Evolving a Generalist Biosensor for Bicyclic MonoterpenesClick to copy article linkArticle link copied!
- Simon d’Oelsnitz*Simon d’Oelsnitz*Email: [email protected]Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United StatesMore by Simon d’Oelsnitz
- Vylan NguyenVylan NguyenFreshman Research Initiative, University of Texas at Austin, Austin, Texas 78712, United StatesMore by Vylan Nguyen
- Hal S. AlperHal S. AlperMcKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United StatesMore by Hal S. Alper
- Andrew D. Ellington*Andrew D. Ellington*Email: [email protected]Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United StatesMore by Andrew D. Ellington
Abstract

Prokaryotic transcription factors can be repurposed as analytical and synthetic tools for precise chemical measurement and regulation. Monoterpenes encompass a broad chemical family that are commercially valuable as flavors, cosmetics, and fragrances, but have proven difficult to measure, especially in cells. Herein, we develop genetically encoded, generalist monoterpene biosensors by using directed evolution to expand the effector specificity of the camphor-responsive TetR-family regulator CamR from Pseudomonas putida. Using a novel negative selection coupled with a high-throughput positive screen (Seamless Enrichment of Ligand-Inducible Sensors, SELIS), we evolve CamR biosensors that can recognize four distinct monoterpenes: borneol, fenchol, eucalyptol, and camphene. Different evolutionary trajectories surprisingly yielded common mutations, emphasizing the utility of CamR as a platform for creating generalist biosensors. Systematic promoter optimization driving the reporter increased the system’s signal-to-noise ratio to 150-fold. These sensors can serve as a starting point for the high-throughput screening and dynamic regulation of bicyclic monoterpene production strains.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 35 publications.
- Lindsay C. La Fleur, Zhongtian Zhang, Christian McRoberts-Amador, Jayani Christopher, Megan Reed, Jianting Zheng, T. Ashton Cropp, Gavin J. Williams. Directed Evolution of a Macrolide-Sensing Transcription Factor Biosensor for the Detection of Macrolactone Aglycones via “Effector Walking” and Efflux Pump Deletion. Biochemistry 2025, 64
(7)
, 1560-1571. https://doi.org/10.1021/acs.biochem.4c00795
- Brecht De Paepe, Marjan De Mey. Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors. ACS Synthetic Biology 2025, 14
(1)
, 72-86. https://doi.org/10.1021/acssynbio.4c00689
- Daiana A. Capdevila, Johnma J. Rondón, Katherine A. Edmonds, Joseph S. Rocchio, Matias Villarruel Dujovne, David P. Giedroc. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chemical Reviews 2024, 124
(24)
, 13574-13659. https://doi.org/10.1021/acs.chemrev.4c00264
- Min Li, Zhenya Chen, Yi-Xin Huo. Application Evaluation and Performance-Directed Improvement of the Native and Engineered Biosensors. ACS Sensors 2024, 9
(10)
, 5002-5024. https://doi.org/10.1021/acssensors.4c01072
- Simon d’Oelsnitz, Joshua D. Love, Andrew D. Ellington, David Ross. Ligify: Automated Genome Mining for Ligand-Inducible Transcription Factors. ACS Synthetic Biology 2024, 13
(8)
, 2577-2586. https://doi.org/10.1021/acssynbio.4c00372
- Joshua N. Whitehead, Nicole G. H. Leferink, Linus O. Johannissen, Sam Hay, Nigel S. Scrutton. Decoding Catalysis by Terpene Synthases. ACS Catalysis 2023, 13
(19)
, 12774-12802. https://doi.org/10.1021/acscatal.3c03047
- Yan Wang, Shixin Li, Ning Xue, Lixian Wang, Xuemei Zhang, Longqian Zhao, Yanmei Guo, Yue Zhang, Meng Wang. Modulating Sensitivity of an Erythromycin Biosensor for Precise High-Throughput Screening of Strains with Different Characteristics. ACS Synthetic Biology 2023, 12
(6)
, 1761-1771. https://doi.org/10.1021/acssynbio.3c00059
- Zachary Jansen, Sophia R. Reilly, Matan Lieber-Kotz, Andrew Z. Li, Qiyao Wei, Devon L. Kulhanek, Andrew R. Gilmour, Ross Thyer. Interrogating the Function of Bicistronic Translational Control Elements to Improve Consistency of Gene Expression. ACS Synthetic Biology 2023, 12
(6)
, 1608-1615. https://doi.org/10.1021/acssynbio.3c00093
- Erik K. R. Hanko, Tariq A. Joosab Noor Mahomed, Ruth A. Stoney, Rainer Breitling. TFBMiner: A User-Friendly Command Line Tool for the Rapid Mining of Transcription Factor-Based Biosensors. ACS Synthetic Biology 2023, 12
(5)
, 1497-1507. https://doi.org/10.1021/acssynbio.2c00679
- Simon d’Oelsnitz, Joshua D. Love, Daniel J. Diaz, Andrew D. Ellington. GroovDB: A Database of Ligand-Inducible Transcription Factors. ACS Synthetic Biology 2022, 11
(10)
, 3534-3537. https://doi.org/10.1021/acssynbio.2c00382
- Ankur Sarkar, Tom Foderaro, Levi Kramer, Andrew L. Markley, Jessica Lee, Matthew J. Traylor, Jerome M. Fox. Evolution-Guided Biosynthesis of Terpenoid Inhibitors. ACS Synthetic Biology 2022, 11
(9)
, 3015-3027. https://doi.org/10.1021/acssynbio.2c00188
- Kyeongseok Song, Haekang Ji, Jiwon Lee, Youngdae Yoon. Microbial Transcription Factor-Based Biosensors: Innovations from Design to Applications in Synthetic Biology. Biosensors 2025, 15
(4)
, 221. https://doi.org/10.3390/bios15040221
- Masahiro Tominaga, Kazuma Kawakami, Hiro Ogawa, Tomomi Nakamura, Akihiko Kondo, Jun Ishii. Production of borneol, camphor, and bornyl acetate using engineered Saccharomyces cerevisiae. Metabolic Engineering Communications 2025, 14 , e00259. https://doi.org/10.1016/j.mec.2025.e00259
- Simon d’Oelsnitz, Sarah K. Stofel, Joshua D. Love, Andrew D. Ellington. Snowprint: a predictive tool for genetic biosensor discovery. Communications Biology 2024, 7
(1)
https://doi.org/10.1038/s42003-024-05849-8
- Sebastian Barthel, Luca Brenker, Christoph Diehl, Nitin Bohra, Simone Giaveri, Nicole Paczia, Tobias J Erb. In vitro
transcription-based biosensing of glycolate for prototyping of a complex enzyme cascade. Synthetic Biology 2024, 9
(1)
https://doi.org/10.1093/synbio/ysae013
- Christopher Helenek, Rafał Krzysztoń, Julia Petreczky, Yiming Wan, Mariana Cabral, Damiano Coraci, Gábor Balázsi. Synthetic gene circuit evolution: Insights and opportunities at the mid-scale. Cell Chemical Biology 2024, 31
(8)
, 1447-1459. https://doi.org/10.1016/j.chembiol.2024.05.018
- Chester Pham, Mohamed A. Nasr, Tatiana Skarina, Rosa Di Leo, David H. Kwan, Vincent J. J. Martin, Peter J. Stogios, Radhakrishnan Mahadevan, Alexei Savchenko. Functional and structural characterization of an
I
cl
R
family transcription factor for the development of dicarboxylic acid biosensors. The FEBS Journal 2024, 291
(15)
, 3481-3498. https://doi.org/10.1111/febs.17149
- Nana Ding, Zenan Yuan, Zheng Ma, Yefei Wu, Lianghong Yin. AI-Assisted Rational Design and Activity Prediction of Biological Elements for Optimizing Transcription-Factor-Based Biosensors. Molecules 2024, 29
(15)
, 3512. https://doi.org/10.3390/molecules29153512
- Patarasuda Chaisupa, R. Clay Wright. State-of-the-art in engineering small molecule biosensors and their applications in metabolic engineering. SLAS Technology 2024, 29
(2)
, 100113. https://doi.org/10.1016/j.slast.2023.10.005
- Sheng-Jie Yue, Peng Huang, Wei Wang, Hong-Bo Hu, Xue-Hong Zhang. Development of a whole-cell biosensor for detection of pyocyanin based on a transcriptional regulation factor. Sensors and Actuators B: Chemical 2024, 403 , 135132. https://doi.org/10.1016/j.snb.2023.135132
- Beatrix Péter, Inna Szekacs, Robert Horvath. Label-free biomolecular and cellular methods in small molecule epigallocatechin-gallate research. Heliyon 2024, 10
(3)
, e25603. https://doi.org/10.1016/j.heliyon.2024.e25603
- Shivang Hina-Nilesh Joshi, Christopher Jenkins, David Ulaeto, Thomas E. Gorochowski. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BioDesign Research 2024, 6 , 0037. https://doi.org/10.34133/bdr.0037
- Gita Naseri. A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast. Nature Communications 2023, 14
(1)
https://doi.org/10.1038/s41467-023-37627-1
- Gita Naseri, Hannah Raasch, Emmanuelle Charpentier, Marc Erhardt. A versatile regulatory toolkit of arabinose-inducible artificial transcription factors for Enterobacteriaceae. Communications Biology 2023, 6
(1)
https://doi.org/10.1038/s42003-023-05363-3
- Yang Gu, Xueyao Lu, Tongkang Liu, Yanjin Song, Ellie Sang, Shuran Ding, Long Liu, Feng Xue, Peng Xu. Engineering the oleaginous yeast
Yarrowia lipolytica
to produce nutraceuticals: From metabolic design to industrial applications. Food Bioengineering 2023, 2
(3)
, 187-199. https://doi.org/10.1002/fbe2.12062
- Jianli Zhang, Xinyu Gong, Qi Gan, Yajun Yan. Application of Metabolite-Responsive Biosensors for Plant Natural Products Biosynthesis. Biosensors 2023, 13
(6)
, 633. https://doi.org/10.3390/bios13060633
- Chang Chen, Jiajia Liu, Ge Yao, Shaoheng Bao, Xiukun Wan, Fuli Wang, Kang Wang, Tianyu Song, Penggang Han, Tiangang Liu, Hui Jiang. A novel, genetically encoded whole-cell biosensor for directed evolution of myrcene synthase in Escherichia coli. Biosensors and Bioelectronics 2023, 228 , 115176. https://doi.org/10.1016/j.bios.2023.115176
- Gloria J. Zhou, Fuzhong Zhang. Applications and Tuning Strategies for Transcription Factor-Based Metabolite Biosensors. Biosensors 2023, 13
(4)
, 428. https://doi.org/10.3390/bios13040428
- Wenwen Yu, Xianhao Xu, Ke Jin, Yanfeng Liu, Jianghua Li, Guocheng Du, Xueqin Lv, Long Liu. Genetically encoded biosensors for microbial synthetic biology: From conceptual frameworks to practical applications. Biotechnology Advances 2023, 62 , 108077. https://doi.org/10.1016/j.biotechadv.2022.108077
- Lorenzo Di Rienzo, Mattia Miotto, Edoardo Milanetti, Giancarlo Ruocco. Computational structural-based GPCR optimization for user-defined ligand: Implications for the development of biosensors. Computational and Structural Biotechnology Journal 2023, 21 , 3002-3009. https://doi.org/10.1016/j.csbj.2023.05.004
- Alison C Leonard, Timothy A Whitehead. Design and engineering of genetically encoded protein biosensors for small molecules. Current Opinion in Biotechnology 2022, 78 , 102787. https://doi.org/10.1016/j.copbio.2022.102787
- Jesús Beltrán, Paul J. Steiner, Matthew Bedewitz, Shuang Wei, Francis C. Peterson, Zongbo Li, Brigid E. Hughes, Zachary Hartley, Nicholas R. Robertson, Angélica V. Medina-Cucurella, Zachary T. Baumer, Alison C. Leonard, Sang-Youl Park, Brian F. Volkman, Dmitri A. Nusinow, Wenwan Zhong, Ian Wheeldon, Sean R. Cutler, Timothy A. Whitehead. Rapid biosensor development using plant hormone receptors as reprogrammable scaffolds. Nature Biotechnology 2022, 40
(12)
, 1855-1861. https://doi.org/10.1038/s41587-022-01364-5
- Simon d’Oelsnitz, Wantae Kim, Nathaniel T. Burkholder, Kamyab Javanmardi, Ross Thyer, Yan Zhang, Hal S. Alper, Andrew D. Ellington. Using fungible biosensors to evolve improved alkaloid biosyntheses. Nature Chemical Biology 2022, 18
(9)
, 981-989. https://doi.org/10.1038/s41589-022-01072-w
- Chester Pham, Peter J. Stogios, Alexei Savchenko, Radhakrishnan Mahadevan. Advances in engineering and optimization of transcription factor-based biosensors for plug-and-play small molecule detection. Current Opinion in Biotechnology 2022, 76 , 102753. https://doi.org/10.1016/j.copbio.2022.102753
- Changfan Li, Chang Wang, Jiang Zhu, Feng Xue, Xiaoman Sun, Yang Gu. Advances and prospects of transcription‐factor‐based biosensors in high‐throughput screening for cell factories construction. Food Bioengineering 2022, 1
(2)
, 135-147. https://doi.org/10.1002/fbe2.12019
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.