Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Local CuO Nanowire Growth on Microhotplates: In Situ Electrical Measurements and Gas Sensing Application

View Author Information
Nanoparticles by Design Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha Onna-Son, Okinawa 904-0495, Japan
University of Toulouse, Laboratoire d’Analyses et d’Architecture des Systèmes CNRS-LAAS, 7 Avenue du Colonel Roche, 31031 Toulouse Cedex 4, France
Cite this: ACS Sens. 2016, 1, 5, 503–507
Publication Date (Web):March 24, 2016
https://doi.org/10.1021/acssensors.6b00042
Copyright © 2016 American Chemical Society

    Article Views

    2115

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We report on local CuO nanowire growth on microhotplates combined with in situ measurement of the electrical resistance for well-controlled integration into conductometric gas sensing devices. Discrete current steps were observed during the CuO nanowire synthesis process, which is attributed to individual nanowire connections being formed. The high gas sensitivity of the CuO nanowire devices was confirmed by detection of carbon monoxide CO in the low-ppm-level concentration range. Furthermore, we demonstrate that CuO nanowire growth inside a gas measurement setup allows studies on gas sensor poisoning/deactivation processes. A significant decrease of CO response was found after controlled exposure to humidity, which suggests sensor deactivation by surface hydroxylation. Thus, our approach could be a novel and simple way for revealing new insights in various gas sensor degradation mechanisms in the future and might also be adapted for different metal oxide nanomaterials.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssensors.6b00042.

    • CuO nanowire characterization and gas sensing results (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 69 publications.

    1. Lu Song, Jaewan Ahn, Liangliang Xu, Jong Won Baek, Euichul Shin, Il-Doo Kim. Facile Synthesis of Co3O4/CoMoO4 Heterostructure Nanosheets for Enhanced Acetone Detection. ACS Sensors 2022, 7 (11) , 3540-3550. https://doi.org/10.1021/acssensors.2c01969
    2. Yoshinari Kimura, Hironori Tohmyoh. Copper Oxide Solution Sensor Formed on a Thin Film Having Nanowires for Detecting Ethanol in Water. Langmuir 2022, 38 (38) , 11573-11580. https://doi.org/10.1021/acs.langmuir.2c01160
    3. Rutuja Bhusari, Jean-Sébastien Thomann, Jérôme Guillot, Renaud Leturcq. Oxygen Adsorption and Desorption Kinetics in CuO Nanowire Bundle Networks: Implications for MOx-Based Gas Sensors. ACS Applied Nano Materials 2022, 5 (8) , 10248-10257. https://doi.org/10.1021/acsanm.2c01245
    4. Jiangyang Liu, Hao Zeng, Guozhu Zhang, Wenjun Li, Kazuki Nagashima, Tsunaki Takahashi, Takuro Hosomi, Wataru Tanaka, Masaki Kanai, Takeshi Yanagida. Edge-Topological Regulation for in Situ Fabrication of Bridging Nanosensors. Nano Letters 2022, 22 (6) , 2569-2577. https://doi.org/10.1021/acs.nanolett.1c04600
    5. Jei-Li Hou, Ting-Jen Hsueh. Temperature-Dependent n-Type and p-Type Sensing Behaviors of CuO Nanosheets/MEMS to NO2 Gas. ACS Applied Electronic Materials 2021, 3 (11) , 4817-4823. https://doi.org/10.1021/acsaelm.1c00684
    6. Joshua M. Ziegler, Ilektra Andoni, Eric J. Choi, Lu Fang, Heriberto Flores-Zuleta, Nicholas J. Humphrey, Dong-Hwan Kim, Jihoon Shin, Hyunho Youn, Reginald M. Penner. Sensors Based Upon Nanowires, Nanotubes, and Nanoribbons: 2016–2020. Analytical Chemistry 2021, 93 (1) , 124-166. https://doi.org/10.1021/acs.analchem.0c04476
