ACS Publications. Most Trusted. Most Cited. Most Read
Biomimetic Spiral-Cylindrical Scaffold Based on Hybrid Chitosan/Cellulose/Nano-Hydroxyapatite Membrane for Bone Regeneration
My Activity

Figure 1Loading Img
    Research Article

    Biomimetic Spiral-Cylindrical Scaffold Based on Hybrid Chitosan/Cellulose/Nano-Hydroxyapatite Membrane for Bone Regeneration
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, P. R. China
    Research Center for Nano Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, P. R. China
    *E-mail: [email protected]. Tel: +86 28 85412847. Fax: +86 28 85417273.
    *E-mail: [email protected]. Tel.: +86 23 68772482. Fax: +86 23 68772482.
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2013, 5, 22, 12036–12044
    Click to copy citationCitation copied!
    https://doi.org/10.1021/am4038432
    Published November 5, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Natural bone is a complex material with well-designed architecture. To achieve successful bone integration and regeneration, the constituent and structure of bone-repairing scaffolds need to be functionalized synergistically based on biomimetics. In this study, a hybrid membrane composed of chitosan (CS), sodium carboxymethyl cellulose (CMC), and nano-hydroxyapatite (n-HA) was curled in a concentric manner to generate an anisotropic spiral-cylindrical scaffold, with compositional and structural properties mimicking natural bone. After optimization in terms of morphology, hydrophilicity, swelling and degradation pattern, the osteoblast cells seeded on the membrane of 60 wt% n-HA exhibited the highest cell viability and osteocalcin expression. In vivo osteogenesis assessment revealed that the spiral-cylindrical architecture played a dominant role in bone regeneration and osseointegration. Newly formed bone tissue grew through the longitudinal direction of the cylinder-shaped scaffold bridging both ends of the defect, bone marrow penetrated the entire scaffold and formed a medullary cavity in the center of the spiral cylinder. This study for the first time demonstrates that the spiral-cylindrical scaffold can promote complete infiltration of bone tissues in vivo, leading to successful osteointegration and functional reconstruction of bone defects. It suggests that the biomimetic spiral-cylindrical scaffold could be a promising candidate for bone regeneration applications.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental details and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 93 publications.

    1. Wanderson Barros Costa, Ana F. Félix Farias, Edson Cavalcanti Silva-Filho, Josy A. Osajima, Santiago Medina-Carrasco, Maria Del Mar Orta, Maria G. Fonseca. Polysaccharide Hydroxyapatite (Nano)composites and Their Biomedical Applications: An Overview of Recent Years. ACS Omega 2024, 9 (28) , 30035-30070. https://doi.org/10.1021/acsomega.4c02170
    2. Oriol Careta, Aliona Nicolenco, Filippos Perdikos, Andreu Blanquer, Elena Ibañez, Eva Pellicer, Christina Stefani, Borja Sepúlveda, Josep Nogués, Jordi Sort, Carme Nogués. Enhanced Proliferation and Differentiation of Human Osteoblasts by Remotely Controlled Magnetic-Field-Induced Electric Stimulation Using Flexible Substrates. ACS Applied Materials & Interfaces 2023, 15 (50) , 58054-58066. https://doi.org/10.1021/acsami.3c09428
    3. Yuwei He, Hongyu Quan, Ping Long, Haibin Ding, Yulu Yang, Weihu Yang, Shiwu Dong, Hong Jiang. Staggered Nanofiber Scaffolds via Electric-Field-Controlled Assembly for Bone Tissue Regeneration. ACS Applied Nano Materials 2022, 5 (5) , 6327-6339. https://doi.org/10.1021/acsanm.2c00429
    4. Andreja Dobaj Štiglic, Rupert Kargl, Marco Beaumont, Christine Strauss, Damjan Makuc, Dominik Egger, Janez Plavec, Orlando J. Rojas, Karin Stana Kleinschek, Tamilselvan Mohan. Influence of Charge and Heat on the Mechanical Properties of Scaffolds from Ionic Complexation of Chitosan and Carboxymethyl Cellulose. ACS Biomaterials Science & Engineering 2021, 7 (8) , 3618-3632. https://doi.org/10.1021/acsbiomaterials.1c00534
    5. Chengbai Dai, Yang Li, Wenzhen Pan, Guoqiang Wang, Ruqi Huang, Yeyang Bu, Xianjiu Liao, Kaijin Guo, Fenglei Gao. Three-Dimensional High-Porosity Chitosan/Honeycomb Porous Carbon/Hydroxyapatite Scaffold with Enhanced Osteoinductivity for Bone Regeneration. ACS Biomaterials Science & Engineering 2020, 6 (1) , 575-586. https://doi.org/10.1021/acsbiomaterials.9b01381
    6. Ying-Jie Zhu, Bing-Qiang Lu. Deformable Biomaterials Based on Ultralong Hydroxyapatite Nanowires. ACS Biomaterials Science & Engineering 2019, 5 (10) , 4951-4961. https://doi.org/10.1021/acsbiomaterials.9b01183
    7. Han Wu, Lili Yang, Jun Qian, Deqing Wang, Yongkang Pan, Xuehong Wang, Saha Nabanita, Tingting Tang, Jun Zhao, Jie Wei. Microporous Coatings of PEKK/SN Composites Integration with PEKK Exhibiting Antibacterial and Osteogenic Activity, and Promotion of Osseointegration for Bone Substitutes. ACS Biomaterials Science & Engineering 2019, 5 (3) , 1290-1301. https://doi.org/10.1021/acsbiomaterials.8b01508
    8. Mohan Vedhanayagam, Balachandran Unni Nair, Kalarical Janardhanan Sreeram. Collagen-ZnO Scaffolds for Wound Healing Applications: Role of Dendrimer Functionalization and Nanoparticle Morphology. ACS Applied Bio Materials 2018, 1 (6) , 1942-1958. https://doi.org/10.1021/acsabm.8b00491
    9. Hongyu Quan, Yuwei He, Jujiang Sun, Weihu Yang, Wei Luo, Ce Dou, Fei Kang, Chunrong Zhao, Jian He, Xiaochao Yang, Shiwu Dong, Hong Jiang. Chemical Self-Assembly of Multifunctional Hydroxyapatite with a Coral-like Nanostructure for Osteoporotic Bone Reconstruction. ACS Applied Materials & Interfaces 2018, 10 (30) , 25547-25560. https://doi.org/10.1021/acsami.8b09879
    10. Tuan-Wei Sun, Wei-Lin Yu, Ying-Jie Zhu, Ri-Long Yang, Yue-Qin Shen, Dao-Yun Chen, Yao-Hua He, and Feng Chen . Hydroxyapatite Nanowire@Magnesium Silicate Core–Shell Hierarchical Nanocomposite: Synthesis and Application in Bone Regeneration. ACS Applied Materials & Interfaces 2017, 9 (19) , 16435-16447. https://doi.org/10.1021/acsami.7b03532
    11. Artem B. Kutikov, Jordan D. Skelly, David C. Ayers, and Jie Song . Templated Repair of Long Bone Defects in Rats with Bioactive Spiral-Wrapped Electrospun Amphiphilic Polymer/Hydroxyapatite Scaffolds. ACS Applied Materials & Interfaces 2015, 7 (8) , 4890-4901. https://doi.org/10.1021/am508984y
    12. Paulomi Ghosh, Manisit Das, Arun Prabhu Rameshbabu, Dipankar Das, Sayanti Datta, Sagar Pal, Asit Baran Panda, and Santanu Dhara . Chitosan Derivatives Cross-Linked with Iodinated 2,5-Dimethoxy-2,5-dihydrofuran for Non-Invasive Imaging. ACS Applied Materials & Interfaces 2014, 6 (20) , 17926-17936. https://doi.org/10.1021/am504655v
    13. Yang Hu, Xiaoyu Gu, Yu Yang, Jian Huang, Meng Hu, Weike Chen, Zhen Tong, and Chaoyang Wang . Facile Fabrication of Poly(l-lactic Acid)-Grafted Hydroxyapatite/Poly(lactic-co-glycolic Acid) Scaffolds by Pickering High Internal Phase Emulsion Templates. ACS Applied Materials & Interfaces 2014, 6 (19) , 17166-17175. https://doi.org/10.1021/am504877h
    14. R. Gonçalves, J. Serra, A. Reizabal, D.M. Correia, L.C. Fernandes, R. Brito-Pereira, E. Lizundia, C.M. Costa, S. Lanceros-Méndez. Biobased polymers for advanced applications: Towards a sustainable future. Progress in Polymer Science 2025, 162 , 101934. https://doi.org/10.1016/j.progpolymsci.2025.101934
    15. Nesa Abdian, Hamid Soltani Zangbar, Mohamadreza Etminanfar, Hamed Hamishehkar. 3D chitosan/hydroxyapatite scaffolds containing mesoporous SiO2-HA particles: A new step to healing bone defects. International Journal of Biological Macromolecules 2024, 278 , 135014. https://doi.org/10.1016/j.ijbiomac.2024.135014
    16. Paweł J. Piszko, Aleksandra Piszko, Sylwia Kiryk, Jan Kiryk, Tomasz Horodniczy, Natalia Struzik, Kamila Wiśniewska, Jacek Matys, Maciej Dobrzyński. Bone Regeneration Capabilities of Scaffolds Containing Chitosan and Nanometric Hydroxyapatite—Systematic Review Based on In Vivo Examinations. Biomimetics 2024, 9 (8) , 503. https://doi.org/10.3390/biomimetics9080503
    17. Greeshma Raghuvaran, Brandon M. Nitschke, Courteney T. Roberts, Melissa A. Grunlan, Emily Pentzer. Direct ink writing of porous shape memory polyesters. Materials Advances 2024, 5 (14) , 5763-5771. https://doi.org/10.1039/D4MA00137K
    18. Weiwei Wang, Xiaqing Zhou, Haoyu Wang, Gan Zhou, Xiaojun Yu. Fabrication and Evaluation of PCL/PLGA/β-TCP Spiral-Structured Scaffolds for Bone Tissue Engineering. Bioengineering 2024, 11 (7) , 732. https://doi.org/10.3390/bioengineering11070732
    19. Wenhui Pei, Yuxin Yu, Peng Wang, Liming Zheng, Kai Lan, Yongcan Jin, Qiang Yong, Caoxing Huang. Research trends of bio-application of major components in lignocellulosic biomass (cellulose, hemicellulose and lignin) in orthopedics fields based on the bibliometric analysis: A review. International Journal of Biological Macromolecules 2024, 267 , 131505. https://doi.org/10.1016/j.ijbiomac.2024.131505
    20. Elham Shokri, Parastoo Taherafshar, Habib Etemadi, Soleyman Hoseinzadeh. Fabrication of Fouling Resistant PC Membrane by Incorporating Chitosan Grafted on Graphene Oxide Composite for Efficient Arsenate Removal from Water. Journal of Polymers and the Environment 2024, 32 (3) , 1188-1201. https://doi.org/10.1007/s10924-023-03026-2
    21. Ganesh Harini, Ramanathan Bharathi, Aravind Sankaranarayanan, Abinaya Shanmugavadivu, Nagarajan Selvamurugan. Nanoceramics-reinforced chitosan scaffolds in bone tissue engineering. Materials Advances 2023, 4 (18) , 3907-3928. https://doi.org/10.1039/D3MA00422H
    22. Wanke Cheng, Ying Zhu, Geyuan Jiang, Kaiyue Cao, Suqing Zeng, Wenshuai Chen, Dawei Zhao, Haipeng Yu. Sustainable cellulose and its derivatives for promising biomedical applications. Progress in Materials Science 2023, 138 , 101152. https://doi.org/10.1016/j.pmatsci.2023.101152
    23. Weiwei Wang, Xiaqing Zhou, Zhuozhuo Yin, Xiaojun Yu. Fabrication and Evaluation of Porous dECM/PCL Scaffolds for Bone Tissue Engineering. Journal of Functional Biomaterials 2023, 14 (7) , 343. https://doi.org/10.3390/jfb14070343
    24. Nesa Abdian, Mohamadreza Etminanfar, Seyed Omid Reza Sheykholeslami, Hamed Hamishehkar, Jafar Khalil-Allafi. Preparation and characterization of chitosan/hydroxyapatite scaffolds containing mesoporous SiO2-HA for drug delivery applications. Materials Chemistry and Physics 2023, 301 , 127672. https://doi.org/10.1016/j.matchemphys.2023.127672
    25. Mahsa Janmohammadi, Zahra Nazemi, Amin Orash Mahmoud Salehi, Amir Seyfoori, Johnson V. John, Mohammad Sadegh Nourbakhsh, Mohsen Akbari. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioactive Materials 2023, 20 , 137-163. https://doi.org/10.1016/j.bioactmat.2022.05.018
    26. Chirâa El Idrissi El Hassani, Hamza Daoudi, Mounir El Achaby, Zineb Kassab. Biomedical Applications of Chitosan-Based Nanostructured Composite Materials. 2023, 81-107. https://doi.org/10.1007/978-981-19-9646-7_4
    27. Nancy David. Cellulose in tissue engineering. 2023, 481-500. https://doi.org/10.1016/B978-0-323-98827-8.00007-2
    28. Morteza Bayareh. Active cell capturing for organ-on-a-chip systems: a review. Biomedical Engineering / Biomedizinische Technik 2022, 67 (6) , 443-459. https://doi.org/10.1515/bmt-2022-0232
    29. Yiding Shen, Kai Fang, Yun Xiang, Keyuan Xu, Liang Yu, Jiaquan Chen, Pingping Ma, Kaiyong Cai, Xinkun Shen, Jinsong Liu. Improvement in osteogenesis, vascularization, and corrosion resistance of titanium with silicon-nitride doped micro-arc oxidation coatings. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.1023032
    30. Wen‐xi Yan, Yin‐chuan Wang, Sheng‐yun Huang, Gui‐yong Xiao, Yu‐peng Lu. Ultralong hydroxyapatite nanofibers/organics composite film for improving its mechanical property: Effect of proportions. Polymer Composites 2022, 43 (8) , 5534-5543. https://doi.org/10.1002/pc.26862
    31. E. Shokri, B. Khanghahi, E. Esmizadeh, H. Etemadi. Biopolymer-based adsorptive membrane for simultaneous removal of cationic and anionic heavy metals from water. International Journal of Environmental Science and Technology 2022, 19 (5) , 4167-4180. https://doi.org/10.1007/s13762-021-03592-9
    32. Lin Shi, Tao Wang, Lei Yang, Chuntao Chen, Ran Dou, Xiaoli Yang, Bianjing Sun, Baojing Zhou, Lei Zhang, Dongping Sun. Enhanced mechanical properties and biocompatibility on BC/HAp composite through calcium gluconate fortified bacterial. Carbohydrate Polymers 2022, 281 , 119085. https://doi.org/10.1016/j.carbpol.2021.119085
    33. Bing Xu, Zeyu Luo, Duan Wang, Zeyu Huang, Zongke Zhou, Haoyang Wang. In vitro and in vivo Repair Effects of the NCF-Col-NHA Aerogel Scaffold Loaded With SOST Monoclonal Antibody and SDF-1 in Steroid-Induced Osteonecrosis. Frontiers in Bioengineering and Biotechnology 2022, 10 https://doi.org/10.3389/fbioe.2022.825231
    34. V. Karthick, Katsuhiko Ariga. Nanostructured Biocompatible Materials. 2022, 135-151. https://doi.org/10.1039/9781788019613-00135
    35. Anilkumar Yadav, Sagnik Ghosh, Archana Samanta, Jit Pal, Rajiv K. Srivastava. Emulsion templated scaffolds of poly(ε-caprolactone) – a review. Chemical Communications 2022, 58 (10) , 1468-1480. https://doi.org/10.1039/D1CC04941K
    36. Ishita Chakraborty, Sharmila Sajankila Nadumane, Rajib Biswas, Nirmal Mazumder. An Overview of the Application of Chitosan-Based Nanocomposites in Bioimaging. 2022, 189-197. https://doi.org/10.1007/978-981-19-5338-5_8
    37. S. Sridevi, S. Sutha, L. Kavitha, D. Gopi. Valorization of biowaste derived nanophase yttrium substituted hydroxyapatite/citrate cellulose/ opuntia mucilage biocomposite: A template assisted synthesis for potential biomedical applications. Materials Chemistry and Physics 2021, 273 , 125144. https://doi.org/10.1016/j.matchemphys.2021.125144
    38. Reshma Jolly, Mohammad Furkan, Aijaz Ahmed Khan, Syed Sayeed Ahmed, Sharique Alam, Mohd Ahmadullah Farooqi, Rizwan Hasan Khan, Mohammad Shakir. Synthesis and characterization of β-cyclodextrin/carboxymethyl chitosan/hydroxyapatite fused with date seed extract nanocomposite scaffolds for regenerative bone tissue engineering. Materials Advances 2021, 2 (17) , 5723-5736. https://doi.org/10.1039/D1MA00286D
    39. Selvakumar Murugesan, Thomas Scheibel. Chitosan‐based nanocomposites for medical applications. Journal of Polymer Science 2021, 59 (15) , 1610-1642. https://doi.org/10.1002/pol.20210251
    40. Jingjing Luo, Jiang Zhu, Lijun Wang, Jing Kang, Xin Wang, Jie Xiong. Co-electrospun nano-/microfibrous composite scaffolds with structural and chemical gradients for bone tissue engineering. Materials Science and Engineering: C 2021, 119 , 111622. https://doi.org/10.1016/j.msec.2020.111622
    41. Nazanin Amiryaghoubi, Nader Noroozi Pesyan, Marziyeh Fathi, Yadollah Omidi. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering. International Journal of Biological Macromolecules 2020, 162 , 1338-1357. https://doi.org/10.1016/j.ijbiomac.2020.06.138
    42. Mohammad Soheilmoghaddam, Harish Padmanabhan, Justin J. Cooper-White. Biomimetic cues from poly(lactic- co -glycolic acid)/hydroxyapatite nano-fibrous scaffolds drive osteogenic commitment in human mesenchymal stem cells in the absence of osteogenic factor supplements. Biomaterials Science 2020, 8 (20) , 5677-5689. https://doi.org/10.1039/D0BM00946F
    43. K. Prem Ananth, Binbin Guo, Chen Zhang, Wei Wang, Peng Zhou, Jiaming Bai. Investigation of biphasic calcium phosphate (BCp)/polyvinylpyrrolidone (PVp) /graphene oxide (GO) composite for biomedical implants. Ceramics International 2020, 46 (15) , 24413-24423. https://doi.org/10.1016/j.ceramint.2020.06.224
    44. Yingkang Yu, Yong Wang, Weidong Zhang, Huan Wang, Jiaying Li, Liangbin Pan, Fengxuan Han, Bin Li. Biomimetic periosteum-bone substitute composed of preosteoblast-derived matrix and hydrogel for large segmental bone defect repair. Acta Biomaterialia 2020, 113 , 317-327. https://doi.org/10.1016/j.actbio.2020.06.030
    45. Saleem Ullah, Xin Chen. Fabrication, applications and challenges of natural biomaterials in tissue engineering. Applied Materials Today 2020, 20 , 100656. https://doi.org/10.1016/j.apmt.2020.100656
    46. André F. Girão, Ângela Semitela, Andreia Leal Pereira, António Completo, Paula A. A. P. Marques. Microfabrication of a biomimetic arcade-like electrospun scaffold for cartilage tissue engineering applications. Journal of Materials Science: Materials in Medicine 2020, 31 (8) https://doi.org/10.1007/s10856-020-06407-4
    47. Madalina Oprea, Stefan Ioan Voicu. Recent Advances in Applications of Cellulose Derivatives-Based Composite Membranes with Hydroxyapatite. Materials 2020, 13 (11) , 2481. https://doi.org/10.3390/ma13112481
    48. Reshma Jolly, Aijaz Ahmed Khan, Syed Sayeed Ahmed, Sharique Alam, Shadab Kazmi, Mohammad Owais, Mohd Ahmadullah Farooqi, Mohammad Shakir. Bioactive Phoenix dactylifera seeds incorporated chitosan/hydroxyapatite nanoconjugate for prospective bone tissue engineering applications: A bio-synergistic approach. Materials Science and Engineering: C 2020, 109 , 110554. https://doi.org/10.1016/j.msec.2019.110554
    49. Liuyun Jiang, Lijuan Xu, Bingli Ma, Haojie Ding, Chunyan Tang, Jinghui Wang, Shuo Tang, Shengpei Su. Effect of component and surface structure on poly(l-lactide-co-ɛ- caprolactone) (PLCA)-based composite membrane. Composites Part B: Engineering 2019, 174 , 107031. https://doi.org/10.1016/j.compositesb.2019.107031
    50. Valarmathi Narayanan, Shanmugam Sumathi. Preparation, characterization and in vitro biological study of silk fiber/methylcellulose composite for bone tissue engineering applications. Polymer Bulletin 2019, 76 (6) , 2777-2800. https://doi.org/10.1007/s00289-018-2518-4
    51. Shangsi Chen, Yufei Shi, Xin Zhang, Jun Ma. 3D printed hydroxyapatite composite scaffolds with enhanced mechanical properties. Ceramics International 2019, 45 (8) , 10991-10996. https://doi.org/10.1016/j.ceramint.2019.02.182
    52. Maria Francesca Di Filippo, Sofia Amadori, Sonia Casolari, Adriana Bigi, Luisa Stella Dolci, Silvia Panzavolta. Cylindrical Layered Bone Scaffolds with Anisotropic Mechanical Properties as Potential Drug Delivery Systems. Molecules 2019, 24 (10) , 1931. https://doi.org/10.3390/molecules24101931
    53. Chen Huang, Samarthya Bhagia, Naijia Hao, Xianzhi Meng, Luna Liang, Qiang Yong, Arthur J. Ragauskas. Biomimetic composite scaffold from an in situ hydroxyapatite coating on cellulose nanocrystals. RSC Advances 2019, 9 (10) , 5786-5793. https://doi.org/10.1039/C8RA09523J
    54. Hans Merzendorfer, Ephraim Cohen. Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications. 2019, 541-624. https://doi.org/10.1007/978-3-030-12919-4_14
    55. Sanjoy Kumar Ghorai, Somnath Maji, Bhuvaneshwaran Subramanian, Tapas Kumar Maiti, Santanu Chattopadhyay. Coining attributes of ultra-low concentration graphene oxide and spermine: An approach for high strength, anti-microbial and osteoconductive nanohybrid scaffold for bone tissue regeneration. Carbon 2019, 141 , 370-389. https://doi.org/10.1016/j.carbon.2018.09.062
    56. Yifan Dong, Jinning Liang, Yihang Cui, Shan Xu, Naru Zhao. Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique. Carbohydrate Polymers 2018, 197 , 183-193. https://doi.org/10.1016/j.carbpol.2018.05.086
    57. Alejandro Gomez Sanchez, Evgen Prokhorov, Gabriel Luna-Barcenas, Alma G. Mora-García, Yuriy Kovalenko, Eric M. Rivera-Muñoz, Maria Grazia Raucci, Giovanna Buonocore. Chitosan-hydroxyapatite nanocomposites: Effect of interfacial layer on mechanical and dielectric properties. Materials Chemistry and Physics 2018, 217 , 151-159. https://doi.org/10.1016/j.matchemphys.2018.06.062
    58. Yiheng Ye, Yichuan Pang, Zeng Zhang, Congcong Wu, Jianfeng Jin, Mingzhen Su, Junle Pan, Yangbo Liu, Lei Chen, Keke Jin. Decellularized Periosteum‐Covered Chitosan Globule Composite for Bone Regeneration in Rabbit Femur Condyle Bone Defects. Macromolecular Bioscience 2018, 18 (9) https://doi.org/10.1002/mabi.201700424
    59. Jiajia Chen, Gu Cheng, Rong Liu, Yue Zheng, Mengtian Huang, Yang Yi, Xiaowen Shi, Yumin Du, Hongbing Deng. Enhanced physical and biological properties of silk fibroin nanofibers by layer-by-layer deposition of chitosan and rectorite. Journal of Colloid and Interface Science 2018, 523 , 208-216. https://doi.org/10.1016/j.jcis.2018.03.093
    60. Tuan‐Wei Sun, Wei‐Lin Yu, Ying‐Jie Zhu, Feng Chen, Yong‐Gang Zhang, Ying‐Ying Jiang, Yao‐Hua He. Porous Nanocomposite Comprising Ultralong Hydroxyapatite Nanowires Decorated with Zinc‐Containing Nanoparticles and Chitosan: Synthesis and Application in Bone Defect Repair. Chemistry – A European Journal 2018, 24 (35) , 8809-8821. https://doi.org/10.1002/chem.201800425
    61. Anwarul Hasan, Batzaya Byambaa, Mahboob Morshed, Mohammad Ibrahim Cheikh, Rana Abdul Shakoor, Tanvir Mustafy, Hany E. Marei. Advances in osteobiologic materials for bone substitutes. Journal of Tissue Engineering and Regenerative Medicine 2018, 12 (6) , 1448-1468. https://doi.org/10.1002/term.2677
    62. Priya Vashisth, Jayesh R Bellare. Development of hybrid scaffold with biomimetic 3D architecture for bone regeneration. Nanomedicine: Nanotechnology, Biology and Medicine 2018, 14 (4) , 1325-1336. https://doi.org/10.1016/j.nano.2018.03.011
    63. Hua-Mo Yin, Yan-Fei Huang, Yue Ren, Peng Wang, Baisong Zhao, Ji-Hua Li, Jia-Zhuang Xu, Zhong-Ming Li. Toward biomimetic porous poly(ε-caprolactone) scaffolds: Structural evolution and morphological control during solid phase extrusion. Composites Science and Technology 2018, 156 , 192-202. https://doi.org/10.1016/j.compscitech.2018.01.009
    64. Pei Jiang, Jiabing Ran, Pan Yan, Lingyue Zheng, Xinyu Shen, Hua Tong. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase. Journal of Biomaterials Science, Polymer Edition 2018, 29 (2) , 107-124. https://doi.org/10.1080/09205063.2017.1403149
    65. Tuan-Wei Sun, Ying-Jie Zhu, Feng Chen. Hydroxyapatite nanowire/collagen elastic porous nanocomposite and its enhanced performance in bone defect repair. RSC Advances 2018, 8 (46) , 26218-26229. https://doi.org/10.1039/C8RA03972K
    66. Mohammad Shakir, Reshma Jolly, Aijaz Ahmed Khan, Syed Sayeed Ahmed, Sharique Alam, Mohd. Ahmar Rauf, Mohd. Owais, Mohd. Ahmadullah Farooqi. Resol based chitosan/nano-hydroxyapatite nanoensemble for effective bone tissue engineering. Carbohydrate Polymers 2018, 179 , 317-327. https://doi.org/10.1016/j.carbpol.2017.09.103
    67. Bipin Gaihre, Suren Uswatta, Ambalangodage Jayasuriya. Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds. Journal of Functional Biomaterials 2017, 8 (4) , 49. https://doi.org/10.3390/jfb8040049
    68. Vijay H. Ingole, Kamal Hany Hussein, Anil A. Kashale, Kalyani Ghule, Tomaž Vuherer, Vanja Kokol, Jia-Yaw Chang, Yong-Chien Ling, Aruna Vinchurkar, Hom N. Dhakal, Anil V. Ghule. Ultrasound-assisted green economic synthesis of hydroxyapatite nanoparticles using eggshell biowaste and study of mechanical and biological properties for orthopedic applications. Journal of Biomedical Materials Research Part A 2017, 105 (11) , 2935-2947. https://doi.org/10.1002/jbm.a.36146
    69. Marek Tomco, Eva Petrovova, Maria Giretova, Viera Almasiova, Katarina Holovska, Viera Cigankova, Andrej Jenca, Janka Jencova, Andrej Jenca, Martin Boldizar, Kosa Balazs, Lubomir Medvecky. In vitro and in vivo study of microporous ceramics using MC3T3 cells, CAM assay and a pig animal model. Anatomical Science International 2017, 92 (4) , 569-580. https://doi.org/10.1007/s12565-016-0362-x
    70. Yimin Hu, Jingdi Chen, Tiantang Fan, Yujue Zhang, Yao Zhao, Xuetao Shi, Qiqing Zhang. Biomimetic mineralized hierarchical hybrid scaffolds based on in situ synthesis of nano-hydroxyapatite/chitosan/chondroitin sulfate/hyaluronic acid for bone tissue engineering. Colloids and Surfaces B: Biointerfaces 2017, 157 , 93-100. https://doi.org/10.1016/j.colsurfb.2017.05.059
    71. Andy H. Choi, Besim Ben-Nissan. Calcium Phosphate Nanocomposites for Biomedical and Dental Applications: Recent Developments. 2017, 423-450. https://doi.org/10.1002/9781119441632.ch163
    72. Shuping Peng, Pei Feng, Ping Wu, Wei Huang, Youwen Yang, Wang Guo, Chengde Gao, Cijun Shuai. Graphene oxide as an interface phase between polyetheretherketone and hydroxyapatite for tissue engineering scaffolds. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep46604
    73. Tuan‐Wei Sun, Ying‐Jie Zhu, Feng Chen. Highly Flexible Multifunctional Biopaper Comprising Chitosan Reinforced by Ultralong Hydroxyapatite Nanowires. Chemistry – A European Journal 2017, 23 (16) , 3850-3862. https://doi.org/10.1002/chem.201605165
    74. G.P. Chaves Filho, S.M.G. Moreira. Perspectives of bioinspired materials in regenerative medicine. 2017, 139-175. https://doi.org/10.1016/B978-0-08-100741-9.00006-1
    75. Burhan Ates, Suleyman Koytepe, Sevgi Balcioglu, Ahmet Ulu, Canbolat Gurses. Biomedical applications of hybrid polymer composite materials. 2017, 343-408. https://doi.org/10.1016/B978-0-08-100785-3.00012-7
    76. Mehdi Razavi, Kai Zhu, Yu S. Zhang. Naturally based and biologically derived nanobiomaterials. 2017, 61-86. https://doi.org/10.1016/B978-0-08-100963-5.00004-5
    77. Yi-Xuan Chen, Rong Zhu, Qin-Fei Ke, You-Shui Gao, Chang-Qing Zhang, Ya-Ping Guo. MgAl layered double hydroxide/chitosan porous scaffolds loaded with PFTα to promote bone regeneration. Nanoscale 2017, 9 (20) , 6765-6776. https://doi.org/10.1039/C7NR00601B
    78. José Carlos Viana Ribeiro, Rodrigo Silveira Vieira, Iracema Matos Melo, Vilana Maria Adriano Araújo, Vilma Lima. Versatility of Chitosan-Based Biomaterials and Their Use as Scaffolds for Tissue Regeneration. The Scientific World Journal 2017, 2017 , 1-25. https://doi.org/10.1155/2017/8639898
    79. Huan Yi, Fawad Ur Rehman, Chunqiu Zhao, Bin Liu, Nongyue He. Recent advances in nano scaffolds for bone repair. Bone Research 2016, 4 (1) https://doi.org/10.1038/boneres.2016.50
    80. S. Deepthi, J. Venkatesan, Se-Kwon Kim, Joel D. Bumgardner, R. Jayakumar. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules 2016, 93 , 1338-1353. https://doi.org/10.1016/j.ijbiomac.2016.03.041
    81. Tiantang Fan, Jingdi Chen, Panpan Pan, Yujue Zhang, Yimin Hu, Xiaocui Liu, Xuetao Shi, Qiqing Zhang. Bioinspired double polysaccharides-based nanohybrid scaffold for bone tissue engineering. Colloids and Surfaces B: Biointerfaces 2016, 147 , 217-223. https://doi.org/10.1016/j.colsurfb.2016.08.006
    82. Thangavelu Muthukumar, Adithan Aravinthan, Judith Sharmila, Nam Soo Kim, Jong-Hoon Kim. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydrate Polymers 2016, 152 , 566-574. https://doi.org/10.1016/j.carbpol.2016.07.003
    83. B.N. Singh, N.N. Panda, R. Mund, K. Pramanik. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydrate Polymers 2016, 151 , 335-347. https://doi.org/10.1016/j.carbpol.2016.05.088
    84. Vijay H. Ingole, Kamal H. Hussein, Anil A. Kashale, Ketan P. Gattu, Swapnali S. Dhanayat, Aruna Vinchurkar, Jia‐Yaw Chang, Anil V. Ghule. Invitro Bioactivity and Osteogenic Activity Study of Solid State Synthesized Nano‐Hydroxyapatite using Recycled Eggshell Bio–waste. ChemistrySelect 2016, 1 (13) , 3901-3908. https://doi.org/10.1002/slct.201601092
    85. Cheng Wang, Yu Wang, Haoye Meng, Xin Wang, Yun Zhu, Kun Yu, Xueling Yuan, Aiyuan Wang, Quanyi Guo, Jiang Peng, Shibi Lu. Research progress regarding nanohydroxyapatite and its composite biomaterials in bone defect repair. International Journal of Polymeric Materials and Polymeric Biomaterials 2016, 65 (12) , 601-610. https://doi.org/10.1080/00914037.2016.1149849
    86. M. Nivedhitha Sundaram, S. Deepthi, R. Jayakumar. Chitosan-Gelatin Composite Scaffolds in Bone Tissue Engineering. 2016, 99-121. https://doi.org/10.1007/978-81-322-2511-9_5
    87. Jingdi Chen, Panpan Pan, Yujue Zhang, Shengnan Zhong, Qiqing Zhang. Preparation of chitosan/nano hydroxyapatite organic–inorganic hybrid microspheres for bone repair. Colloids and Surfaces B: Biointerfaces 2015, 134 , 401-407. https://doi.org/10.1016/j.colsurfb.2015.06.072
    88. Steven M. Romanelli, Karl R. Fath, Aruna P. Phekoo, Grant A. Knoll, Ipsita A. Banerjee. Layer-by-layer assembly of peptide based bioorganic–inorganic hybrid scaffolds and their interactions with osteoblastic MC3T3-E1 cells. Materials Science and Engineering: C 2015, 51 , 316-328. https://doi.org/10.1016/j.msec.2015.03.018
    89. Beauty Das, Pronobesh Chattopadhyay, Somnath Maji, Aadesh Upadhyay, Manashi Das Purkayastha, Charu lata Mohanta, Tapas Kumar Maity, Niranjan Karak. Bio-functionalized MWCNT/hyperbranched polyurethane bionanocomposite for bone regeneration. Biomedical Materials 2015, 10 (2) , 025011. https://doi.org/10.1088/1748-6041/10/2/025011
    90. Chen Chen, Hong Li, Jianfeng Pan, Zuoqin Yan, Zhenjun Yao, Wenshuai Fan, Changan Guo. Biodegradable composite scaffolds of bioactive glass/chitosan/carboxymethyl cellulose for hemostatic and bone regeneration. Biotechnology Letters 2015, 37 (2) , 457-465. https://doi.org/10.1007/s10529-014-1697-9
    91. Yue Sa, Man Wang, Hongbing Deng, Yining Wang, Tao Jiang. Beneficial effects of biomimetic nano-sized hydroxyapatite/antibiotic gentamicin enriched chitosan–glycerophosphate hydrogel on the performance of injectable polymethylmethacrylate. RSC Advances 2015, 5 (110) , 91082-91092. https://doi.org/10.1039/C5RA15915F
    92. Yang Hu, Huichang Gao, Zhengshan Du, Yixiao Liu, Yu Yang, Chaoyang Wang. Pickering high internal phase emulsion-based hydroxyapatite–poly(ε-caprolactone) nanocomposite scaffolds. Journal of Materials Chemistry B 2015, 3 (18) , 3848-3857. https://doi.org/10.1039/C5TB00093A
    93. Xiyu Li, Haifeng Zeng, Li Teng, Haifeng Chen. Comparative investigation on the crystal structure and cell behavior of rare-earth doped fluorescent apatite nanocrystals. Materials Letters 2014, 125 , 78-81. https://doi.org/10.1016/j.matlet.2014.03.151

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2013, 5, 22, 12036–12044
    Click to copy citationCitation copied!
    https://doi.org/10.1021/am4038432
    Published November 5, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    2481

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.