ACS Publications. Most Trusted. Most Cited. Most Read
Discovery, Production and Modification of Five Novel Lantibiotics Using the Promiscuous Nisin Modification Machinery
My Activity

Figure 1Loading Img
    Research Article

    Discovery, Production and Modification of Five Novel Lantibiotics Using the Promiscuous Nisin Modification Machinery
    Click to copy article linkArticle link copied!

    View Author Information
    University of Groningen, Linnaeusborg, Nijenborgh 7, 9747AG Groningen, The Netherlands
    Other Access OptionsSupporting Information (1)

    ACS Synthetic Biology

    Cite this: ACS Synth. Biol. 2016, 5, 10, 1146–1154
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssynbio.6b00033
    Published June 13, 2016
    Copyright © 2016 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    To find the right conditions to isolate natively expressed antimicrobial peptides from a wide range of different microorganisms can be a challenge. Here, we exploited a heterologous expression system to produce and characterize several novel lantibiotics. We identified 54 novel putative class I and class II lantibiotics after inspecting all publicly available prokaryotic genomes using the in-house developed mining tool BAGEL3. The genes encoding these new lantibiotics fused to the nisin leader peptide gene sequence were synthesized, and the constructs were plugged into the nisin expression and modification system. Using this approach 30 peptides could be expressed, 27 of which were dehydrated by NisBC on at least 1 predicted position. Good antimicrobial activity against several pathogenic bacteria could be demonstrated for 5 novel heterologously modified lantibiotics. Lantibiotics from Corynebacterium lipophiloflavum DSM 44291 and Streptococcus agalactiae ATCC 13813, named flavucin and agalacticin, respectively, were fully modified and displayed high antimicrobial activity. The efficiency of functional expression was significantly enhanced when we made use of the native nisin leader cleavage site, instead of an artificial factor Xa site. Thus, we describe an efficient way for heterologous production of active lantibiotics, facilitating a rapid identification of promising molecules.

    Copyright © 2016 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssynbio.6b00033.

    • MS/MS pattern of the 6 times dehydrated flavucin (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 69 publications.

    1. Yuxin Fu, Eleftheria Pateri, Oscar P. Kuipers. Discovery, Biosynthesis, and Characterization of Rodencin, a Two-Component Lanthipeptide, Harboring d-Amino Acids Introduced by the Unusual Dehydrogenase RodJA. Journal of Natural Products 2024, 87 (10) , 2344-2354. https://doi.org/10.1021/acs.jnatprod.4c00170
    2. Ayoola B. Smith, Jonathan R. Chekan. Targeted Peptide Modification Using an Engineered Bacterial N-Glycosyltransferase. ACS Catalysis 2024, 14 (17) , 12875-12883. https://doi.org/10.1021/acscatal.4c01958
    3. Youran Luo, Shuyun Xu, Autumn M. Frerk, Wilfred A. van der Donk. Facile Method for Determining Lanthipeptide Stereochemistry. Analytical Chemistry 2024, 96 (4) , 1767-1773. https://doi.org/10.1021/acs.analchem.3c04958
    4. Longcheng Guo, Joseph Wambui, Chenhui Wang, Jaap Broos, Roger Stephan, Oscar P. Kuipers. Rombocin, a Short Stable Natural Nisin Variant, Displays Selective Antimicrobial Activity against Listeria monocytogenes and Employs a Dual Mode of Action to Kill Target Bacterial Strains. ACS Synthetic Biology 2024, 13 (1) , 370-383. https://doi.org/10.1021/acssynbio.3c00612
    5. Guannan Zhong, Zong-Jie Wang, Fu Yan, Youming Zhang, Liujie Huo. Recent Advances in Discovery, Bioengineering, and Bioactivity-Evaluation of Ribosomally Synthesized and Post-translationally Modified Peptides. ACS Bio & Med Chem Au 2023, 3 (1) , 1-31. https://doi.org/10.1021/acsbiomedchemau.2c00062
    6. Patricia Arias-Orozco, Maartje Inklaar, Judith Lanooij, Rubén Cebrián, Oscar P. Kuipers. Functional Expression and Characterization of the Highly Promiscuous Lanthipeptide Synthetase SyncM, Enabling the Production of Lanthipeptides with a Broad Range of Ring Topologies. ACS Synthetic Biology 2021, 10 (10) , 2579-2591. https://doi.org/10.1021/acssynbio.1c00224
    7. Xinghong Zhao, Yanli Xu, Jakob H. Viel, Oscar P. Kuipers. Semisynthetic Macrocyclic Lipo-lanthipeptides Display Antimicrobial Activity Against Bacterial Pathogens. ACS Synthetic Biology 2021, 10 (8) , 1980-1991. https://doi.org/10.1021/acssynbio.1c00161
    8. Xinghong Zhao, Oscar P. Kuipers. Nisin- and Ripcin-Derived Hybrid Lanthipeptides Display Selective Antimicrobial Activity against Staphylococcus aureus. ACS Synthetic Biology 2021, 10 (7) , 1703-1714. https://doi.org/10.1021/acssynbio.1c00080
    9. Ian R. Bothwell, Tânia Caetano, Raymond Sarksian, Sónia Mendo, Wilfred A. van der Donk. Structural Analysis of Class I Lanthipeptides from Pedobacter lusitanus NL19 Reveals an Unusual Ring Pattern. ACS Chemical Biology 2021, 16 (6) , 1019-1029. https://doi.org/10.1021/acschembio.1c00106
    10. Amanda Y. van Tilburg, Auke J. van Heel, Jörg Stülke, Niels A. W. de Kok, Anne-Stéphanie Rueff, Oscar P. Kuipers. MiniBacillus PG10 as a Convenient and Effective Production Host for Lantibiotics. ACS Synthetic Biology 2020, 9 (7) , 1833-1842. https://doi.org/10.1021/acssynbio.0c00194
    11. Imran R. Rahman, Jeella Z. Acedo, Xiaoran Roger Liu, Lingyang Zhu, Justine Arrington, Michael L. Gross, Wilfred A. van der Donk. Substrate Recognition by the Class II Lanthipeptide Synthetase HalM2. ACS Chemical Biology 2020, 15 (6) , 1473-1486. https://doi.org/10.1021/acschembio.0c00127
    12. Xinghong Zhao, Rubén Cebrián, Yuxin Fu, Rick Rink, Tjibbe Bosma, Gert N. Moll, Oscar P. Kuipers. High-Throughput Screening for Substrate Specificity-Adapted Mutants of the Nisin Dehydratase NisB. ACS Synthetic Biology 2020, 9 (6) , 1468-1478. https://doi.org/10.1021/acssynbio.0c00130
    13. Hyunbin Lee, Mingyu Choi, Jung-Un Park, Heejin Roh, Seokhee Kim. Genome Mining Reveals High Topological Diversity of ω-Ester-Containing Peptides and Divergent Evolution of ATP-Grasp Macrocyclases. Journal of the American Chemical Society 2020, 142 (6) , 3013-3023. https://doi.org/10.1021/jacs.9b12076
    14. Lindsay M. Repka, Kenton J. Hetrick, See Hyun Chee, Wilfred A. van der Donk. Characterization of Leader Peptide Binding During Catalysis by the Nisin Dehydratase NisB. Journal of the American Chemical Society 2018, 140 (12) , 4200-4203. https://doi.org/10.1021/jacs.7b13506
    15. Lindsay M. Repka, Jonathan R. Chekan, Satish K. Nair, and Wilfred A. van der Donk . Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chemical Reviews 2017, 117 (8) , 5457-5520. https://doi.org/10.1021/acs.chemrev.6b00591
    16. Thushinari Joseph, Leif Smith. Approach advancements for engineering novel peptide analogs of existing lantibiotics: where are we today?. Expert Opinion on Drug Discovery 2025, 20 (1) , 17-30. https://doi.org/10.1080/17460441.2024.2441351
    17. Lin Yuan, Shengbo Wu, Kairen Tian, Shengli Wang, Hao Wu, Jianjun Qiao. Nisin-relevant antimicrobial peptides: synthesis strategies and applications. Food & Function 2024, 15 (19) , 9662-9677. https://doi.org/10.1039/D3FO05619H
    18. Longcheng Guo, Joseph Wambui, Chenhui Wang, Francis Muchaamba, Maria Victoria Fernandez-Cantos, Jaap Broos, Taurai Tasara, Oscar P. Kuipers, Roger Stephan, . Cesin, a short natural variant of nisin, displays potent antimicrobial activity against major pathogens despite lacking two C-terminal macrocycles. Microbiology Spectrum 2023, 11 (5) https://doi.org/10.1128/spectrum.05319-22
    19. Rosa Fernández-Fernández, Ahmed M. A. Elsherbini, Carmen Lozano, Agustí Martínez, María de Toro, Myriam Zarazaga, Andreas Peschel, Bernhard Krismer, Carmen Torres. Genomic Analysis of Bacteriocin-Producing Staphylococci: High Prevalence of Lanthipeptides and the Micrococcin P1 Biosynthetic Gene Clusters. Probiotics and Antimicrobial Proteins 2023, 399 https://doi.org/10.1007/s12602-023-10119-w
    20. Mateusz Musiejuk, Paweł Kafarski. Engineering of Nisin as a Means for Improvement of Its Pharmacological Properties: A Review. Pharmaceuticals 2023, 16 (8) , 1058. https://doi.org/10.3390/ph16081058
    21. Yuxin Fu, Lu Zhou, Oscar P. Kuipers. Discovery, biosynthesis, and characterization of a lanthipeptide from Bacillus subtilis EH11 with a unique lanthionine ring pattern. Cell Reports Physical Science 2023, 4 (8) , 101524. https://doi.org/10.1016/j.xcrp.2023.101524
    22. Yuxin Fu, Yanli Xu, Fleur Ruijne, Oscar P Kuipers. Engineering lanthipeptides by introducing a large variety of RiPP modifications to obtain new-to-nature bioactive peptides. FEMS Microbiology Reviews 2023, 47 (3) https://doi.org/10.1093/femsre/fuad017
    23. Des Field, Miguel Fernandez de Ullivarri, R Paul Ross, Colin Hill. After a century of nisin research - where are we now?. FEMS Microbiology Reviews 2023, 47 (3) https://doi.org/10.1093/femsre/fuad023
    24. Saswati Biswas, . Synthesis of a Novel Lantibiotic Using Mutacin II Biosynthesis Apparatus. Microbiology Spectrum 2023, 11 (1) https://doi.org/10.1128/spectrum.03030-22
    25. C. Vivien Knospe, Michael Kamel, Olivia Spitz, Astrid Hoeppner, Stefanie Galle, Jens Reiners, Alexej Kedrov, Sander H. J. Smits, Lutz Schmitt. The structure of MadC from Clostridium maddingley reveals new insights into class I lanthipeptide cyclases. Frontiers in Microbiology 2023, 13 https://doi.org/10.3389/fmicb.2022.1057217
    26. Venkata Giridhar Poosarla, Nagaveni Shivshetty, Sanjay Nagarajan, Gobinath Rajagopalan. Development of recombinant lantibiotics and their potent uses. 2023, 65-83. https://doi.org/10.1016/B978-0-323-99141-4.00021-7
    27. Dominik Weixler, Max Berghoff, Kirill V. Ovchinnikov, Sebastian Reich, Oliver Goldbeck, Gerd M. Seibold, Christoph Wittmann, Nadav S. Bar, Bernhard J. Eikmanns, Dzung B. Diep, Christian U. Riedel. Recombinant production of the lantibiotic nisin using Corynebacterium glutamicum in a two-step process. Microbial Cell Factories 2022, 21 (1) https://doi.org/10.1186/s12934-022-01739-y
    28. Jessie Malit, Hiu Leung, Pei-Yuan Qian. Targeted Large-Scale Genome Mining and Candidate Prioritization for Natural Product Discovery. Marine Drugs 2022, 20 (6) , 398. https://doi.org/10.3390/md20060398
    29. Katherine D. Bauman, Keelie S. Butler, Bradley S. Moore, Jonathan R. Chekan. Genome mining methods to discover bioactive natural products. Natural Product Reports 2021, 38 (11) , 2100-2129. https://doi.org/10.1039/D1NP00032B
    30. J.N. O’Sullivan, P.M. O’Connor, M.C. Rea, D. Field, C. Hill, R.P. Ross. Nisin variants from Streptococcus and Staphylococcus successfully express in NZ9800. Journal of Applied Microbiology 2021, 131 (5) , 2223-2234. https://doi.org/10.1111/jam.15107
    31. Wenwei Lu, Zhangming Pei, Mengning Zang, Yuan-kun Lee, Jianxin Zhao, Wei Chen, Hongchao Wang, Hao Zhang. Comparative Genomic Analysis of Bifidobacterium bifidum Strains Isolated from Different Niches. Genes 2021, 12 (10) , 1504. https://doi.org/10.3390/genes12101504
    32. Julia Gottstein, Hans Klose, C. Vivien Knospe, Jens Reiners, Sander H. Smits, Lutz Schmitt. Lantibiotika — hoffnungsvolle Alternative gegen Antibiotikaresistenz?. BIOspektrum 2021, 27 (5) , 551-553. https://doi.org/10.1007/s12268-021-1621-5
    33. Caiyun Li, Khorshed Alam, Yiming Zhao, Jinfang Hao, Qing Yang, Youming Zhang, Ruijuan Li, Aiying Li. Mining and Biosynthesis of Bioactive Lanthipeptides From Microorganisms. Frontiers in Bioengineering and Biotechnology 2021, 9 https://doi.org/10.3389/fbioe.2021.692466
    34. Marcel Lagedroste, Sander H.J. Smits, Lutz Schmitt. Importance of the leader peptide sequence on the lanthipeptide secretion level. The FEBS Journal 2021, 288 (14) , 4348-4363. https://doi.org/10.1111/febs.15724
    35. Verena Vogel, Barbara Spellerberg. Bacteriocin Production by Beta-Hemolytic Streptococci. Pathogens 2021, 10 (7) , 867. https://doi.org/10.3390/pathogens10070867
    36. Chunyu Wu, Wilfred A van der Donk. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products. Current Opinion in Biotechnology 2021, 69 , 221-231. https://doi.org/10.1016/j.copbio.2020.12.022
    37. Yuxin Fu, Ate H. Jaarsma, Oscar P. Kuipers. Antiviral activities and applications of ribosomally synthesized and post-translationally modified peptides (RiPPs). Cellular and Molecular Life Sciences 2021, 78 (8) , 3921-3940. https://doi.org/10.1007/s00018-021-03759-0
    38. Tung Le, Wilfred A. van der Donk. Mechanisms and Evolution of Diversity-Generating RiPP Biosynthesis. Trends in Chemistry 2021, 3 (4) , 266-278. https://doi.org/10.1016/j.trechm.2021.01.003
    39. Lin Zhang, Jiachao Zhang, Yunxie Wei, Wei Hu, Guoyin Liu, Hongqiu Zeng, Haitao Shi. Microbiome‐wide association studies reveal correlations between the structure and metabolism of the rhizosphere microbiome and disease resistance in cassava. Plant Biotechnology Journal 2021, 19 (4) , 689-701. https://doi.org/10.1111/pbi.13495
    40. Manuel Montalbán-López, Thomas A. Scott, Sangeetha Ramesh, Imran R. Rahman, Auke J. van Heel, Jakob H. Viel, Vahe Bandarian, Elke Dittmann, Olga Genilloud, Yuki Goto, María José Grande Burgos, Colin Hill, Seokhee Kim, Jesko Koehnke, John A. Latham, A. James Link, Beatriz Martínez, Satish K. Nair, Yvain Nicolet, Sylvie Rebuffat, Hans-Georg Sahl, Dipti Sareen, Eric W. Schmidt, Lutz Schmitt, Konstantin Severinov, Roderich D. Süssmuth, Andrew W. Truman, Huan Wang, Jing-Ke Weng, Gilles P. van Wezel, Qi Zhang, Jin Zhong, Jörn Piel, Douglas A. Mitchell, Oscar P. Kuipers, Wilfred A. van der Donk. New developments in RiPP discovery, enzymology and engineering. Natural Product Reports 2021, 38 (1) , 130-239. https://doi.org/10.1039/D0NP00027B
    41. Jerrine Joseph, Bhaskaran Abirami, Kaari Manigundan, Venugupal Gopikrishnan, Manikkam Radhakrishnan. Antimicrobial peptides from Actinobacteria: Current status and future prospects. 2021, 205-231. https://doi.org/10.1016/B978-0-12-820084-1.00009-0
    42. Jingqi Chen, Auke J. van Heel, Oscar P. Kuipers, . Subcellular Localization and Assembly Process of the Nisin Biosynthesis Machinery in Lactococcus lactis. mBio 2020, 11 (6) https://doi.org/10.1128/mBio.02825-20
    43. Sander H.J. Smits, Lutz Schmitt, Konstantinos Beis. Self‐immunity to antibacterial peptides by ABC transporters. FEBS Letters 2020, 594 (23) , 3920-3942. https://doi.org/10.1002/1873-3468.13953
    44. Marcel Lagedroste, Jens Reiners, Sander H. J. Smits, Lutz Schmitt. Impact of the nisin modification machinery on the transport kinetics of NisT. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-69225-2
    45. Xinghong Zhao, Zhibo Li, Oscar P. Kuipers. Mimicry of a Non-ribosomally Produced Antimicrobial, Brevicidine, by Ribosomal Synthesis and Post-translational Modification. Cell Chemical Biology 2020, 27 (10) , 1262-1271.e4. https://doi.org/10.1016/j.chembiol.2020.07.005
    46. Ran Liu, Yuchen Zhang, Guoqing Zhai, Shuai Fu, Yao Xia, Ben Hu, Xuan Cai, Yan Zhang, Yan Li, Zixin Deng, Tiangang Liu. A Cell‐Free Platform Based on Nisin Biosynthesis for Discovering Novel Lanthipeptides and Guiding their Overproduction In Vivo. Advanced Science 2020, 7 (17) https://doi.org/10.1002/advs.202001616
    47. Abdelahhad Barbour, Philip Wescombe, Leif Smith. Evolution of Lantibiotic Salivaricins: New Weapons to Fight Infectious Diseases. Trends in Microbiology 2020, 28 (7) , 578-593. https://doi.org/10.1016/j.tim.2020.03.001
    48. Xinghong Zhao, Zhongqiong Yin, Eefjan Breukink, Gert N. Moll, Oscar P. Kuipers. An Engineered Double Lipid II Binding Motifs-Containing Lantibiotic Displays Potent and Selective Antimicrobial Activity against Enterococcus faecium. Antimicrobial Agents and Chemotherapy 2020, 64 (6) https://doi.org/10.1128/AAC.02050-19
    49. Stephanie Kate Sandiford. An overview of lantibiotic biosynthetic machinery promiscuity and its impact on antimicrobial discovery. Expert Opinion on Drug Discovery 2020, 15 (3) , 373-382. https://doi.org/10.1080/17460441.2020.1699530
    50. Linna An, Wilfred A. van der Donk. Recent Progress in Lanthipeptide Biosynthesis, Discovery, and Engineering. 2020, 119-165. https://doi.org/10.1016/B978-0-12-409547-2.14625-6
    51. Marcel Lagedroste, Jens Reiners, Sander H. J. Smits, Lutz Schmitt. Systematic characterization of position one variants within the lantibiotic nisin. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-018-37532-4
    52. Rubén Cebrián, Alicia Macia-Valero, Afif P. Jati, Oscar P. Kuipers. Design and Expression of Specific Hybrid Lantibiotics Active Against Pathogenic Clostridium spp.. Frontiers in Microbiology 2019, 10 https://doi.org/10.3389/fmicb.2019.02154
    53. Julia Zaschke-Kriesche, Jens Reiners, Marcel Lagedroste, Sander H.J. Smits. Influence of nisin hinge-region variants on lantibiotic immunity and resistance proteins. Bioorganic & Medicinal Chemistry 2019, 27 (17) , 3947-3953. https://doi.org/10.1016/j.bmc.2019.07.014
    54. Sylviane Furlan, Renata C. Matos, Sean P. Kennedy, Benoît Doublet, Pascale Serror, Lionel Rigottier-Gois, . Fitness Restoration of a Genetically Tractable Enterococcus faecalis V583 Derivative To Study Decoration-Related Phenotypes of the Enterococcal Polysaccharide Antigen. mSphere 2019, 4 (4) https://doi.org/10.1128/mSphere.00310-19
    55. Qian Li, Manuel Montalban-Lopez, Oscar P. Kuipers. Feasability of Introducing a Thioether Ring in Vasopressin by nisBTC Co-expression in Lactococcus lactis. Frontiers in Microbiology 2019, 10 https://doi.org/10.3389/fmicb.2019.01508
    56. Steven Schmitt, Manuel Montalbán-López, David Peterhoff, Jingjing Deng, Ralf Wagner, Martin Held, Oscar P. Kuipers, Sven Panke. Analysis of modular bioengineered antimicrobial lanthipeptides at nanoliter scale. Nature Chemical Biology 2019, 15 (5) , 437-443. https://doi.org/10.1038/s41589-019-0250-5
    57. Takeshi Zendo, Shun Iwatani, Kenji Sonomoto. Functional analysis of biosynthetic genes for bacteriocins. Japanese Journal of Lactic Acid Bacteria 2019, 30 (1) , 18-26. https://doi.org/10.4109/jslab.30.18
    58. Cristina Gherghisan-Filip, Gerhard Saalbach, Diane Hatziioanou, Arjan Narbad, Melinda J. Mayer. Processing and Structure of the Lantibiotic Peptide Nso From the Human Gut Bacterium Blautia obeum A2-162 analysed by Mass Spectrometry. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-28248-6
    59. Graham A Hudson, Douglas A Mitchell. RiPP antibiotics: biosynthesis and engineering potential. Current Opinion in Microbiology 2018, 45 , 61-69. https://doi.org/10.1016/j.mib.2018.02.010
    60. Kevin Egan, Des Field, R. Paul Ross, Paul D. Cotter, Colin Hill. In silico Prediction and Exploration of Potential Bacteriocin Gene Clusters Within the Bacterial Genus Geobacillus. Frontiers in Microbiology 2018, 9 https://doi.org/10.3389/fmicb.2018.02116
    61. Rawana N. Alkhalili, Björn Canbäck. Identification of Putative Novel Class-I Lanthipeptides in Firmicutes: A Combinatorial In Silico Analysis Approach Performed on Genome Sequenced Bacteria and a Close Inspection of Z-Geobacillin Lanthipeptide Biosynthesis Gene Cluster of the Thermophilic Geobacillus sp. Strain ZGt-1. International Journal of Molecular Sciences 2018, 19 (9) , 2650. https://doi.org/10.3390/ijms19092650
    62. Auke J van Heel, Anne de Jong, Chunxu Song, Jakob H Viel, Jan Kok, Oscar P Kuipers. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Research 2018, 46 (W1) , W278-W281. https://doi.org/10.1093/nar/gky383
    63. Maike Bartholomae, Tobias Baumann, Jessica H. Nickling, David Peterhoff, Ralf Wagner, Nediljko Budisa, Oscar P. Kuipers. Expanding the Genetic Code of Lactococcus lactis and Escherichia coli to Incorporate Non-canonical Amino Acids for Production of Modified Lantibiotics. Frontiers in Microbiology 2018, 9 https://doi.org/10.3389/fmicb.2018.00657
    64. Manuel Montalbán-López, Jingjing Deng, Auke J. van Heel, Oscar P. Kuipers. Specificity and Application of the Lantibiotic Protease NisP. Frontiers in Microbiology 2018, 9 https://doi.org/10.3389/fmicb.2018.00160
    65. Mengxin Geng, Leif Smith. Improving the attrition rate of Lanthipeptide discovery for commercial applications. Expert Opinion on Drug Discovery 2018, 13 (2) , 155-167. https://doi.org/10.1080/17460441.2018.1410137
    66. Vittorio Tracanna, Anne de Jong, Marnix H. Medema, Oscar P. Kuipers. Mining prokaryotes for antimicrobial compounds: from diversity to function. FEMS Microbiology Reviews 2017, 41 (3) , 417-429. https://doi.org/10.1093/femsre/fux014
    67. Elvis Legala Ongey, Hüseyin Yassi, Stephan Pflugmacher, Peter Neubauer. Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies. Biotechnology Letters 2017, 39 (4) , 473-482. https://doi.org/10.1007/s10529-016-2279-9
    68. Tobias Baumann, Jessica H. Nickling, Maike Bartholomae, Andrius Buivydas, Oscar P. Kuipers, Nediljko Budisa. Prospects of In vivo Incorporation of Non-canonical Amino Acids for the Chemical Diversification of Antimicrobial Peptides. Frontiers in Microbiology 2017, 8 https://doi.org/10.3389/fmicb.2017.00124
    69. Manuel Montalbán-López, Auke J. van Heel, Oscar P. Kuipers, . Employing the promiscuity of lantibiotic biosynthetic machineries to produce novel antimicrobials. FEMS Microbiology Reviews 2017, 41 (1) , 5-18. https://doi.org/10.1093/femsre/fuw034

    ACS Synthetic Biology

    Cite this: ACS Synth. Biol. 2016, 5, 10, 1146–1154
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acssynbio.6b00033
    Published June 13, 2016
    Copyright © 2016 American Chemical Society

    Article Views

    1844

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.