayer WS2. Applied Physics Letters 2023, 123 (22) https://doi.org/10.1063/5.0167724
    12. Fernando Lorén, Cyriaque Genet, Luis Martin-Moreno. Circular dichroism induction in WS 2 by a chiral plasmonic metasurface. Optical Materials Express 2023, 13 (11) , 3366. https://doi.org/10.1364/OME.497120
    13. Steven A. VITALE. Valleytronics in 2D Materials. 2023, 209-250. https://doi.org/10.1002/9781394228713.ch6
    14. Guangwu Zhang, Shilin Dong, Chao Yang, Dan Han, Gongming Xin, Xinyu Wang. Revisiting four-phonon scattering in WS2 monolayer with machine learning potential. Applied Physics Letters 2023, 123 (5) https://doi.org/10.1063/5.0159517
    15. Ioanna Demeridou, Emmanouil G Mavrotsoupakis, Leonidas Mouchliadis, Pavlos G Savvidis, Emmanuel Stratakis, George Kioseoglou. Persistent room-temperature valley polarization in graphite-filtered WS 2 monolayer. 2D Materials 2023, 10 (2) , 025023. https://doi.org/10.1088/2053-1583/acc342
    16. Fernando Lorén, Gian L. Paravicini-Bagliani, Sudipta Saha, Jérôme Gautier, Minghao Li, Cyriaque Genet, Luis Martín-Moreno. Microscopic analysis of spin-momentum locking on a geometric phase metasurface. Physical Review B 2023, 107 (16) https://doi.org/10.1103/PhysRevB.107.165128
    17. Sourav Paul, Abhijith M. B., Prasenjit Ghosh, Prajna Paromita Chanda, Nicholas R. Glavin, Ajit K. Roy, Kenji Watanabe, Takashi Taniguchi, Vidya Kochat. Raman spectroscopic studies on the evolution of interlayer coupling and stacking order in twisted bilayers and polytypes of WSe2. Journal of Applied Physics 2023, 133 (11) https://doi.org/10.1063/5.0136373
    18. Rasmus H. Godiksen, Shaojun Wang, T. V. Raziman, Jaime Gómez Rivas, Alberto G. Curto. Impact of indirect transitions on valley polarization in WS 2 and WSe 2. Nanoscale 2022, 14 (47) , 17761-17769. https://doi.org/10.1039/D2NR04800K
    19. Kacper Oreszczuk, Julia Slawinska, Aleksander Rodek, Marek Potemski, Czeslaw Skierbiszewski, Piotr Kossacki. Hybrid electroluminescent devices composed of (In,Ga)N micro-LEDs and monolayers of transition metal dichalcogenides. Nanoscale 2022, 14 (46) , 17271-17276. https://doi.org/10.1039/D2NR03970B
    20. Ravel de Moraes Telles Araujo, Juliana Zarpellon, Dante Homero Mosca. Unveiling ferromagnetism and antiferromagnetism in two dimensions at room temperature. Journal of Physics D: Applied Physics 2022, 55 (28) , 283003. https://doi.org/10.1088/1361-6463/ac60cd
    21. Linglong Zhang, Yilin Tang, Han Yan, Tanju Yildirim, Shunshun Yang, Haizeng Song, Xiaowei Zhang, Fuguo Tian, Zhongzhong Luo, Jiajie Pei, Qi Yang, Yixin Xu, Xiaoying Song, Ahmed Raza Khan, Sihao Xia, Xueqian Sun, Bo Wen, Fei Zhou, Weiwei Li, Youwen Liu, Han Zhang. Direct observation of contact resistivity for monolayer TMD based junctions via PL spectroscopy. Nanoscale 2022, 14 (23) , 8260-8270. https://doi.org/10.1039/D2NR01504H
    22. Carino Ferrante, Giorgio Di Battista, Luis E. Parra López, Giovanni Batignani, Etienne Lorchat, Alessandra Virga, Stéphane Berciaud, Tullio Scopigno. Picosecond energy transfer in a transition metal dichalcogenide–graphene heterostructure revealed by transient Raman spectroscopy. Proceedings of the National Academy of Sciences 2022, 119 (15) https://doi.org/10.1073/pnas.2119726119
    23. Lujun Huang, Alex Krasnok, Andrea Alú, Yiling Yu, Dragomir Neshev, Andrey E Miroshnichenko. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Reports on Progress in Physics 2022, 85 (4) , 046401. https://doi.org/10.1088/1361-6633/ac45f9
    24. Jianchen Dang, Mingwei Yang, Xin Xie, Zhen Yang, Danjie Dai, Zhanchun Zuo, Can Wang, Kuijuan Jin, Xiulai Xu. Enhanced Valley Polarization in WS 2 /LaMnO 3 Heterostructure. Small 2022, 18 (10) https://doi.org/10.1002/smll.202106029
    25. Hongzhi Zhou, Yuzhong Chen, Haiming Zhu. Deciphering asymmetric charge transfer at transition metal dichalcogenide–graphene interface by helicity-resolved ultrafast spectroscopy. Science Advances 2021, 7 (34) https://doi.org/10.1126/sciadv.abg2999
    26. Lei Huang, Yongkang Wang, Huanhuan Su, Guohua Hu, Chunyu Deng, Yu Sun, Binfeng Yun, Ruohu Zhang, Yunfei Chen, Fengqiu Wang, Yiping Cui. Manipulating valley-polarized photoluminescence of MoS2 monolayer at off resonance wavelength with a double-resonance strategy. Applied Physics Letters 2021, 119 (3) https://doi.org/10.1063/5.0054332
    27. Abdullah Rasmita, Wei-bo Gao. Opto-valleytronics in the 2D van der Waals heterostructure. Nano Research 2021, 14 (6) , 1901-1911. https://doi.org/10.1007/s12274-020-3036-x
    28. Robin P. Puchert, Felix J. Hofmann, Hermann S. Angerer, Jan Vogelsang, Sebastian Bange, John M. Lupton. Linearly Polarized Electroluminescence from MoS 2 Monolayers Deposited on Metal Nanoparticles: Toward Tunable Room‐Temperature Single‐Photon Sources. Small 2021, 17 (5) https://doi.org/10.1002/smll.202006425
    29. Siwen Zhao, Xiaoxi Li, Baojuan Dong, Huide Wang, Hanwen Wang, Yupeng Zhang, Zheng Han, Han Zhang. Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: status and challenges. Reports on Progress in Physics 2021, 84 (2) , 026401. https://doi.org/10.1088/1361-6633/abdb98
    30. Xuezhi Ma, Nathan Youngblood, Xiaoze Liu, Yan Cheng, Preston Cunha, Kaushik Kudtarkar, Xiaomu Wang, Shoufeng Lan. Engineering photonic environments for two-dimensional materials. Nanophotonics 2021, 10 (3) , 1031-1058. https://doi.org/10.1515/nanoph-2020-0524
    31. Andrew Salij, Roel Tempelaar. Microscopic theory of cavity-confined monolayer semiconductors: Polariton-induced valley relaxation and the prospect of enhancing and controlling valley pseudospin by chiral strong coupling. Physical Review B 2021, 103 (3) https://doi.org/10.1103/PhysRevB.103.035431
    32. Luis Enrique Parra López, Loïc Moczko, Joanna Wolff, Aditya Singh, Etienne Lorchat, Michelangelo Romeo, Takashi Taniguchi, Kenji Watanabe, Stéphane Berciaud. Single- and narrow-line photoluminescence in a boron nitride-supported MoSe 2 /graphene heterostructure. Comptes Rendus. Physique 2021, 22 (S4) , 77-88. https://doi.org/10.5802/crphys.58
    33. Danliang Zhang, Ying Liu, Mai He, Ao Zhang, Shula Chen, Qingjun Tong, Lanyu Huang, Zhiyuan Zhou, Weihao Zheng, Mingxing Chen, Kai Braun, Alfred J. Meixner, Xiao Wang, Anlian Pan. Room temperature near unity spin polarization in 2D Van der Waals heterostructures. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-18307-w
    34. Jonathan Bradford, Mahnaz Shafiei, Jennifer MacLeod, Nunzio Motta. Synthesis and characterization of WS2/graphene/SiC van der Waals heterostructures via WO3−x thin film sulfurization. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-74024-w
    35. Jonas Kiemle, Philipp Zimmermann, Alexander W. Holleitner, Christoph Kastl. Light-field and spin-orbit-driven currents in van der Waals materials. Nanophotonics 2020, 9 (9) , 2693-2708. https://doi.org/10.1515/nanoph-2020-0226
    36. Shinpei Ogawa, Shoichiro Fukushima, Masaaki Shimatani. Graphene Plasmonics in Sensor Applications: A Review. Sensors 2020, 20 (12) , 3563. https://doi.org/10.3390/s20123563
    37. I. Paradisanos, K. M. McCreary, D. Adinehloo, L. Mouchliadis, J. T. Robinson, Hsun-Jen Chuang, A. T. Hanbicki, V. Perebeinos, B. T. Jonker, E. Stratakis, G. Kioseoglou. Prominent room temperature valley polarization in WS2/graphene heterostructures grown by chemical vapor deposition. Applied Physics Letters 2020, 116 (20) https://doi.org/10.1063/5.0002396
    38. Etienne Lorchat, Luis E. Parra López, Cédric Robert, Delphine Lagarde, Guillaume Froehlicher, Takashi Taniguchi, Kenji Watanabe, Xavier Marie, Stéphane Berciaud. Filtering the photoluminescence spectra of atomically thin semiconductors with graphene. Nature Nanotechnology 2020, 15 (4) , 283-288. https://doi.org/10.1038/s41565-020-0644-2
    39. Chunxu Bai, Yanling Yang. Retro-normal reflection and specular Andreev reflection in a transition metal dichalcogenides superconducting heterojunction. Journal of Physics: Condensed Matter 2020, 32 (8) , 085302. https://doi.org/10.1088/1361-648X/ab5560
    40. Chuanshuai Huang, Ning Bu, Y. C. Tao, Zhizhou Yu, Z. X. Gan, J. Wang. Manipulating the anomalous Josephson effect by interface valley-polarized mixing. EPL (Europhysics Letters) 2019, 126 (6) , 67002. https://doi.org/10.1209/0295-5075/126/67002

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect