ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEPREVResearch ArticleNEXT

Circumventing the Mechanochemical Origins of Strength Loss in the Synthesis of Hierarchical Carbon Fibers

View Author Information
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, United States 02139
*E-mail: [email protected]. Phone: +1 (617) 324-3400.
Cite this: ACS Appl. Mater. Interfaces 2013, 5, 11, 4892–4903
Publication Date (Web):April 24, 2013
https://doi.org/10.1021/am4006385
Copyright © 2013 American Chemical Society

    Article Views

    1502

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Hierarchical carbon fibers (CFs) sheathed with radial arrays of carbon nanotubes (CNTs) are promising candidates for improving the intra- and interlaminar properties of advanced fiber-reinforced composites (e.g., graphite/epoxy) and for high-surface-area electrodes for battery and supercapacitor architectures. While CVD growth of CNTs on CFs has been previously shown to improve the apparent shear strength between fibers and polymer matrices (up to 60%), this has to date been achieved only at the expense of significant reductions in tensile strength (∼30–50%) and stiffness (∼10–20%) of the underlying fiber. Here we demonstrate two approaches for growing aligned and unaligned CNTs on CFs that enable preservation of fiber strength and stiffness. We observe that CVD-induced reduction of fiber strength and stiffness is primarily attributable to mechanochemical reorganization of the underlying fiber when heated untensioned above ∼550 °C in both hydrocarbon-containing and inert atmospheres. We show that tensioning fibers to ≥12% of tensile strength during CVD enables aligned CNT growth while simultaneously preserving fiber strength and stiffness even at growth temperatures >700 °C. We also show that CNT growth employing CO2/acetylene at 480 °C without tensioning—below the identified critical strength-loss temperature—preserves fiber strength. These results highlight previously unidentified mechanisms underlying synthesis of hierarchical CFs and demonstrate scalable, facile methods for doing so.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Detailed experimental procedures, engineering diagrams for single-fiber processing apparatus used in this work, and tabular data of single-fiber tensile tests performed. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 63 publications.

    1. Anastasios Karakassides, Abhijit Ganguly, Kyriaki Tsirka, Alkiviadis S. Paipetis, Pagona Papakonstantinou. Radially Grown Graphene Nanoflakes on Carbon Fibers as Reinforcing Interface for Polymer Composites. ACS Applied Nano Materials 2020, 3 (3) , 2402-2413. https://doi.org/10.1021/acsanm.9b02536
    2. Guangdong Zhao, Ping Hu, Shanbao Zhou, Guiqing Chen, Yumin An, Yehong Cheng, Jiadong An, Xinghong Zhang, and Wenbo Han . Ordered Silica Nanoparticles Grown on a Three-Dimensional Carbon Fiber Architecture Substrate with Siliconborocarbonitride Ceramic as a Thermal Barrier Coating. ACS Applied Materials & Interfaces 2016, 8 (6) , 4216-4225. https://doi.org/10.1021/acsami.5b12140
    3. Jiajia Sun, Qiang Song, Liyuan Han, Xuemin Yin, Hejun Li. Deep understanding of typical CNT morphology on the microstructure and mechanical properties of 2D carbon/carbon composites. Journal of Materiomics 2024, 10 (2) , 396-407. https://doi.org/10.1016/j.jmat.2023.06.012