    7. Oleg Lupan, Nicolai Ababii, Abhishek Kumar Mishra, Ole Gronenberg, Alexander Vahl, Ulrich Schürmann, Viola Duppel, Helge Krüger, Lee Chow, Lorenz Kienle, Franz Faupel, Rainer Adelung, Nora H. de Leeuw, Sandra Hansen. Single CuO/Cu2O/Cu Microwire Covered by a Nanowire Network as a Gas Sensor for the Detection of Battery Hazards. ACS Applied Materials & Interfaces 2020, 12 (37) , 42248-42263. https://doi.org/10.1021/acsami.0c09879
    8. Zakaria Ziadi, Alexander J. Porkovich, Pawan Kumar, Abheek Datta, Eric Danielson, Vidyadhar Singh, Toshio Sasaki, Mukhles Sowwan. Electronic Metal–Support Interactions at the Catalytic Interfaces of CuO Nanowires Decorated with Pt Nanoparticles for Methanol Oxidation and CO Sensing. ACS Applied Nano Materials 2020, 3 (8) , 8257-8267. https://doi.org/10.1021/acsanm.0c01685
    9. Bala Ismail Adamu, Attia Falak, Yi Tian, Xinghua Tan, Xiangmin Meng, Peipei Chen, Hanfu Wang, Weiguo Chu. p–p Heterojunction Sensors of p-Cu3Mo2O9 Micro/Nanorods Vertically Grown on p-CuO Layers for Room-Temperature Ultrasensitive and Fast Recoverable Detection of NO2. ACS Applied Materials & Interfaces 2020, 12 (7) , 8411-8421. https://doi.org/10.1021/acsami.9b19971
    10. Pavel Hozák, Mykhailo Vorokhta, Ivan Khalakhan, Kateřina Jarkovská, Jana Cibulková, Přemysl Fitl, Jan Vlček, Jan Fara, David Tomeček, Michal Novotný, Maryna Vorokhta, Jan Lančok, Iva Matolínová, Martin Vrňata. New Insight into the Gas-Sensing Properties of CuOx Nanowires by Near-Ambient Pressure XPS. The Journal of Physical Chemistry C 2019, 123 (49) , 29739-29749. https://doi.org/10.1021/acs.jpcc.9b09124
    11. Alexander Porkovich, Zakaria Ziadi, Pawan Kumar, Joseph Kioseoglou, Nan Jian, Lin Weng, Stephan Steinhauer, Jerome Vernieres, Panagiotis Grammatikopoulos, Mukhles Sowwan. In Situ Observation of Metal to Metal Oxide Progression: A Study of Charge Transfer Phenomenon at Ru–CuO Interfaces. ACS Nano 2019, 13 (11) , 12425-12437. https://doi.org/10.1021/acsnano.9b06224
    12. Qiang Zhu, Hao Wang, Jun Yang, Changsheng Xie, Dawen Zeng, Ni Zhao. Red Phosphorus: An Elementary Semiconductor for Room-Temperature NO2 Gas Sensing. ACS Sensors 2018, 3 (12) , 2629-2636. https://doi.org/10.1021/acssensors.8b01041
    13. Richard E. Palmer, Rongsheng Cai, Jerome Vernieres. Synthesis without Solvents: The Cluster (Nanoparticle) Beam Route to Catalysts and Sensors. Accounts of Chemical Research 2018, 51 (9) , 2296-2304. https://doi.org/10.1021/acs.accounts.8b00287
    14. Yao Su, Gang Li, Zheng Guo, Yong-Yu Li, Yi-Xiang Li, Xing-Jiu Huang, Jin-Huai Liu. Cation-Exchange Synthesis of Cu2Se Nanobelts and Thermal Conversion to Porous CuO Nanobelts with Highly Selective Sensing toward H2S. ACS Applied Nano Materials 2018, 1 (1) , 245-253. https://doi.org/10.1021/acsanm.7b00106
    15. Stephan Steinhauer, Junlei Zhao, Vidyadhar Singh, Theodore Pavloudis, Joseph Kioseoglou, Kai Nordlund, Flyura Djurabekova, Panagiotis Grammatikopoulos, and Mukhles Sowwan . Thermal Oxidation of Size-Selected Pd Nanoparticles Supported on CuO Nanowires: The Role of the CuO–Pd Interface. Chemistry of Materials 2017, 29 (14) , 6153-6160. https://doi.org/10.1021/acs.chemmater.7b02242
    16. Christoph O. Blattmann, Andreas T. Güntner, and Sotiris E. Pratsinis . In Situ Monitoring of the Deposition of Flame-Made Chemoresistive Gas-Sensing Films. ACS Applied Materials & Interfaces 2017, 9 (28) , 23926-23933. https://doi.org/10.1021/acsami.7b04530
    17. Yanlin Zhang, Zheng Zhang, Guoliang Lv, Yu Zhang, Jintao Chen, Yuanyuan Luo, Guotao Duan. Ultrafast-response H2S MEMS gas sensor based on double phase In2O3 monolayer particle film. Sensors and Actuators B: Chemical 2024, 412 , 135787. https://doi.org/10.1016/j.snb.2024.135787
    18. Jei-Li Hou, Yi-Ting Lin, Ting-Jen Hsueh. Employing Thermal Oxidation and Through-Silicon Via Technologies in CuO-Based Sensors for Room-Temperature NO 2 Detection. Journal of The Electrochemical Society 2024, 171 (5) , 057512. https://doi.org/10.1149/1945-7111/ad4a97
    19. Kuibo Lan, Shuaiyan Liu, Zhi Wang, Lixia Long, Guoxuan Qin. High-performance pyramid-SiNWs biosensor for NH 3 gas detection. Nanotechnology 2024, 35 (10) , 105501. https://doi.org/10.1088/1361-6528/ad12eb
    20. Kuibo Lan, Shuaiyan Liu, Zhi Wang, Junqing Wei, Guoxuan Qin. High-performance olfactory receptor-derived peptide sensor for trimethylamine detection on the pyramid substrate structure. Sensors and Actuators A: Physical 2023, 358 , 114452. https://doi.org/10.1016/j.sna.2023.114452
    21. Mingji Xu, Xi Ran, Ruoli Chen, Maoshen Chen, Ruijuan Qi, Chengqin Dai, Chunhua Luo, Hui Peng, Hechun Lin. Controlled oxidation of Cu particles by H2O2 to form Cu/CuO nanostructure with enhanced gas sensing performance. Applied Surface Science 2023, 618 , 156668. https://doi.org/10.1016/j.apsusc.2023.156668
    22. Ivan Kalinin, Ilya Roslyakov, Dmitry Khmelenin, Kirill Napolskii. Long-Term Operational Stability of Ta/Pt Thin-Film Microheaters: Impact of the Ta Adhesion Layer. Nanomaterials 2023, 13 (1) , 94. https://doi.org/10.3390/nano13010094
    23. Jelena Kosmaca, Juris Katkevics, Jana Andzane, Raitis Sondors, Liga Jasulaneca, Raimonds Meija, Kiryl Niherysh, Yelyzaveta Rublova, Donats Erts. Humidity-dependent electrical performance of CuO nanowire networks studied by electrochemical impedance spectroscopy. Beilstein Journal of Nanotechnology 2023, 14 , 683-691. https://doi.org/10.3762/bjnano.14.54
    24. Yanqiao Ding, Xuezheng Guo, Yong Zhou, Yong He, Zhigang Zang. Copper-based metal oxides for chemiresistive gas sensors. Journal of Materials Chemistry C 2022, 10 (43) , 16218-16246. https://doi.org/10.1039/D2TC03583A
    25. Yao Liu, Jing Liu, Wenbei Yu, Yao Peng, Wei Yan, Yu Li, Jiujun Zhang. Hollow Spherical ZnO with Mesoporous Shell for Highly Enhanced Gas Sensitivity and Selectivity. Chemistry – An Asian Journal 2022, 17 (14) https://doi.org/10.1002/asia.202200324
    26. Andreas T. Güntner, Nicolay J. Pineau, Sotiris E. Pratsinis. Flame-made chemoresistive gas sensors and devices. Progress in Energy and Combustion Science 2022, 90 , 100992. https://doi.org/10.1016/j.pecs.2022.100992
    27. Dongbao Yin, Jie Li, Jianfei Feng, Wenzhe Liu, Zhiheng Yang, Shiyun Li, Mingliang Li, Lidong Li, Xuefeng Guo. Direct mechano-sliding transfer of chemical vapor deposition grown silicon nanowires for nanoscale electronic devices. Journal of Materials Chemistry C 2022, 10 (2) , 469-475. https://doi.org/10.1039/D1TC05092C
    28. Somayeh Sohrabi, Leila Hajshahvaladi, Mostafa Keshavarz Moraveji, Ehsan Sohrabi, Farnaz Heidarpoor. Patterned synthesis of nanowires in microheaters: design and operational aspects. Microfluidics and Nanofluidics 2022, 26 (1) https://doi.org/10.1007/s10404-021-02506-y
    29. Yuanchao Li, Xin Li, Yanling Xu. The sensing mechanism of pristine and transition metals doped Zn 12 O 12 , Sn 12 O 12 and Ni 12 O 12 nanocages towards NH 3 and PH 3 : a DFT study. Journal of Materials Chemistry C 2021, 9 (48) , 17382-17391. https://doi.org/10.1039/D1TC04135E
    30. Bala Ismail Adamu, Peipei Chen, Weiguo Chu. Role of nanostructuring of sensing materials in performance of electrical gas sensors by combining with extra strategies. Nano Express 2021, 2 (4) , 042003. https://doi.org/10.1088/2632-959X/ac3636
    31. Guozhu Zhang, Hao Zeng, Jiangyang Liu, Kazuki Nagashima, Tsunaki Takahashi, Takuro Hosomi, Wataru Tanaka, Takeshi Yanagida. Nanowire-based sensor electronics for chemical and biological applications. The Analyst 2021, 146 (22) , 6684-6725. https://doi.org/10.1039/D1AN01096D
    32. Amir Shariffar, Haider Salman, Tanveer A. Siddique, M. Omar Manasreh. Effects of high-temperature annealing on the performance of copper oxide photodetectors. Applied Physics A 2021, 127 (10) https://doi.org/10.1007/s00339-021-04906-x
    33. Jessica Yazmín Monter Monter-Guzmán, Xiangfeng Chu, Elisabetta Comini, Mauro Epifani, Rodolfo Zanella. How Chemoresistive Sensors Can Learn from Heterogeneous Catalysis. Hints, Issues, and Perspectives. Chemosensors 2021, 9 (8) , 193. https://doi.org/10.3390/chemosensors9080193
    34. Tiantian Dai, Zanhong Deng, Xiaodong Fang, Huadong Lu, Yong He, Junqing Chang, Shimao Wang, Nengwei Zhu, Liang Li, Gang Meng. In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High‐Performance Bifunctional Sensing Applications. Small Methods 2021, 5 (6) https://doi.org/10.1002/smtd.202100202
    35. Xiaoxiang Huang, Ziyi Tang, Zhaopei Tan, Shihao Sheng, Qi Zhao. Hierarchical In2O3 nanostructures for improved formaldehyde: sensing performance. Journal of Materials Science: Materials in Electronics 2021, 32 (9) , 11857-11864. https://doi.org/10.1007/s10854-021-05815-8
    36. Samaneh Shapouri, Payam Rajabi Kalvani, Ali Reza Jahangiri, Seyed Mohammad Elahi. Physical characterization of copper oxide nanowire fabricated via magnetic-field assisted thermal oxidation. Journal of Magnetism and Magnetic Materials 2021, 524 , 167633. https://doi.org/10.1016/j.jmmm.2020.167633
    37. Stephan Steinhauer. Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors 2021, 9 (3) , 51. https://doi.org/10.3390/chemosensors9030051
    38. Hao Zeng, Guozhu Zhang, Kazuki Nagashima, Tsunaki Takahashi, Takuro Hosomi, Takeshi Yanagida. Metal–Oxide Nanowire Molecular Sensors and Their Promises. Chemosensors 2021, 9 (2) , 41. https://doi.org/10.3390/chemosensors9020041
    39. Giorgos Nikoulis, Panagiotis Grammatikopoulos, Stephan Steinhauer, Joseph Kioseoglou. NanoMaterialsCAD: Flexible Software for the Design of Nanostructures. Advanced Theory and Simulations 2021, 4 (1) https://doi.org/10.1002/adts.202000232
    40. Ying Wang, Li Duan, Zhen Deng, Jianhui Liao. Electrically Transduced Gas Sensors Based on Semiconducting Metal Oxide Nanowires. Sensors 2020, 20 (23) , 6781. https://doi.org/10.3390/s20236781
    41. Zheng Tian, Hua Bai, Yahui Li, Wei Liu, Junfang Li, Qinghong Kong, Guangcheng Xi. Gas‐Sensing Activity of Amorphous Copper Oxide Porous Nanosheets. ChemistryOpen 2020, 9 (1) , 80-86. https://doi.org/10.1002/open.201900327
    42. Umesh Fegade. Toxic Gas Sensors and Biosensors. 2020, 49-67. https://doi.org/10.1007/978-3-030-45116-5_3
    43. Alexander James Porkovich, Eric Danielson. Cluster decoration of semiconductor nanostructures toward gas sensors and biosensors. 2020, 215-246. https://doi.org/10.1016/B978-0-08-102515-4.00008-8
    44. D. Briand, J. Courbat. Micromachined semiconductor gas sensors. 2020, 413-464. https://doi.org/10.1016/B978-0-08-102559-8.00013-6
    45. Francisco Hernandez-Ramirez, Albert Romano-Rodriguez, Joan Daniel Prades. Inorganic nanomaterials. 2020, 17-35. https://doi.org/10.1016/B978-0-12-814827-3.00002-5
    46. E. Danielson, V. Dhamodharan, A. Porkovich, P. Kumar, N. Jian, Z. Ziadi, P. Grammatikopoulos, V. A. Sontakke, Y. Yokobayashi, M. Sowwan. Gas-Phase Synthesis for Label-Free Biosensors: Zinc-Oxide Nanowires Functionalized with Gold Nanoparticles. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-53960-2
    47. Zhenhua Tao, Yanwei Li, Bo Zhang, Guang Sun, Min Xiao, Hari Bala, Jianliang Cao, Zhanying Zhang, Yan Wang. Synthesis of urchin-like In2O3 hollow spheres for selective and quantitative detection of formaldehyde. Sensors and Actuators B: Chemical 2019, 298 , 126889. https://doi.org/10.1016/j.snb.2019.126889
    48. Qi Guo, Yanqiong Li, Wen Zeng. Synthesis of Cu2O microspheres with hollow and solid morphologies and their gas sensing properties. Physica E: Low-dimensional Systems and Nanostructures 2019, 114 , 113564. https://doi.org/10.1016/j.physe.2019.113564
    49. Yajie Chen, Haiwen Tan, Xiaoqing Wu, Qimeng Sun, Dagui Wang, Yongqian Wang. Effect of Doping Ce Ions on Morphology and Photocatalytic Activity of CuO Nanostructures. Crystal Research and Technology 2019, 54 (9) https://doi.org/10.1002/crat.201900033
    50. Hasan GÖKTAŞ. Reliable Mircohotplate Design for High temperature Gas Sensing and IR Source. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2019, 9 (3) , 1351-1358. https://doi.org/10.21597/jist.554570
    51. Li-Yuan Zhu, Kaiping Yuan, Jian-Guo Yang, Hong-Ping Ma, Tao Wang, Xin-Ming Ji, Ji-Jun Feng, Anjana Devi, Hong-Liang Lu. Fabrication of heterostructured p-CuO/n-SnO2 core-shell nanowires for enhanced sensitive and selective formaldehyde detection. Sensors and Actuators B: Chemical 2019, 290 , 233-241. https://doi.org/10.1016/j.snb.2019.03.092
    52. Guojian Ren, Zhimeng Li, Weiting Yang, Muhammad Faheem, Jianbo Xing, Xiaoqin Zou, Qinhe Pan, Guangshan Zhu, Yu Du. ZnO@ZIF-8 core-shell microspheres for improved ethanol gas sensing. Sensors and Actuators B: Chemical 2019, 284 , 421-427. https://doi.org/10.1016/j.snb.2018.12.145
    53. S. P. Ghosh, B. Das, K. C. Das, N. Tripathy, G. Bose, T. I. Lee, J. M. Myoung, J. P. Kar. Limited volume heating method: a simple low cost approach to synthesize additive free long nanowires. Journal of Materials Science: Materials in Electronics 2019, 30 (5) , 5065-5073. https://doi.org/10.1007/s10854-019-00804-4
    54. Inug Yoon, Gayoung Eom, Sungwoo Lee, Bo Kyeong Kim, Sang Kyung Kim, Hyunjoo J. Lee. A Capacitive Micromachined Ultrasonic Transducer-Based Resonant Sensor Array for Portable Volatile Organic Compound Detection with Wireless Systems. Sensors 2019, 19 (6) , 1401. https://doi.org/10.3390/s19061401
    55. D.N. Oosthuizen, D.E. Motaung, H.C. Swart. Selective detection of CO at room temperature with CuO nanoplatelets sensor for indoor air quality monitoring manifested by crystallinity. Applied Surface Science 2019, 466 , 545-553. https://doi.org/10.1016/j.apsusc.2018.09.219
    56. Guy Rahamim, Sokhrab B. Aliev, David Zitoun. Inorganic Nanowires for Sensing Applications. 2019, 255-274. https://doi.org/10.1016/B978-0-12-803581-8.11402-X
    57. Tingqiang Yang, Wei Jin, Yueli Liu, Hang Li, Shuang Yang, Wen Chen. Surface reactions of CH3OH, NH3 and CO on ZnO nanorod arrays film: DFT investigation for gas sensing selectivity mechanism. Applied Surface Science 2018, 457 , 975-980. https://doi.org/10.1016/j.apsusc.2018.07.011
    58. Ariadne C. Catto, Tomas Fiorido, Érica L.S. Souza, Waldir Avansi, Juan Andres, Khalifa Aguir, Elson Longo, Laécio S. Cavalcante, Luís F. da Silva. Improving the ozone gas-sensing properties of CuWO4 nanoparticles. Journal of Alloys and Compounds 2018, 748 , 411-417. https://doi.org/10.1016/j.jallcom.2018.03.104
    59. Andreas T. Güntner, Sebastian Abegg, Karsten Wegner, Sotiris E. Pratsinis. Zeolite membranes for highly selective formaldehyde sensors. Sensors and Actuators B: Chemical 2018, 257 , 916-923. https://doi.org/10.1016/j.snb.2017.11.035
    60. Boris M. Smirnov. Metal nanostructures: from clusters to nanocatalysis and sensors. Uspekhi Fizicheskih Nauk 2017, 187 (12) , 1329-1364. https://doi.org/10.3367/UFNr.2017.02.038073
    61. Ahmad Umar, A.A. Alshahrani, H. Algarni, Rajesh Kumar. CuO nanosheets as potential scaffolds for gas sensing applications. Sensors and Actuators B: Chemical 2017, 250 , 24-31. https://doi.org/10.1016/j.snb.2017.04.062
    62. Chu Manh Hung, Dang Thi Thanh Le, Nguyen Van Hieu. On-chip growth of semiconductor metal oxide nanowires for gas sensors: A review. Journal of Science: Advanced Materials and Devices 2017, 2 (3) , 263-285. https://doi.org/10.1016/j.jsamd.2017.07.009
    63. Vinay Sharma, Shaikh M. Mobin. Cytocompatible peroxidase mimic CuO:graphene nanosphere composite as colorimetric dual sensor for hydrogen peroxide and cholesterol with its logic gate implementation. Sensors and Actuators B: Chemical 2017, 240 , 338-348. https://doi.org/10.1016/j.snb.2016.08.169
    64. Jerome Vernieres, Stephan Steinhauer, Junlei Zhao, Audrey Chapelle, Philippe Menini, Nicolas Dufour, Rosa E. Diaz, Kai Nordlund, Flyura Djurabekova, Panagiotis Grammatikopoulos, Mukhles Sowwan. Gas Phase Synthesis of Multifunctional Fe‐Based Nanocubes. Advanced Functional Materials 2017, 27 (11) https://doi.org/10.1002/adfm.201605328
    65. S. Steinhauer, Z. Wang, Z. Zhou, J. Krainer, A. Köck, K. Nordlund, F. Djurabekova, P. Grammatikopoulos, M. Sowwan. Probing electron beam effects with chemoresistive nanosensors during in situ environmental transmission electron microscopy. Applied Physics Letters 2017, 110 (9) https://doi.org/10.1063/1.4977711
    66. Yongjun Bae, Peter V. Pikhitsa, Hyesung Cho, Mansoo Choi. Multifurcation Assembly of Charged Aerosols and Its Application to 3D Structured Gas Sensors. Advanced Materials 2017, 29 (2) https://doi.org/10.1002/adma.201604159
    67. Shun Mao, Jingbo Chang, Haihui Pu, Ganhua Lu, Qiyuan He, Hua Zhang, Junhong Chen. Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chemical Society Reviews 2017, 46 (22) , 6872-6904. https://doi.org/10.1039/C6CS00827E
    68. Ahamad Salea, Rat Prathumwan, Jedsada Junpha, Kittitat Subannajui. Metal oxide semiconductor 3D printing: preparation of copper( ii ) oxide by fused deposition modelling for multi-functional semiconducting applications. Journal of Materials Chemistry C 2017, 5 (19) , 4614-4620. https://doi.org/10.1039/C7TC00990A
    69. Hyung-Sik Woo, Chan Na, Jong-Heun Lee. Design of Highly Selective Gas Sensors via Physicochemical Modification of Oxide Nanowires: Overview. Sensors 2016, 16 (9) , 1531. https://doi.org/10.3390/s16091531