Biomimetic Spiral-Cylindrical Scaffold Based on Hybrid Chitosan/Cellulose/Nano-Hydroxyapatite Membrane for Bone RegenerationClick to copy article linkArticle link copied!
Abstract

Natural bone is a complex material with well-designed architecture. To achieve successful bone integration and regeneration, the constituent and structure of bone-repairing scaffolds need to be functionalized synergistically based on biomimetics. In this study, a hybrid membrane composed of chitosan (CS), sodium carboxymethyl cellulose (CMC), and nano-hydroxyapatite (n-HA) was curled in a concentric manner to generate an anisotropic spiral-cylindrical scaffold, with compositional and structural properties mimicking natural bone. After optimization in terms of morphology, hydrophilicity, swelling and degradation pattern, the osteoblast cells seeded on the membrane of 60 wt% n-HA exhibited the highest cell viability and osteocalcin expression. In vivo osteogenesis assessment revealed that the spiral-cylindrical architecture played a dominant role in bone regeneration and osseointegration. Newly formed bone tissue grew through the longitudinal direction of the cylinder-shaped scaffold bridging both ends of the defect, bone marrow penetrated the entire scaffold and formed a medullary cavity in the center of the spiral cylinder. This study for the first time demonstrates that the spiral-cylindrical scaffold can promote complete infiltration of bone tissues in vivo, leading to successful osteointegration and functional reconstruction of bone defects. It suggests that the biomimetic spiral-cylindrical scaffold could be a promising candidate for bone regeneration applications.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 93 publications.
- Wanderson Barros Costa, Ana F. Félix Farias, Edson Cavalcanti Silva-Filho, Josy A. Osajima, Santiago Medina-Carrasco, Maria Del Mar Orta, Maria G. Fonseca. Polysaccharide Hydroxyapatite (Nano)composites and Their Biomedical Applications: An Overview of Recent Years. ACS Omega 2024, 9
(28)
, 30035-30070. https://doi.org/10.1021/acsomega.4c02170
- Oriol Careta, Aliona Nicolenco, Filippos Perdikos, Andreu Blanquer, Elena Ibañez, Eva Pellicer, Christina Stefani, Borja Sepúlveda, Josep Nogués, Jordi Sort, Carme Nogués. Enhanced Proliferation and Differentiation of Human Osteoblasts by Remotely Controlled Magnetic-Field-Induced Electric Stimulation Using Flexible Substrates. ACS Applied Materials & Interfaces 2023, 15
(50)
, 58054-58066. https://doi.org/10.1021/acsami.3c09428
- Yuwei He, Hongyu Quan, Ping Long, Haibin Ding, Yulu Yang, Weihu Yang, Shiwu Dong, Hong Jiang. Staggered Nanofiber Scaffolds via Electric-Field-Controlled Assembly for Bone Tissue Regeneration. ACS Applied Nano Materials 2022, 5
(5)
, 6327-6339. https://doi.org/10.1021/acsanm.2c00429
- Andreja Dobaj Štiglic, Rupert Kargl, Marco Beaumont, Christine Strauss, Damjan Makuc, Dominik Egger, Janez Plavec, Orlando J. Rojas, Karin Stana Kleinschek, Tamilselvan Mohan. Influence of Charge and Heat on the Mechanical Properties of Scaffolds from Ionic Complexation of Chitosan and Carboxymethyl Cellulose. ACS Biomaterials Science & Engineering 2021, 7
(8)
, 3618-3632. https://doi.org/10.1021/acsbiomaterials.1c00534
- Chengbai Dai, Yang Li, Wenzhen Pan, Guoqiang Wang, Ruqi Huang, Yeyang Bu, Xianjiu Liao, Kaijin Guo, Fenglei Gao. Three-Dimensional High-Porosity Chitosan/Honeycomb Porous Carbon/Hydroxyapatite Scaffold with Enhanced Osteoinductivity for Bone Regeneration. ACS Biomaterials Science & Engineering 2020, 6
(1)
, 575-586. https://doi.org/10.1021/acsbiomaterials.9b01381
- Ying-Jie Zhu, Bing-Qiang Lu. Deformable Biomaterials Based on Ultralong Hydroxyapatite Nanowires. ACS Biomaterials Science & Engineering 2019, 5
(10)
, 4951-4961. https://doi.org/10.1021/acsbiomaterials.9b01183
- Han Wu, Lili Yang, Jun Qian, Deqing Wang, Yongkang Pan, Xuehong Wang, Saha Nabanita, Tingting Tang, Jun Zhao, Jie Wei. Microporous Coatings of PEKK/SN Composites Integration with PEKK Exhibiting Antibacterial and Osteogenic Activity, and Promotion of Osseointegration for Bone Substitutes. ACS Biomaterials Science & Engineering 2019, 5
(3)
, 1290-1301. https://doi.org/10.1021/acsbiomaterials.8b01508
- Mohan Vedhanayagam, Balachandran Unni Nair, Kalarical Janardhanan Sreeram. Collagen-ZnO Scaffolds for Wound Healing Applications: Role of Dendrimer Functionalization and Nanoparticle Morphology. ACS Applied Bio Materials 2018, 1
(6)
, 1942-1958. https://doi.org/10.1021/acsabm.8b00491
- Hongyu Quan, Yuwei He, Jujiang Sun, Weihu Yang, Wei Luo, Ce Dou, Fei Kang, Chunrong Zhao, Jian He, Xiaochao Yang, Shiwu Dong, Hong Jiang. Chemical Self-Assembly of Multifunctional Hydroxyapatite with a Coral-like Nanostructure for Osteoporotic Bone Reconstruction. ACS Applied Materials & Interfaces 2018, 10
(30)
, 25547-25560. https://doi.org/10.1021/acsami.8b09879
- Tuan-Wei Sun, Wei-Lin Yu, Ying-Jie Zhu, Ri-Long Yang, Yue-Qin Shen, Dao-Yun Chen, Yao-Hua He, and Feng Chen . Hydroxyapatite Nanowire@Magnesium Silicate Core–Shell Hierarchical Nanocomposite: Synthesis and Application in Bone Regeneration. ACS Applied Materials & Interfaces 2017, 9
(19)
, 16435-16447. https://doi.org/10.1021/acsami.7b03532
- Artem B. Kutikov, Jordan D. Skelly, David C. Ayers, and Jie Song . Templated Repair of Long Bone Defects in Rats with Bioactive Spiral-Wrapped Electrospun Amphiphilic Polymer/Hydroxyapatite Scaffolds. ACS Applied Materials & Interfaces 2015, 7
(8)
, 4890-4901. https://doi.org/10.1021/am508984y
- Paulomi Ghosh, Manisit Das, Arun Prabhu Rameshbabu, Dipankar Das, Sayanti Datta, Sagar Pal, Asit Baran Panda, and Santanu Dhara . Chitosan Derivatives Cross-Linked with Iodinated 2,5-Dimethoxy-2,5-dihydrofuran for Non-Invasive Imaging. ACS Applied Materials & Interfaces 2014, 6
(20)
, 17926-17936. https://doi.org/10.1021/am504655v
- Yang Hu, Xiaoyu Gu, Yu Yang, Jian Huang, Meng Hu, Weike Chen, Zhen Tong, and Chaoyang Wang . Facile Fabrication of Poly(l-lactic Acid)-Grafted Hydroxyapatite/Poly(lactic-co-glycolic Acid) Scaffolds by Pickering High Internal Phase Emulsion Templates. ACS Applied Materials & Interfaces 2014, 6
(19)
, 17166-17175. https://doi.org/10.1021/am504877h
- R. Gonçalves, J. Serra, A. Reizabal, D.M. Correia, L.C. Fernandes, R. Brito-Pereira, E. Lizundia, C.M. Costa, S. Lanceros-Méndez. Biobased polymers for advanced applications: Towards a sustainable future. Progress in Polymer Science 2025, 162 , 101934. https://doi.org/10.1016/j.progpolymsci.2025.101934
- Nesa Abdian, Hamid Soltani Zangbar, Mohamadreza Etminanfar, Hamed Hamishehkar. 3D chitosan/hydroxyapatite scaffolds containing mesoporous SiO2-HA particles: A new step to healing bone defects. International Journal of Biological Macromolecules 2024, 278 , 135014. https://doi.org/10.1016/j.ijbiomac.2024.135014
- Paweł J. Piszko, Aleksandra Piszko, Sylwia Kiryk, Jan Kiryk, Tomasz Horodniczy, Natalia Struzik, Kamila Wiśniewska, Jacek Matys, Maciej Dobrzyński. Bone Regeneration Capabilities of Scaffolds Containing Chitosan and Nanometric Hydroxyapatite—Systematic Review Based on In Vivo Examinations. Biomimetics 2024, 9
(8)
, 503. https://doi.org/10.3390/biomimetics9080503
- Greeshma Raghuvaran, Brandon M. Nitschke, Courteney T. Roberts, Melissa A. Grunlan, Emily Pentzer. Direct ink writing of porous shape memory polyesters. Materials Advances 2024, 5
(14)
, 5763-5771. https://doi.org/10.1039/D4MA00137K
- Weiwei Wang, Xiaqing Zhou, Haoyu Wang, Gan Zhou, Xiaojun Yu. Fabrication and Evaluation of PCL/PLGA/β-TCP Spiral-Structured Scaffolds for Bone Tissue Engineering. Bioengineering 2024, 11
(7)
, 732. https://doi.org/10.3390/bioengineering11070732
- Wenhui Pei, Yuxin Yu, Peng Wang, Liming Zheng, Kai Lan, Yongcan Jin, Qiang Yong, Caoxing Huang. Research trends of bio-application of major components in lignocellulosic biomass (cellulose, hemicellulose and lignin) in orthopedics fields based on the bibliometric analysis: A review. International Journal of Biological Macromolecules 2024, 267 , 131505. https://doi.org/10.1016/j.ijbiomac.2024.131505
- Elham Shokri, Parastoo Taherafshar, Habib Etemadi, Soleyman Hoseinzadeh. Fabrication of Fouling Resistant PC Membrane by Incorporating Chitosan Grafted on Graphene Oxide Composite for Efficient Arsenate Removal from Water. Journal of Polymers and the Environment 2024, 32
(3)
, 1188-1201. https://doi.org/10.1007/s10924-023-03026-2
- Ganesh Harini, Ramanathan Bharathi, Aravind Sankaranarayanan, Abinaya Shanmugavadivu, Nagarajan Selvamurugan. Nanoceramics-reinforced chitosan scaffolds in bone tissue engineering. Materials Advances 2023, 4
(18)
, 3907-3928. https://doi.org/10.1039/D3MA00422H
- Wanke Cheng, Ying Zhu, Geyuan Jiang, Kaiyue Cao, Suqing Zeng, Wenshuai Chen, Dawei Zhao, Haipeng Yu. Sustainable cellulose and its derivatives for promising biomedical applications. Progress in Materials Science 2023, 138 , 101152. https://doi.org/10.1016/j.pmatsci.2023.101152
- Weiwei Wang, Xiaqing Zhou, Zhuozhuo Yin, Xiaojun Yu. Fabrication and Evaluation of Porous dECM/PCL Scaffolds for Bone Tissue Engineering. Journal of Functional Biomaterials 2023, 14
(7)
, 343. https://doi.org/10.3390/jfb14070343
- Nesa Abdian, Mohamadreza Etminanfar, Seyed Omid Reza Sheykholeslami, Hamed Hamishehkar, Jafar Khalil-Allafi. Preparation and characterization of chitosan/hydroxyapatite scaffolds containing mesoporous SiO2-HA for drug delivery applications. Materials Chemistry and Physics 2023, 301 , 127672. https://doi.org/10.1016/j.matchemphys.2023.127672
- Mahsa Janmohammadi, Zahra Nazemi, Amin Orash Mahmoud Salehi, Amir Seyfoori, Johnson V. John, Mohammad Sadegh Nourbakhsh, Mohsen Akbari. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioactive Materials 2023, 20 , 137-163. https://doi.org/10.1016/j.bioactmat.2022.05.018
- Chirâa El Idrissi El Hassani, Hamza Daoudi, Mounir El Achaby, Zineb Kassab. Biomedical Applications of Chitosan-Based Nanostructured Composite Materials. 2023, 81-107. https://doi.org/10.1007/978-981-19-9646-7_4
- Nancy David. Cellulose in tissue engineering. 2023, 481-500. https://doi.org/10.1016/B978-0-323-98827-8.00007-2
- Morteza Bayareh. Active cell capturing for organ-on-a-chip systems: a review. Biomedical Engineering / Biomedizinische Technik 2022, 67
(6)
, 443-459. https://doi.org/10.1515/bmt-2022-0232
- Yiding Shen, Kai Fang, Yun Xiang, Keyuan Xu, Liang Yu, Jiaquan Chen, Pingping Ma, Kaiyong Cai, Xinkun Shen, Jinsong Liu. Improvement in osteogenesis, vascularization, and corrosion resistance of titanium with silicon-nitride doped micro-arc oxidation coatings. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.1023032
- Wen‐xi Yan, Yin‐chuan Wang, Sheng‐yun Huang, Gui‐yong Xiao, Yu‐peng Lu. Ultralong hydroxyapatite nanofibers/organics composite film for improving its mechanical property: Effect of proportions. Polymer Composites 2022, 43
(8)
, 5534-5543. https://doi.org/10.1002/pc.26862
- E. Shokri, B. Khanghahi, E. Esmizadeh, H. Etemadi. Biopolymer-based adsorptive membrane for simultaneous removal of cationic and anionic heavy metals from water. International Journal of Environmental Science and Technology 2022, 19
(5)
, 4167-4180. https://doi.org/10.1007/s13762-021-03592-9
- Lin Shi, Tao Wang, Lei Yang, Chuntao Chen, Ran Dou, Xiaoli Yang, Bianjing Sun, Baojing Zhou, Lei Zhang, Dongping Sun. Enhanced mechanical properties and biocompatibility on BC/HAp composite through calcium gluconate fortified bacterial. Carbohydrate Polymers 2022, 281 , 119085. https://doi.org/10.1016/j.carbpol.2021.119085
- Bing Xu, Zeyu Luo, Duan Wang, Zeyu Huang, Zongke Zhou, Haoyang Wang. In vitro and in vivo Repair Effects of the NCF-Col-NHA Aerogel Scaffold Loaded With SOST Monoclonal Antibody and SDF-1 in Steroid-Induced Osteonecrosis. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.825231
- V. Karthick, Katsuhiko Ariga. Nanostructured Biocompatible Materials. 2022, 135-151. https://doi.org/10.1039/9781788019613-00135
- Anilkumar Yadav, Sagnik Ghosh, Archana Samanta, Jit Pal, Rajiv K. Srivastava. Emulsion templated scaffolds of poly(ε-caprolactone) – a review. Chemical Communications 2022, 58
(10)
, 1468-1480. https://doi.org/10.1039/D1CC04941K
- Ishita Chakraborty, Sharmila Sajankila Nadumane, Rajib Biswas, Nirmal Mazumder. An Overview of the Application of Chitosan-Based Nanocomposites in Bioimaging. 2022, 189-197. https://doi.org/10.1007/978-981-19-5338-5_8
- S. Sridevi, S. Sutha, L. Kavitha, D. Gopi. Valorization of biowaste derived nanophase yttrium substituted hydroxyapatite/citrate cellulose/ opuntia mucilage biocomposite: A template assisted synthesis for potential biomedical applications. Materials Chemistry and Physics 2021, 273 , 125144. https://doi.org/10.1016/j.matchemphys.2021.125144
- Reshma Jolly, Mohammad Furkan, Aijaz Ahmed Khan, Syed Sayeed Ahmed, Sharique Alam, Mohd Ahmadullah Farooqi, Rizwan Hasan Khan, Mohammad Shakir. Synthesis and characterization of β-cyclodextrin/carboxymethyl chitosan/hydroxyapatite fused with date seed extract nanocomposite scaffolds for regenerative bone tissue engineering. Materials Advances 2021, 2
(17)
, 5723-5736. https://doi.org/10.1039/D1MA00286D
- Selvakumar Murugesan, Thomas Scheibel. Chitosan‐based
nanocomposites for medical applications. Journal of Polymer Science 2021, 59
(15)
, 1610-1642. https://doi.org/10.1002/pol.20210251
- Jingjing Luo, Jiang Zhu, Lijun Wang, Jing Kang, Xin Wang, Jie Xiong. Co-electrospun nano-/microfibrous composite scaffolds with structural and chemical gradients for bone tissue engineering. Materials Science and Engineering: C 2021, 119 , 111622. https://doi.org/10.1016/j.msec.2020.111622
- Nazanin Amiryaghoubi, Nader Noroozi Pesyan, Marziyeh Fathi, Yadollah Omidi. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering. International Journal of Biological Macromolecules 2020, 162 , 1338-1357. https://doi.org/10.1016/j.ijbiomac.2020.06.138
- Mohammad Soheilmoghaddam, Harish Padmanabhan, Justin J. Cooper-White. Biomimetic cues from poly(lactic-
co
-glycolic acid)/hydroxyapatite nano-fibrous scaffolds drive osteogenic commitment in human mesenchymal stem cells in the absence of osteogenic factor supplements. Biomaterials Science 2020, 8
(20)
, 5677-5689. https://doi.org/10.1039/D0BM00946F
- K. Prem Ananth, Binbin Guo, Chen Zhang, Wei Wang, Peng Zhou, Jiaming Bai. Investigation of biphasic calcium phosphate (BCp)/polyvinylpyrrolidone (PVp) /graphene oxide (GO) composite for biomedical implants. Ceramics International 2020, 46
(15)
, 24413-24423. https://doi.org/10.1016/j.ceramint.2020.06.224
- Yingkang Yu, Yong Wang, Weidong Zhang, Huan Wang, Jiaying Li, Liangbin Pan, Fengxuan Han, Bin Li. Biomimetic periosteum-bone substitute composed of preosteoblast-derived matrix and hydrogel for large segmental bone defect repair. Acta Biomaterialia 2020, 113 , 317-327. https://doi.org/10.1016/j.actbio.2020.06.030
- Saleem Ullah, Xin Chen. Fabrication, applications and challenges of natural biomaterials in tissue engineering. Applied Materials Today 2020, 20 , 100656. https://doi.org/10.1016/j.apmt.2020.100656
- André F. Girão, Ângela Semitela, Andreia Leal Pereira, António Completo, Paula A. A. P. Marques. Microfabrication of a biomimetic arcade-like electrospun scaffold for cartilage tissue engineering applications. Journal of Materials Science: Materials in Medicine 2020, 31
(8)
https://doi.org/10.1007/s10856-020-06407-4
- Madalina Oprea, Stefan Ioan Voicu. Recent Advances in Applications of Cellulose Derivatives-Based Composite Membranes with Hydroxyapatite. Materials 2020, 13
(11)
, 2481. https://doi.org/10.3390/ma13112481
- Reshma Jolly, Aijaz Ahmed Khan, Syed Sayeed Ahmed, Sharique Alam, Shadab Kazmi, Mohammad Owais, Mohd Ahmadullah Farooqi, Mohammad Shakir. Bioactive Phoenix dactylifera seeds incorporated chitosan/hydroxyapatite nanoconjugate for prospective bone tissue engineering applications: A bio-synergistic approach. Materials Science and Engineering: C 2020, 109 , 110554. https://doi.org/10.1016/j.msec.2019.110554
- Liuyun Jiang, Lijuan Xu, Bingli Ma, Haojie Ding, Chunyan Tang, Jinghui Wang, Shuo Tang, Shengpei Su. Effect of component and surface structure on poly(l-lactide-co-ɛ- caprolactone) (PLCA)-based composite membrane. Composites Part B: Engineering 2019, 174 , 107031. https://doi.org/10.1016/j.compositesb.2019.107031
- Valarmathi Narayanan, Shanmugam Sumathi. Preparation, characterization and in vitro biological study of silk fiber/methylcellulose composite for bone tissue engineering applications. Polymer Bulletin 2019, 76
(6)
, 2777-2800. https://doi.org/10.1007/s00289-018-2518-4
- Shangsi Chen, Yufei Shi, Xin Zhang, Jun Ma. 3D printed hydroxyapatite composite scaffolds with enhanced mechanical properties. Ceramics International 2019, 45
(8)
, 10991-10996. https://doi.org/10.1016/j.ceramint.2019.02.182
- Maria Francesca Di Filippo, Sofia Amadori, Sonia Casolari, Adriana Bigi, Luisa Stella Dolci, Silvia Panzavolta. Cylindrical Layered Bone Scaffolds with Anisotropic Mechanical Properties as Potential Drug Delivery Systems. Molecules 2019, 24
(10)
, 1931. https://doi.org/10.3390/molecules24101931
- Chen Huang, Samarthya Bhagia, Naijia Hao, Xianzhi Meng, Luna Liang, Qiang Yong, Arthur J. Ragauskas. Biomimetic composite scaffold from an
in situ
hydroxyapatite coating on cellulose nanocrystals. RSC Advances 2019, 9
(10)
, 5786-5793. https://doi.org/10.1039/C8RA09523J
- Hans Merzendorfer, Ephraim Cohen. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. 2019, 541-624. https://doi.org/10.1007/978-3-030-12919-4_14
- Sanjoy Kumar Ghorai, Somnath Maji, Bhuvaneshwaran Subramanian, Tapas Kumar Maiti, Santanu Chattopadhyay. Coining attributes of ultra-low concentration graphene oxide and spermine: An approach for high strength, anti-microbial and osteoconductive nanohybrid scaffold for bone tissue regeneration. Carbon 2019, 141 , 370-389. https://doi.org/10.1016/j.carbon.2018.09.062
- Yifan Dong, Jinning Liang, Yihang Cui, Shan Xu, Naru Zhao. Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique. Carbohydrate Polymers 2018, 197 , 183-193. https://doi.org/10.1016/j.carbpol.2018.05.086
- Alejandro Gomez Sanchez, Evgen Prokhorov, Gabriel Luna-Barcenas, Alma G. Mora-García, Yuriy Kovalenko, Eric M. Rivera-Muñoz, Maria Grazia Raucci, Giovanna Buonocore. Chitosan-hydroxyapatite nanocomposites: Effect of interfacial layer on mechanical and dielectric properties. Materials Chemistry and Physics 2018, 217 , 151-159. https://doi.org/10.1016/j.matchemphys.2018.06.062
- Yiheng Ye, Yichuan Pang, Zeng Zhang, Congcong Wu, Jianfeng Jin, Mingzhen Su, Junle Pan, Yangbo Liu, Lei Chen, Keke Jin. Decellularized Periosteum‐Covered Chitosan Globule Composite for Bone Regeneration in Rabbit Femur Condyle Bone Defects. Macromolecular Bioscience 2018, 18
(9)
https://doi.org/10.1002/mabi.201700424
- Jiajia Chen, Gu Cheng, Rong Liu, Yue Zheng, Mengtian Huang, Yang Yi, Xiaowen Shi, Yumin Du, Hongbing Deng. Enhanced physical and biological properties of silk fibroin nanofibers by layer-by-layer deposition of chitosan and rectorite. Journal of Colloid and Interface Science 2018, 523 , 208-216. https://doi.org/10.1016/j.jcis.2018.03.093
- Tuan‐Wei Sun, Wei‐Lin Yu, Ying‐Jie Zhu, Feng Chen, Yong‐Gang Zhang, Ying‐Ying Jiang, Yao‐Hua He. Porous Nanocomposite Comprising Ultralong Hydroxyapatite Nanowires Decorated with Zinc‐Containing Nanoparticles and Chitosan: Synthesis and Application in Bone Defect Repair. Chemistry – A European Journal 2018, 24
(35)
, 8809-8821. https://doi.org/10.1002/chem.201800425
- Anwarul Hasan, Batzaya Byambaa, Mahboob Morshed, Mohammad Ibrahim Cheikh, Rana Abdul Shakoor, Tanvir Mustafy, Hany E. Marei. Advances in osteobiologic materials for bone substitutes. Journal of Tissue Engineering and Regenerative Medicine 2018, 12
(6)
, 1448-1468. https://doi.org/10.1002/term.2677
- Priya Vashisth, Jayesh R Bellare. Development of hybrid scaffold with biomimetic 3D architecture for bone regeneration. Nanomedicine: Nanotechnology, Biology and Medicine 2018, 14
(4)
, 1325-1336. https://doi.org/10.1016/j.nano.2018.03.011
- Hua-Mo Yin, Yan-Fei Huang, Yue Ren, Peng Wang, Baisong Zhao, Ji-Hua Li, Jia-Zhuang Xu, Zhong-Ming Li. Toward biomimetic porous poly(ε-caprolactone) scaffolds: Structural evolution and morphological control during solid phase extrusion. Composites Science and Technology 2018, 156 , 192-202. https://doi.org/10.1016/j.compscitech.2018.01.009
- Pei Jiang, Jiabing Ran, Pan Yan, Lingyue Zheng, Xinyu Shen, Hua Tong. Rational design of a high-strength bone scaffold platform based on
in situ
hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase. Journal of Biomaterials Science, Polymer Edition 2018, 29
(2)
, 107-124. https://doi.org/10.1080/09205063.2017.1403149
- Tuan-Wei Sun, Ying-Jie Zhu, Feng Chen. Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair. RSC Advances 2018, 8
(46)
, 26218-26229. https://doi.org/10.1039/C8RA03972K
- Mohammad Shakir, Reshma Jolly, Aijaz Ahmed Khan, Syed Sayeed Ahmed, Sharique Alam, Mohd. Ahmar Rauf, Mohd. Owais, Mohd. Ahmadullah Farooqi. Resol based chitosan/nano-hydroxyapatite nanoensemble for effective bone tissue engineering. Carbohydrate Polymers 2018, 179 , 317-327. https://doi.org/10.1016/j.carbpol.2017.09.103
- Bipin Gaihre, Suren Uswatta, Ambalangodage Jayasuriya. Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. Journal of Functional Biomaterials 2017, 8
(4)
, 49. https://doi.org/10.3390/jfb8040049
- Vijay H. Ingole, Kamal Hany Hussein, Anil A. Kashale, Kalyani Ghule, Tomaž Vuherer, Vanja Kokol, Jia-Yaw Chang, Yong-Chien Ling, Aruna Vinchurkar, Hom N. Dhakal, Anil V. Ghule. Ultrasound-assisted green economic synthesis of hydroxyapatite nanoparticles using eggshell biowaste and study of mechanical and biological properties for orthopedic applications. Journal of Biomedical Materials Research Part A 2017, 105
(11)
, 2935-2947. https://doi.org/10.1002/jbm.a.36146
- Marek Tomco, Eva Petrovova, Maria Giretova, Viera Almasiova, Katarina Holovska, Viera Cigankova, Andrej Jenca, Janka Jencova, Andrej Jenca, Martin Boldizar, Kosa Balazs, Lubomir Medvecky. In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model. Anatomical Science International 2017, 92
(4)
, 569-580. https://doi.org/10.1007/s12565-016-0362-x
- Yimin Hu, Jingdi Chen, Tiantang Fan, Yujue Zhang, Yao Zhao, Xuetao Shi, Qiqing Zhang. Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering. Colloids and Surfaces B: Biointerfaces 2017, 157 , 93-100. https://doi.org/10.1016/j.colsurfb.2017.05.059
- Andy H. Choi, Besim Ben-Nissan. Calcium Phosphate Nanocomposites for Biomedical and Dental Applications: Recent Developments. 2017, 423-450. https://doi.org/10.1002/9781119441632.ch163
- Shuping Peng, Pei Feng, Ping Wu, Wei Huang, Youwen Yang, Wang Guo, Chengde Gao, Cijun Shuai. Graphene oxide as an interface phase between polyetheretherketone and hydroxyapatite for tissue engineering scaffolds. Scientific Reports 2017, 7
(1)
https://doi.org/10.1038/srep46604
- Tuan‐Wei Sun, Ying‐Jie Zhu, Feng Chen. Highly Flexible Multifunctional Biopaper Comprising Chitosan Reinforced by Ultralong Hydroxyapatite Nanowires. Chemistry – A European Journal 2017, 23
(16)
, 3850-3862. https://doi.org/10.1002/chem.201605165
- G.P. Chaves Filho, S.M.G. Moreira. Perspectives of bioinspired materials in regenerative medicine. 2017, 139-175. https://doi.org/10.1016/B978-0-08-100741-9.00006-1
- Burhan Ates, Suleyman Koytepe, Sevgi Balcioglu, Ahmet Ulu, Canbolat Gurses. Biomedical applications of hybrid polymer composite materials. 2017, 343-408. https://doi.org/10.1016/B978-0-08-100785-3.00012-7
- Mehdi Razavi, Kai Zhu, Yu S. Zhang. Naturally based and biologically derived nanobiomaterials. 2017, 61-86. https://doi.org/10.1016/B978-0-08-100963-5.00004-5
- Yi-Xuan Chen, Rong Zhu, Qin-Fei Ke, You-Shui Gao, Chang-Qing Zhang, Ya-Ping Guo. MgAl layered double hydroxide/chitosan porous scaffolds loaded with PFTα to promote bone regeneration. Nanoscale 2017, 9
(20)
, 6765-6776. https://doi.org/10.1039/C7NR00601B
- José Carlos Viana Ribeiro, Rodrigo Silveira Vieira, Iracema Matos Melo, Vilana Maria Adriano Araújo, Vilma Lima. Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. The Scientific World Journal 2017, 2017 , 1-25. https://doi.org/10.1155/2017/8639898
- Huan Yi, Fawad Ur Rehman, Chunqiu Zhao, Bin Liu, Nongyue He. Recent advances in nano scaffolds for bone repair. Bone Research 2016, 4
(1)
https://doi.org/10.1038/boneres.2016.50
- S. Deepthi, J. Venkatesan, Se-Kwon Kim, Joel D. Bumgardner, R. Jayakumar. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules 2016, 93 , 1338-1353. https://doi.org/10.1016/j.ijbiomac.2016.03.041
- Tiantang Fan, Jingdi Chen, Panpan Pan, Yujue Zhang, Yimin Hu, Xiaocui Liu, Xuetao Shi, Qiqing Zhang. Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering. Colloids and Surfaces B: Biointerfaces 2016, 147 , 217-223. https://doi.org/10.1016/j.colsurfb.2016.08.006
- Thangavelu Muthukumar, Adithan Aravinthan, Judith Sharmila, Nam Soo Kim, Jong-Hoon Kim. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydrate Polymers 2016, 152 , 566-574. https://doi.org/10.1016/j.carbpol.2016.07.003
- B.N. Singh, N.N. Panda, R. Mund, K. Pramanik. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydrate Polymers 2016, 151 , 335-347. https://doi.org/10.1016/j.carbpol.2016.05.088
- Vijay H. Ingole, Kamal H. Hussein, Anil A. Kashale, Ketan P. Gattu, Swapnali S. Dhanayat, Aruna Vinchurkar, Jia‐Yaw Chang, Anil V. Ghule. Invitro Bioactivity and Osteogenic Activity Study of Solid State Synthesized Nano‐Hydroxyapatite using Recycled Eggshell Bio–waste. ChemistrySelect 2016, 1
(13)
, 3901-3908. https://doi.org/10.1002/slct.201601092
- Cheng Wang, Yu Wang, Haoye Meng, Xin Wang, Yun Zhu, Kun Yu, Xueling Yuan, Aiyuan Wang, Quanyi Guo, Jiang Peng, Shibi Lu. Research progress regarding nanohydroxyapatite and its composite biomaterials in bone defect repair. International Journal of Polymeric Materials and Polymeric Biomaterials 2016, 65
(12)
, 601-610. https://doi.org/10.1080/00914037.2016.1149849
- M. Nivedhitha Sundaram, S. Deepthi, R. Jayakumar. Chitosan-Gelatin Composite Scaffolds in Bone Tissue Engineering. 2016, 99-121. https://doi.org/10.1007/978-81-322-2511-9_5
- Jingdi Chen, Panpan Pan, Yujue Zhang, Shengnan Zhong, Qiqing Zhang. Preparation of chitosan/nano hydroxyapatite organic–inorganic hybrid microspheres for bone repair. Colloids and Surfaces B: Biointerfaces 2015, 134 , 401-407. https://doi.org/10.1016/j.colsurfb.2015.06.072
- Steven M. Romanelli, Karl R. Fath, Aruna P. Phekoo, Grant A. Knoll, Ipsita A. Banerjee. Layer-by-layer assembly of peptide based bioorganic–inorganic hybrid scaffolds and their interactions with osteoblastic MC3T3-E1 cells. Materials Science and Engineering: C 2015, 51 , 316-328. https://doi.org/10.1016/j.msec.2015.03.018
- Beauty Das, Pronobesh Chattopadhyay, Somnath Maji, Aadesh Upadhyay, Manashi Das Purkayastha, Charu lata Mohanta, Tapas Kumar Maity, Niranjan Karak. Bio-functionalized MWCNT/hyperbranched polyurethane bionanocomposite for bone regeneration. Biomedical Materials 2015, 10
(2)
, 025011. https://doi.org/10.1088/1748-6041/10/2/025011
- Chen Chen, Hong Li, Jianfeng Pan, Zuoqin Yan, Zhenjun Yao, Wenshuai Fan, Changan Guo. Biodegradable composite scaffolds of bioactive glass/chitosan/carboxymethyl cellulose for hemostatic and bone regeneration. Biotechnology Letters 2015, 37
(2)
, 457-465. https://doi.org/10.1007/s10529-014-1697-9
- Yue Sa, Man Wang, Hongbing Deng, Yining Wang, Tao Jiang. Beneficial effects of biomimetic nano-sized hydroxyapatite/antibiotic gentamicin enriched chitosan–glycerophosphate hydrogel on the performance of injectable polymethylmethacrylate. RSC Advances 2015, 5
(110)
, 91082-91092. https://doi.org/10.1039/C5RA15915F
- Yang Hu, Huichang Gao, Zhengshan Du, Yixiao Liu, Yu Yang, Chaoyang Wang. Pickering high internal phase emulsion-based hydroxyapatite–poly(ε-caprolactone) nanocomposite scaffolds. Journal of Materials Chemistry B 2015, 3
(18)
, 3848-3857. https://doi.org/10.1039/C5TB00093A
- Xiyu Li, Haifeng Zeng, Li Teng, Haifeng Chen. Comparative investigation on the crystal structure and cell behavior of rare-earth doped fluorescent apatite nanocrystals. Materials Letters 2014, 125 , 78-81. https://doi.org/10.1016/j.matlet.2014.03.151
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.