    4. Binbin Li, Shenghui Qian, Cong Sun, Min Wang, Xiaohong Zhan. Mechanical properties and wear resistance of Cf / epoxy resin composites with in-situ grown SiC nanowires on carbon fibers. Composite Interfaces 2023, 30 (9) , 923-939. https://doi.org/10.1080/09276440.2023.2179250
    5. Ayesha Kausar, Ishaq Ahmad, M. H. Eisa, Malik Maaza. Graphene Nanocomposites in Space Sector—Fundamentals and Advancements. C 2023, 9 (1) , 29. https://doi.org/10.3390/c9010029
    6. David S. Lashmore, Stephen A. Steiner. Direct CVD Synthesis of Carbon Nanotube Aerogels and Textiles. 2023, 971-986. https://doi.org/10.1007/978-3-030-27322-4_37
    7. Chengjuan Wang, Yanxiang Wang, Haotian Jiang, Hongxue Tan, Dongming Liu. Continuous in-situ growth of carbon nanotubes on carbon fibers at various temperatures for efficient electromagnetic wave absorption. Carbon 2022, 200 , 94-107. https://doi.org/10.1016/j.carbon.2022.08.053
    8. Zhiqiang Yao, Chengguo Wang, Yanxiang Wang, Jianjie Qin, Ziming Ma, Xuanhao Cui, Qifen Wang, Huazhen Wei. Effect of CNTs deposition on carbon fiber followed by amination on the interfacial properties of epoxy composites. Composite Structures 2022, 292 , 115665. https://doi.org/10.1016/j.compstruct.2022.115665
    9. Miao He, Kaushik Joshi, Leonid V. Zhigilei. Computational study of the effect of core–skin structure on the mechanical properties of carbon nanofibers. Journal of Materials Science 2021, 56 (26) , 14598-14610. https://doi.org/10.1007/s10853-021-06221-5
    10. Bowen Cui, Chengguo Wang, Yanxiang Wang, Jianjie Qin, Zhiqiang Yao, Yang Yue, Chengjuan Wang, Yuxia Wang, Qifen Wang, Huazhen Wei. Study on Bimetallic Catalysts for Carbon Nanotube Growth on the Surface of Continuous Carbon Fibres. ECS Journal of Solid State Science and Technology 2021, 10 (9) , 091005. https://doi.org/10.1149/2162-8777/ac22e4
    11. M. C. C. B. Gomes, L. D. R. Cardoso, D. D. Damm, F. S. Da Silva, E. J. Corat, V. J. Trava-Airoldi. Characterization of interlaminar shear properties of nanostructured unidirectional composites. Composite Interfaces 2021, 28 (2) , 191-208. https://doi.org/10.1080/09276440.2020.1747341
    12. Fabrizio Sarasini, Claudia Sergi, Francesca Sbardella, Jacopo Tirillò. Recent toughening strategies in carbon fiber reinforced composites. 2021, 405-437. https://doi.org/10.1016/B978-0-12-821090-1.00002-8
    13. Ziming Ma, Yanxiang Wang, Jianjie Qin, Zhiqiang Yao, Xuanhao Cui, Bowen Cui, Yang Yue, Yongbo Wang, Chengguo Wang. Growth of carbon nanotubes on the surface of carbon fiber using Fe–Ni bimetallic catalyst at low temperature. Ceramics International 2021, 47 (2) , 1625-1631. https://doi.org/10.1016/j.ceramint.2020.08.278
    14. Jalal Nasser, Lisha Zhang, Henry Sodano. Laser induced graphene interlaminar reinforcement for tough carbon fiber/epoxy composites. Composites Science and Technology 2021, 201 , 108493. https://doi.org/10.1016/j.compscitech.2020.108493
    15. Jianjie Qin, Chengguo Wang, Yanxiang Wang, Shunsheng Su, Zhiqiang Yao, Ziming Ma, Quan Gao, Meijie Yu, Qifen Wang, Huazhen Wei. Preparation carbon nanotube-decorated carbon fibers under low pressure for epoxy-based unidirectional hierarchical composites with enhanced interlaminar shear strength. Polymer Testing 2021, 93 , 106892. https://doi.org/10.1016/j.polymertesting.2020.106892
    16. Yunfu Ou, Carlos González, Juan José Vilatela. Understanding interlaminar toughening of unidirectional CFRP laminates with carbon nanotube veils. Composites Part B: Engineering 2020, 201 , 108372. https://doi.org/10.1016/j.compositesb.2020.108372
    17. Shahid Iqbal, Rafiullah Khan. Effect of brushing & abrading of laminae on the mode I fracture toughness of glass fiber/epoxy composite. Construction and Building Materials 2020, 261 , 120508. https://doi.org/10.1016/j.conbuildmat.2020.120508
    18. Anastasios Karakassides, Angeliki Karakassides, Michaella Konstantinidou, Alkiviadis S. Paipetis, Pagona Papakonstantinou. Enhanced out of Plane Electrical Conductivity in Polymer Composites Induced by CO2 Laser Irradiation of Carbon Fibers. Applied Sciences 2020, 10 (10) , 3561. https://doi.org/10.3390/app10103561
    19. Xinchen Ni, Carolina Furtado, Nathan K. Fritz, Reed Kopp, Pedro P. Camanho, Brian L. Wardle. Interlaminar to intralaminar mode I and II crack bifurcation due to aligned carbon nanotube reinforcement of aerospace-grade advanced composites. Composites Science and Technology 2020, 190 , 108014. https://doi.org/10.1016/j.compscitech.2020.108014
    20. Lizhi Li, Wenbo Liu, Fan Yang, Weicheng Jiao, Lifeng Hao, Rongguo Wang. Interfacial reinforcement of hybrid composite by electrophoretic deposition for vertically aligned carbon nanotubes on carbon fiber. Composites Science and Technology 2020, 187 , 107946. https://doi.org/10.1016/j.compscitech.2019.107946
    21. Richard Li, Erica F. Antunes, Andrew H. Liotta, Luiz Acauan, Estelle Kalfon-Cohen, Kehang Cui, Clementine Mitchell, Brian L. Wardle. Sodium-Based Catalysis Of Carbon Nanotubes For Interlaminar Reinforcement Of Unidirectional Hierarchical Laminates. 2020https://doi.org/10.2514/6.2020-0154
    22. Muhammad Lutfi Mat Rodzi, Muhammed Fadzli Ismail, Mulia Minhat. Applicability of Rule of Mixtures to Estimate Effective Properties of Nanocomposite Materials. 2020, 191-205. https://doi.org/10.1007/978-981-15-4756-0_17
    23. Qiang Song, Qingliang Shen, Qiangang Fu, Hejun Li. Selective growth of SiC nanowires in interlaminar matrix for improving in-plane strengths of laminated Carbon/Carbon composites. Journal of Materials Science & Technology 2019, 35 (12) , 2799-2808. https://doi.org/10.1016/j.jmst.2019.07.001
    24. Zhao Sha, Zhaojun Han, Shuying Wu, Fan Zhang, Mohammad S. Islam, Sonya A. Brown, Chun-Hui Wang. Low-temperature plasma assisted growth of vertical graphene for enhancing carbon fibre/epoxy interfacial strength. Composites Science and Technology 2019, 184 , 107867. https://doi.org/10.1016/j.compscitech.2019.107867
    25. Yunfu Ou, Carlos González, Juan José Vilatela. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils. Composites Part A: Applied Science and Manufacturing 2019, 124 , 105477. https://doi.org/10.1016/j.compositesa.2019.105477
    26. William J. Sagues, Ankush Jain, Dylan Brown, Salonika Aggarwal, Antonio Suarez, Matthew Kollman, Seonghyun Park, Dimitris S. Argyropoulos. Are lignin-derived carbon fibers graphitic enough?. Green Chemistry 2019, 21 (16) , 4253-4265. https://doi.org/10.1039/C9GC01806A
    27. Jiajia Sun, Hejun Li, Liyuan Han, Yunyu Li, Yuanyuan Lu, Qiang Song. Compressive residual thermal stress induced crack deflection in carbon nanotube-doped carbon/carbon composites. Ceramics International 2019, 45 (11) , 13988-13998. https://doi.org/10.1016/j.ceramint.2019.04.098
    28. Khaled Tawfik Alali, Jingyuan Liu, Qi Liu, Rumin Li, Kassem Aljebawi, Jun Wang. Grown Carbon Nanotubes on Electrospun Carbon Nanofibers as a 3D Carbon Nanomaterial for High Energy Storage Performance. ChemistrySelect 2019, 4 (19) , 5437-5458. https://doi.org/10.1002/slct.201803828
    29. Richard Li, Clemmie Mitchel, Brian L. Wardle. Unidirectional Hierarchical Laminates with Interlaminar Shear Reinforcement. 2019https://doi.org/10.2514/6.2019-1464
    30. Jianjie Qin, Chengguo Wang, Yanxiang Wang, Ruijiao Lu, Linbao Zheng, Xinghui Wang, Zhiqiang Yao, Quan Gao, Huazhen Wei. Synthesis and growth mechanism of carbon nanotubes growing on carbon fiber surfaces with improved tensile strength. Nanotechnology 2018, 29 (39) , 395602. https://doi.org/10.1088/1361-6528/aad10c
    31. David B. Anthony, XiaoMeng Sui, Israel Kellersztein, Hugo G. De Luca, Edward R. White, H. Daniel Wagner, Emile S. Greenhalgh, Alexander Bismarck, Milo S.P. Shaffer. Continuous carbon nanotube synthesis on charged carbon fibers. Composites Part A: Applied Science and Manufacturing 2018, 112 , 525-538. https://doi.org/10.1016/j.compositesa.2018.05.027
    32. Kyriaki Tsirka, Lazaros Tzounis, Apostolos Avgeropoulos, Marco Liebscher, Viktor Mechtcherine, Alkiviadis S. Paipetis. Optimal synergy between micro and nano scale: Hierarchical all carbon composite fibers for enhanced stiffness, interfacial shear strength and Raman strain sensing. Composites Science and Technology 2018, 165 , 240-249. https://doi.org/10.1016/j.compscitech.2018.07.003
    33. S.A. Lurie, D.B. Volkov-Bogorodskiy, O. Menshykov, Y.О. Solyаev, E.С. Aifantis. Modeling the effective mechanical properties of “fuzzy fiber” composites across scales length. Composites Part B: Engineering 2018, 142 , 24-35. https://doi.org/10.1016/j.compositesb.2017.12.029
    34. Qingliang Shen, Hejun Li, Wei Li, Qiang Song. Realizing the synergy of carbon nanotubes and matrix microstructure for improved flexural behavior of laminated carbon/carbon composites. Journal of Alloys and Compounds 2018, 738 , 49-55. https://doi.org/10.1016/j.jallcom.2017.12.111
    35. Richard Li, Hayden Cornwell, Erica Antunes, Andrew Liotta, Christian Parschau, Brian L. Wardle. Interlaminar Shear Reinforcement of Aerospace Laminates with Radially-aligned Carbon Nanotubes. 2018https://doi.org/10.2514/6.2018-0907
    36. Andrew N. Rider. 6.12 Hierarchical Nanocomposites/Multi-Scale Composites. 2018, 352-379. https://doi.org/10.1016/B978-0-12-803581-8.10016-5
    37. Feng Xu, De-dong Huang, Xusheng Du. Improving the delamination resistance of carbon fiber/epoxy composites by brushing and abrading of the woven fabrics. Construction and Building Materials 2018, 158 , 257-263. https://doi.org/10.1016/j.conbuildmat.2017.10.015
    38. David B Anthony, Hui Qian, Adam J Clancy, Emile S Greenhalgh, Alexander Bismarck, Milo S P Shaffer. Applying a potential difference to minimise damage to carbon fibres during carbon nanotube grafting by chemical vapour deposition. Nanotechnology 2017, 28 (30) , 305602. https://doi.org/10.1088/1361-6528/aa783f
    39. A. Kudo, S. A. Steiner, B. C. Bayer, P. R. Kidambi, S. Hofmann, M. S. Strano, B. L. Wardle. Mechanisms of titania nanoparticle mediated growth of turbostratic carbon nanotubes and nanofibers. Journal of Applied Physics 2017, 122 (1) https://doi.org/10.1063/1.4990291
    40. W. Szmyt, S. Vogel, A. Diaz, M. Holler, J. Gobrecht, M. Calame, C. Dransfeld. Protective effect of ultrathin alumina film against diffusion of iron into carbon fiber during growth of carbon nanotubes for hierarchical composites investigated by ptychographic X-ray computed tomography. Carbon 2017, 115 , 347-362. https://doi.org/10.1016/j.carbon.2016.12.085
    41. Kyriaki Tsirka, Georgios Foteinidis, Konstantinos Dimos, Lazaros Tzounis, Dimitrios Gournis, Alkiviadis S. Paipetis. Production of hierarchical all graphitic structures: A systematic study. Journal of Colloid and Interface Science 2017, 487 , 444-457. https://doi.org/10.1016/j.jcis.2016.10.075
    42. Han Zhang, Emiliano Bilotti, Ton Peijs. Nano-Engineered Hierarchical Carbon Fibres and Their Composites: Preparation, Properties and Multifunctionalities. 2017, 101-116. https://doi.org/10.1007/978-3-319-46120-5_5
    43. Qiang Li, Libo Deng, Jang-Kyo Kim, Yanqiu Q. Zhu, Stuart M. Holmes, Maria Perez-Page, Stephen J. Eichhorn. Growth of Carbon Nanotubes on Electrospun Cellulose Fibers for High Performance Supercapacitors. Journal of The Electrochemical Society 2017, 164 (13) , A3220-A3228. https://doi.org/10.1149/2.1181713jes
    44. T. R. Pozegic, J. V. Anguita, I. Hamerton, K. D. G. I. Jayawardena, J-S. Chen, V. Stolojan, P. Ballocchi, R. Walsh, S. R. P. Silva. Multi-Functional Carbon Fibre Composites using Carbon Nanotubes as an Alternative to Polymer Sizing. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep37334
    45. M Minhat, N Z Mahmud Zuhudi, M H Shamsudin, M D Isa, M K Harun. A generalized self-consistent method for estimating effective shear properties of unidirectional composites comprising cylindrical orthotropic constituents. IOP Conference Series: Materials Science and Engineering 2016, 152 , 012069. https://doi.org/10.1088/1757-899X/152/1/012069
    46. M. Ali Aravand, Oksana Shishkina, Ilya Straumit, Andrew H. Liotta, Sunny S. Wicks, Brian L. Wardle, Stepan V. Lomov, Larissa Gorbatikh. Internal geometry of woven composite laminates with “fuzzy” carbon nanotube grafted fibers. Composites Part A: Applied Science and Manufacturing 2016, 88 , 295-304. https://doi.org/10.1016/j.compositesa.2016.06.010
    47. Vitaly Koissin, Ton Bor, Željko Kotanjac, Leon Lefferts, Laurent Warnet, Remko Akkerman. Carbon Nanofibers Grown on Large Woven Cloths: Morphology and Properties of Growth. C 2016, 2 (3) , 19. https://doi.org/10.3390/c2030019
    48. Wenxin Fan, Yanxiang Wang, Chengguo Wang, Jiqiang Chen, Qifen Wang, Yan Yuan, Fangxu Niu. High efficient preparation of carbon nanotube-grafted carbon fibers with the improved tensile strength. Applied Surface Science 2016, 364 , 539-551. https://doi.org/10.1016/j.apsusc.2015.12.189
    49. Richard Li, Erica F Antunes, Andrew H. Liotta, Christian Parschau, Mark Payne, Brian L. Wardle. Woven Hierarchical Aerospace Composite Laminates with Aligned Carbon Nanotube Bulk Reinforcement. 2016https://doi.org/10.2514/6.2016-0149
    50. Sergey Lurie, Mulia Minhat, Natalia Tuchkova. Estimation of effective dynamic properties of bristled fiber composite materials based on a self-consistent Eshelby method. Journal of Engineering Mathematics 2015, 95 (1) , 7-29. https://doi.org/10.1007/s10665-014-9719-0
    51. A.N. Rider, E. Yeo, J. Gopalakrishna, E.T. Thostenson, N. Brack. Hierarchical composites with high-volume fractions of carbon nanotubes: Influence of plasma surface treatment and thermoplastic nanophase-modified epoxy. Carbon 2015, 94 , 971-981. https://doi.org/10.1016/j.carbon.2015.07.076
    52. Emilie J. Siochi, Joycelyn S. Harrison. Structural nanocomposites for aerospace applications. MRS Bulletin 2015, 40 (10) , 829-835. https://doi.org/10.1557/mrs.2015.228
    53. Richard Li, Noa Lachman, Peter Florin, H. Daniel Wagner, Brian L. Wardle. Hierarchical carbon nanotube carbon fiber unidirectional composites with preserved tensile and interfacial properties. Composites Science and Technology 2015, 117 , 139-145. https://doi.org/10.1016/j.compscitech.2015.04.014
    54. Meisha L. Shofner. Hierarchical Composites Containing Carbon Nanotubes. 2015, 319-356. https://doi.org/10.1007/978-3-319-12868-9_9
    55. R. Cartwright, S. Esconjauregui, D. Hardeman, S. Bhardwaj, R. Weatherup, Y. Guo, L. D’Arsié, B. Bayer, P. Kidambi, S. Hofmann, E. Wright, J. Clarke, D. Oakes, C. Cepek, J. Robertson. Low temperature growth of carbon nanotubes on tetrahedral amorphous carbon using Fe–Cu catalyst. Carbon 2015, 81 , 639-649. https://doi.org/10.1016/j.carbon.2014.10.001
    56. Wenxin Fan, Yanxiang Wang, Jiqiang Chen, Yan Yuan, Aiguo Li, Qifen Wang, Chengguo Wang. Controllable growth of uniform carbon nanotubes/carbon nanofibers on the surface of carbon fibers. RSC Advances 2015, 5 (92) , 75735-75745. https://doi.org/10.1039/C5RA15556H
    57. Lays D. R. Cardoso, Vladimir J. Trava-Airoldi, Fabio S. Silva, Hudson G. Zanin, Erica F. Antunes, Evaldo J. Corat. Control of the Length and Density of Carbon Nanotubes Grown on Carbon Fiber for Composites Reinforcement. MRS Proceedings 2015, 1752 , 77-82. https://doi.org/10.1557/opl.2015.211
    58. Xuezhu Xu, Jian Zhou, Long Jiang, Gilles Lubineau, Scott A. Payne, David Gutschmidt. Lignin-based carbon fibers: Carbon nanotube decoration and superior thermal stability. Carbon 2014, 80 , 91-102. https://doi.org/10.1016/j.carbon.2014.08.042
    59. Kimiyoshi Naito. Tensile Properties and Fracture Behavior of Different Carbon Nanotube-Grafted Polyacrylonitrile-Based Carbon Fibers. Journal of Materials Engineering and Performance 2014, 23 (11) , 3916-3925. https://doi.org/10.1007/s11665-014-1207-1
    60. R. Prabhakaran. Nanocomposites for Aircraft Applications. Journal of Aerospace Sciences and Technologies 2014, , 169-185. https://doi.org/10.61653/joast.v66i3.2014.452
    61. Sunny S. Wicks, Wennie Wang, Marcel R. Williams, Brian L. Wardle. Multi-scale interlaminar fracture mechanisms in woven composite laminates reinforced with aligned carbon nanotubes. Composites Science and Technology 2014, 100 , 128-135. https://doi.org/10.1016/j.compscitech.2014.06.003
    62. S. Lurie, M. Minhat. Application of generalized self-consistent method to predict effective elastic properties of bristled fiber composites. Composites Part B: Engineering 2014, 61 , 26-40. https://doi.org/10.1016/j.compositesb.2014.01.021
    63. Andrea Battisti, Daniel Esqué-de los Ojos, Rudy Ghisleni, Andreas J. Brunner. Single fiber push-out characterization of interfacial properties of hierarchical CNT-carbon fiber composites prepared by electrophoretic deposition. Composites Science and Technology 2014, 95 , 121-127. https://doi.org/10.1016/j.compscitech.2014.02.017

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect