Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Fabrication of Porous Carbon/TiO2 Composites through Polymerization-Induced Phase Separation and Use As an Anode for Na-Ion Batteries
My Activity

Figure 1Loading Img
    Research Article

    Fabrication of Porous Carbon/TiO2 Composites through Polymerization-Induced Phase Separation and Use As an Anode for Na-Ion Batteries
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Polymer Engineering and Department of Polymer Science, University of Akron, Akron, Ohio 44325, United States
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2014, 6, 23, 21011–21018
    Click to copy citationCitation copied!
    https://doi.org/10.1021/am5058037
    Published November 14, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Polymerization-induced phase separation of nanoparticle-filled solution is demonstrated as a simple approach to control the structure of porous composites. These composites are subsequently demonstrated as the active component for sodium ion battery anode. To synthesize the composites, we dissolved/dispersed titanium oxide (anatase) nanoparticles (for sodium insertion) and poly(hydroxybutyl methacrylate) (PHBMA, porogen) in furfuryl alcohol (carbon precursor) containing a photoacid generator (PAG). UV exposure converts the PAG to a strong acid that catalyzes the furfuryl alcohol polymerization. This polymerization simultaneously decreases the miscibility of the PHBMA and reduces the mobility in the mixture to kinetically trap the phase separation. Carbonization of this polymer composite yields a porous nanocomposite. This nanocomposite exhibits nearly 3-fold greater gravimetric capacity in Na-ion batteries than the same titanium oxide nanoparticles that have been coated with carbon. This improved performance is attributed to the morphology as the carbon content in the composite is five times that of the coated nanoparticles. The porous composite materials exhibit stable cyclic performance. Moreover, the battery performance using materials from this polymerization-induced phase separation method is reproducible (capacity within 10% batch-to-batch). This simple fabrication methodology may be extendable to other systems and provides a facile route to generate reproducible hierarchical porous morphology that can be beneficial in energy storage applications.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    FTIR spectra of the nanoparticles, TEM images of PFA-coated TiO2, TGA curves for carbon content, XPS analysis of the composites, and coin cell characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 76 publications.

    1. Jagabandhu Patra, Shu-Chi Wu, Ing-Chi Leu, Chun-Chen Yang, Rajendra S. Dhaka, Shigeto Okada, Hsiu-Liang Yeh, Chieh-Ming Hsieh, Bor Kae Chang, Jeng-Kuei Chang. Hydrogenated Anatase and Rutile TiO2 for Sodium-Ion Battery Anodes. ACS Applied Energy Materials 2021, 4 (6) , 5738-5746. https://doi.org/10.1021/acsaem.1c00571
    2. Guanyun Zhang, Chenxiao Chu, Jian Yang, Chen-Ho Tung, Yifeng Wang. Preparation of Porous TiO2 from an Iso-Polyoxotitanate Cluster for Rechargeable Sodium-Ion Batteries with High Performance. The Journal of Physical Chemistry C 2019, 123 (12) , 7025-7032. https://doi.org/10.1021/acs.jpcc.9b00213
    3. Jia Ding, Wenbin Hu, Eunsu Paek, David Mitlin. Review of Hybrid Ion Capacitors: From Aqueous to Lithium to Sodium. Chemical Reviews 2018, 118 (14) , 6457-6498. https://doi.org/10.1021/acs.chemrev.8b00116
    4. María B. Vázquez-Santos, Enrique Morales, Pedro Tartaj, and J. Manuel Amarilla . Toward a Better Understanding and Optimization of the Electrochemical Activity of Na-Ion TiO2 Anatase Anodes Using Uniform Nanostructures and Ionic Liquid Electrolytes. ACS Omega 2017, 2 (7) , 3647-3657. https://doi.org/10.1021/acsomega.7b00548
    5. Seung Mi Oh, In Young Kim, Sharad B. Patil, Boyeon Park, Jang Mee Lee, Kanyaporn Adpakpang, Seen Ae Chae, Oc Hee Han, and Seong-Ju Hwang . Improvement of Na Ion Electrode Activity of Metal Oxide via Composite Formation with Metal Sulfide. ACS Applied Materials & Interfaces 2017, 9 (3) , 2249-2260. https://doi.org/10.1021/acsami.6b11220
    6. Rafael Klee, María José Aragón, Pedro Lavela, Ricardo Alcántara, and José Luis Tirado . Na3V2(PO4)3/C Nanorods with Improved Electrode–Electrolyte Interface As Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (35) , 23151-23159. https://doi.org/10.1021/acsami.6b07950
    7. Litao Yan, Gen Chen, Swagotom Sarker, Stephanie Richins, Huiqiang Wang, Weichuan Xu, Xianhong Rui, and Hongmei Luo . Ultrafine Nb2O5 Nanocrystal Coating on Reduced Graphene Oxide as Anode Material for High Performance Sodium Ion Battery. ACS Applied Materials & Interfaces 2016, 8 (34) , 22213-22219. https://doi.org/10.1021/acsami.6b06516
    8. Ya Xiong, Jiangfeng Qian, Yuliang Cao, Xinping Ai, and Hanxi Yang . Electrospun TiO2/C Nanofibers As a High-Capacity and Cycle-Stable Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (26) , 16684-16689. https://doi.org/10.1021/acsami.6b03757
    9. Baofeng Wang, Fei Zhao, Guodong Du, Spencer Porter, Yong Liu, Peng Zhang, Zhenxiang Cheng, Hua Kun Liu, and Zhenguo Huang . Boron-Doped Anatase TiO2 as a High-Performance Anode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (25) , 16009-16015. https://doi.org/10.1021/acsami.6b03270
    10. Chenyang Dai, Zhengtong Li, Kaidan Zheng, Jia-Han Zhang, Rongrong Dai, Dan Luo, Huimin Gao, Hamdy Khamees Thabet, Zeinhom M. El-Bahy, Likun Pan, Yiyong Mai, Yusuke Yamauchi, Xingtao Xu. Strategic design of porous interfacial evaporators: A comprehensive review unveiling the significant role of pore engineering. Nano Energy 2024, 131 , 110244. https://doi.org/10.1016/j.nanoen.2024.110244
    11. Denghao Fu, Sarah Beth Holles, Emily England, Yunlu Zhang, Shiwang Cheng, Caroline Szczepanski. Compatibility versus reaction diffusion: Factors that determine the heterogeneity of polymerized adhesive networks. Dental Materials 2024, 40 (5) , 800-810. https://doi.org/10.1016/j.dental.2024.03.002
    12. Menglong Yao, Li Li, Tianhao Yao, Deyu Wang, Bo Liu, Hongkang Wang. Embedding anatase TiO2 nanoparticles into holely carbon nanofibers for high-performance sodium/lithium ion batteries. Journal of Alloys and Compounds 2022, 926 , 166943. https://doi.org/10.1016/j.jallcom.2022.166943
    13. Tatiana L. Kulova, Alexander M. Skundin. Electrode/Electrolyte Interphases of Sodium-Ion Batteries. Energies 2022, 15 (22) , 8615. https://doi.org/10.3390/en15228615
    14. Yuan Yuan, Yuanming Shao, Xiaoping Zhou. An investigation of Cu‐ZrO 2 ‐TiO 2 / CNTs anode material for lithium‐ion batteries. International Journal of Energy Research 2022, 46 (8) , 11092-11108. https://doi.org/10.1002/er.7911
    15. Alaa El Din Mahmoud. Recent Advances of TiO2 Nanocomposites for Photocatalytic Degradation of Water Contaminants and Rechargeable Sodium Ion Batteries. 2022, 757-770. https://doi.org/10.1007/978-3-030-94319-6_24
    16. Yuming Li, Rui Li, Yongzhong Jin, Wei Zhao, Jian Chen, Ge Chen, Long Qing. A novel TiO2 nanoparticle-decorated helical carbon nanofiber composite as an anode material for sodium-ion batteries. Journal of Electroanalytical Chemistry 2021, 901 , 115765. https://doi.org/10.1016/j.jelechem.2021.115765
    17. Hira Fatima, Yijun Zhong, Hongwei Wu, Zongping Shao. Recent advances in functional oxides for high energy density sodium-ion batteries. Materials Reports: Energy 2021, 1 (2) , 100022. https://doi.org/10.1016/j.matre.2021.100022
    18. Haoran Wang, Jiemei Hu, Yonggang Yang, Qihui Wu, Yi Li. Fabrication of high-performance lithium ion battery anode materials from polysilsesquioxane nanotubes. Journal of Alloys and Compounds 2021, 859 , 157801. https://doi.org/10.1016/j.jallcom.2020.157801
    19. Liang Fu, Qi Wang, Hanna He, Yougen Tang, Haiyan Wang, Hualin Xie. Dual carbon coating engineering endows hollow structured TiO2 with superior sodium storage performance. Journal of Power Sources 2021, 489 , 229516. https://doi.org/10.1016/j.jpowsour.2021.229516
    20. Yuming Li, Rui Li, Yongzhong Jin, Wei Zhao, Jian Chen, Ge Chen, Long Qing. A Novel TiO 2 Nanoparticle-Decorated Helical Carbon Nanofiber Composite as an Anode Material for Sodium-Ion Batteries. SSRN Electronic Journal 2021, 27 https://doi.org/10.2139/ssrn.3911176
    21. Enhui Wang, Mingzhe Chen, Xiaodong Guo, Shu‐Lei Chou, Benhe Zhong, Shi‐Xue Dou. Synthesis Strategies and Structural Design of Porous Carbon‐Incorporated Anodes for Sodium‐Ion Batteries. Small Methods 2020, 4 (6) https://doi.org/10.1002/smtd.201900163
    22. Yu Wang, Na Li, Chuanxin Hou, Biao He, Jiajia Li, Feng Dang, Jun Wang, Yuqi Fan. Nanowires embedded porous TiO2@C nanocomposite anodes for enhanced stable lithium and sodium ion battery performance. Ceramics International 2020, 46 (7) , 9119-9128. https://doi.org/10.1016/j.ceramint.2019.12.161
    23. Hong Xu, Wen Zhong, Qianwu Chen, Weiliang Liu, Mei Li, Liwei Su, Cuiling Gao, Manman Ren. One-pot fabricating rambutan-like nitrogen-simultaneously-doped TiO2@carbon@TiO2 double shell composites with superior sodium storage for Na-ion batteries. Journal of Materials Science: Materials in Electronics 2019, 30 (7) , 6395-6402. https://doi.org/10.1007/s10854-019-00942-9
    24. Yu Wang, Xuewei Fu, Min Zheng, Wei‐Hong Zhong, Guozhong Cao. Strategies for Building Robust Traffic Networks in Advanced Energy Storage Devices: A Focus on Composite Electrodes. Advanced Materials 2019, 31 (6) https://doi.org/10.1002/adma.201804204
    25. Jin Chen, Enqi Wang, Jiechen Mu, Bing Ai, Tiezhu Zhang, Wenqing Ge, Lipeng Zhang. CNTs–C@TiO2 composites with 3D networks as anode material for lithium/sodium ion batteries. Journal of Materials Science 2019, 54 (1) , 592-604. https://doi.org/10.1007/s10853-018-2814-2
    26. Lei Wang, Zengxi Wei, Minglei Mao, Hongxia Wang, Yutao Li, Jianmin Ma. Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Materials 2019, 16 , 434-454. https://doi.org/10.1016/j.ensm.2018.06.027
    27. Ilya M. Gavrilin, Vladimir A. Smolyaninov, Alexey A. Dronov, Sergei A. Gavrilov, Alexey Yu. Trifonov, Tatiana L. Kulova, Anna A. Kuz’mina, Alexander M. Skundin. Electrochemical insertion of sodium into nanostructured materials based on germanium. Mendeleev Communications 2018, 28 (6) , 659-660. https://doi.org/10.1016/j.mencom.2018.11.034
    28. Geon‐Woo Lee, Myeong‐Seong Kim, Jun Hui Jeong, Ha‐Kyung Roh, Kwang Chul Roh, Kwang‐Bum Kim. Comparative Study of Li 4 Ti 5 O 12 Composites Prepared withPristine, Oxidized, and Surfactant‐Treated Multiwalled Carbon Nanotubes for High‐Power Hybrid Supercapacitors. ChemElectroChem 2018, 5 (17) , 2357-2366. https://doi.org/10.1002/celc.201800408
    29. Weigang Wang, Yu Liu, Xu Wu, Jing Wang, Lijun Fu, Yusong Zhu, Yuping Wu, Xiang Liu. Advances of TiO 2 as Negative Electrode Materials for Sodium‐Ion Batteries. Advanced Materials Technologies 2018, 3 (9) https://doi.org/10.1002/admt.201800004
    30. Nana Wang, Chenxiao Chu, Xun Xu, Yi Du, Jian Yang, Zhongchao Bai, Shixue Dou. Comprehensive New Insights and Perspectives into Ti‐Based Anodes for Next‐Generation Alkaline Metal (Na + , K + ) Ion Batteries. Advanced Energy Materials 2018, 8 (27) https://doi.org/10.1002/aenm.201801888
    31. Tianyi Wang, Dawei Su, Devaraj Shanmukaraj, Teofilo Rojo, Michel Armand, Guoxiu Wang. Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms. Electrochemical Energy Reviews 2018, 1 (2) , 200-237. https://doi.org/10.1007/s41918-018-0009-9
    32. Xiao Ma, Zhihui Zhang, Jianliya Tian, Beibei Xu, Qiushi Ping, Baofeng Wang. Hierarchical TiO 2 /C micro–nano spheres as high-performance anode materials for sodium ion batteries. Functional Materials Letters 2018, 11 (02) , 1850021. https://doi.org/10.1142/S1793604718500212
    33. A. M. Skundin, T. L. Kulova, A. B. Yaroslavtsev. Sodium-Ion Batteries (a Review). Russian Journal of Electrochemistry 2018, 54 (2) , 113-152. https://doi.org/10.1134/S1023193518020076
    34. Wei Song, Hanqing Zhao, Liqin Wang, Shibin Liu, Zhong Li. Co‐doping Nitrogen/Sulfur through a Solid‐State Reaction to Enhance the Electrochemical Performance of Anatase TiO 2 Nanoparticles as a Sodium‐Ion Battery Anode. ChemElectroChem 2018, 5 (2) , 316-321. https://doi.org/10.1002/celc.201701015
    35. Yong-Ni Li, Jing Su, Xiao-Yan Lv, Yun-Fei Long, Hang Yu, Rong-Rong Huang, Yong-Chun Xie, Yan-Xuan Wen. Zn2+ doped TiO2/C with enhanced sodium-ion storage properties. Ceramics International 2017, 43 (13) , 10326-10332. https://doi.org/10.1016/j.ceramint.2017.05.063
    36. Yunwei Li, Chengcheng Chen, Mengying Wang, Weiqin Li, Yijing Wang, Lifang Jiao, Huatang Yuan. Excellent sodium storage performance of carbon-coated TiO2: Assisted with electrostatic interaction of surfactants. Journal of Power Sources 2017, 361 , 326-333. https://doi.org/10.1016/j.jpowsour.2017.06.076
    37. Hongmei Tang, Dong Yan, Ting Lu, Likun Pan. Sulfur-doped carbon spheres with hierarchical micro/mesopores as anode materials for sodium-ion batteries. Electrochimica Acta 2017, 241 , 63-72. https://doi.org/10.1016/j.electacta.2017.04.112
    38. Pengcheng Liu, Kongjun Zhu, Yuan Xu, Kan Bian, Jing Wang, Guo‘an Tai, Yanfeng Gao, Hongjie Luo, Li Lu, Jinsong Liu. Hierarchical Porous Intercalation‐Type V 2 O 3 as High‐Performance Anode Materials for Li‐Ion Batteries. Chemistry – A European Journal 2017, 23 (31) , 7538-7544. https://doi.org/10.1002/chem.201700369
    39. Ying Wu, Yu Jiang, Jinan Shi, Lin Gu, Yan Yu. Multichannel Porous TiO 2 Hollow Nanofibers with Rich Oxygen Vacancies and High Grain Boundary Density Enabling Superior Sodium Storage Performance. Small 2017, 13 (22) , 1700129. https://doi.org/10.1002/smll.201700129
    40. Hui Zou, Kang Yan, Ye Cong, Xuanke Li, Jiang Zhang, Zhengwei Cui, Zhijun Dong, Guanming Yuan, Yanjun Li. Synthesis of hierarchical porous carbon-TiO2 composites as anode materials for high performance lithium ion batteries. Research on Chemical Intermediates 2017, 43 (5) , 2891-2904. https://doi.org/10.1007/s11164-016-2801-7
    41. Liye Li, Pengcheng Liu, Kongjun Zhu, Jing Wang, Guoan Tai, Jinsong Liu. Flexible and robust N-doped carbon nanofiber film encapsulating uniformly silica nanoparticles: Free-standing long-life and low-cost electrodes for Li- and Na-Ion batteries. Electrochimica Acta 2017, 235 , 79-87. https://doi.org/10.1016/j.electacta.2017.03.071
    42. Hanna He, Haiyan Wang, Dan Sun, Minhua Shao, Xiaobing Huang, Yougen Tang. N-doped rutile TiO 2 /C with significantly enhanced Na storage capacity for Na-ion batteries. Electrochimica Acta 2017, 236 , 43-52. https://doi.org/10.1016/j.electacta.2017.03.104
    43. Hongwei Tao, Min Zhou, Kangli Wang, Shijie Cheng, Kai Jiang. Glycol Derived Carbon- TiO2 as Low Cost and High Performance Anode Material for Sodium-Ion Batteries. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/srep43895
    44. Yan Zhang, Chiwei Wang, Hongshuai Hou, Guoqiang Zou, Xiaobo Ji. Nitrogen Doped/Carbon Tuning Yolk‐Like TiO 2 and Its Remarkable Impact on Sodium Storage Performances. Advanced Energy Materials 2017, 7 (4) https://doi.org/10.1002/aenm.201600173
    45. Yong Li, Shuan Wang, Yan-Bing He, Linkai Tang, Yusuf Valentino Kaneti, Wei Lv, Zhiqun Lin, Baohua Li, Quan-Hong Yang, Feiyu Kang. Li-ion and Na-ion transportation and storage properties in various sized TiO 2 spheres with hierarchical pores and high tap density. Journal of Materials Chemistry A 2017, 5 (9) , 4359-4367. https://doi.org/10.1039/C6TA08611J
    46. Li Xu, Hansinee Sitinamaluwa, Henan Li, Jingxia Qiu, Yazhou Wang, Cheng Yan, Huaming Li, Shouqi Yuan, Shanqing Zhang. Low cost and green preparation process for α-Fe 2 O 3 @gum arabic electrode for high performance sodium ion batteries. Journal of Materials Chemistry A 2017, 5 (5) , 2102-2109. https://doi.org/10.1039/C6TA08918F
    47. Ata-Ur-Rehman Ata-Ur-Rehman, Ghulam Ali, Amin Badshah, Kyung Yoon Chung, Kyung-Wan Nam, Muhammad Jawad, Muhammad Arshad, Syed Mustansar Abbas. Superior shuttling of lithium and sodium ions in manganese-doped titania @ functionalized multiwall carbon nanotube anodes. Nanoscale 2017, 9 (28) , 9859-9871. https://doi.org/10.1039/C7NR01417A
    48. Simin Li, Lingling Xie, Hongshuai Hou, Hanxiao Liao, Zhaodong Huang, Xiaoqing Qiu, Xiaobo Ji. Alternating voltage induced ordered anatase TiO2 nanopores: An electrochemical investigation of sodium storage. Journal of Power Sources 2016, 336 , 196-202. https://doi.org/10.1016/j.jpowsour.2016.10.072
    49. Yan Zhang, Christopher W. Foster, Craig E. Banks, Lidong Shao, Hongshuai Hou, Guoqiang Zou, Jun Chen, Zhaodong Huang, Xiaobo Ji. Graphene‐Rich Wrapped Petal‐Like Rutile TiO 2 tuned by Carbon Dots for High‐Performance Sodium Storage. Advanced Materials 2016, 28 (42) , 9391-9399. https://doi.org/10.1002/adma.201601621
    50. Xiaojun Lv, Junxiao Song, Yanqing Lai, Jing Fang, Jie Li, Zhian Zhang. Ultrafine nanoparticles assembled Mo 2 C nanoplates as promising anode materials for sodium ion batteries with excellent performance. Journal of Energy Storage 2016, 8 , 205-211. https://doi.org/10.1016/j.est.2016.08.009
    51. Hyungsub Kim, Haegyeom Kim, Zhang Ding, Myeong Hwan Lee, Kyungmi Lim, Gabin Yoon, Kisuk Kang. Recent Progress in Electrode Materials for Sodium‐Ion Batteries. Advanced Energy Materials 2016, 6 (19) https://doi.org/10.1002/aenm.201600943
    52. Xiaodong Shi, Zhian Zhang, Ke Du, Yanqing Lai, Jing Fang, Jie Li. Anatase TiO2@C composites with porous structure as an advanced anode material for Na ion batteries. Journal of Power Sources 2016, 330 , 1-6. https://doi.org/10.1016/j.jpowsour.2016.08.132
    53. Xin Gu, Liangjun Li, Ying Wang, Pengcheng Dai, Hongbo Wang, Xuebo Zhao. Hierarchical tubular structures constructed from rutile TiO2 nanorods with superior sodium storage properties. Electrochimica Acta 2016, 211 , 77-82. https://doi.org/10.1016/j.electacta.2016.06.029
    54. Li-Ying Wang, Xue Bai, Yan Wu, Ning Lun, Yong-Xin Qi, Yu-Jun Bai. Improving the Li-ion storage performance of commercial TiO2 by coating with soft carbon derived from pitch. Electrochimica Acta 2016, 212 , 155-161. https://doi.org/10.1016/j.electacta.2016.06.160
    55. Guoqiang Zou, Jun Chen, Yan Zhang, Chao Wang, Zhaodong Huang, Simin Li, Hanxiao Liao, Jufeng Wang, Xiaobo Ji. Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior. Journal of Power Sources 2016, 325 , 25-34. https://doi.org/10.1016/j.jpowsour.2016.06.017
    56. Ying Wu, Xiaowu Liu, Zhenzhong Yang, Lin Gu, Yan Yu. Nitrogen-Doped Ordered Mesoporous Anatase TiO 2 Nanofibers as Anode Materials for High Performance Sodium-Ion Batteries. Small 2016, 12 (26) , 3522-3529. https://doi.org/10.1002/smll.201600606
    57. Yanqing Lai, Wenwen Liu, Jie Li, Kai Zhang, Furong Qin, Mengran Wang, Jing Fang. High performance sodium storage of Fe-doped mesoporous anatase TiO2/amorphous carbon composite. Journal of Alloys and Compounds 2016, 666 , 254-261. https://doi.org/10.1016/j.jallcom.2016.01.101
    58. Conglong Fu, Taiqiang Chen, Wei Qin, Ting Lu, Zhuo Sun, Xiaohua Xie, Likun Pan. Scalable synthesis and superior performance of TiO2-reduced graphene oxide composite anode for sodium-ion batteries. Ionics 2016, 22 (4) , 555-562. https://doi.org/10.1007/s11581-015-1574-0
    59. Muhammad Nawaz Tahir, Bernd Oschmann, Daniel Buchholz, Xinwei Dou, Ingo Lieberwirth, Martin Panthöfer, Wolfgang Tremel, Rudolf Zentel, Stefano Passerini. Extraordinary Performance of Carbon‐Coated Anatase TiO 2 as Sodium‐Ion Anode. Advanced Energy Materials 2016, 6 (4) https://doi.org/10.1002/aenm.201501489
    60. Aurélien Henry, Nicolas Louvain, Olivier Fontaine, Lorenzo Stievano, Laure Monconduit, Bruno Boury. Synthesis of Titania@Carbon Nanocomposite from Urea‐Impregnated Cellulose for Efficient Lithium and Sodium Batteries. ChemSusChem 2016, 9 (3) , 264-273. https://doi.org/10.1002/cssc.201501561
    61. Jian-Min Feng, Lei Dong, Yan Han, Xi-Fei Li, De-Jun Li. Facile synthesis of graphene-titanium dioxide nanocomposites as anode materials for Na-ion batteries. International Journal of Hydrogen Energy 2016, 41 (1) , 355-360. https://doi.org/10.1016/j.ijhydene.2015.10.137
    62. N. Louvain, A. Henry, L. Daenens, B. Boury, L. Stievano, L. Monconduit. On the electrochemical encounter between sodium and mesoporous anatase TiO 2 as a Na-ion electrode. CrystEngComm 2016, 18 (23) , 4431-4437. https://doi.org/10.1039/C5CE02598B
    63. Pengcheng Liu, Dehua Zhou, Kongjun Zhu, Qingliu Wu, Yifeng Wang, Guoan Tai, Wei Zhang, Qilin Gu. Bundle-like α′-NaV 2 O 5 mesocrystals: from synthesis, growth mechanism to analysis of Na-ion intercalation/deintercalation abilities. Nanoscale 2016, 8 (4) , 1975-1985. https://doi.org/10.1039/C5NR05179G
    64. Xiaoying Chen, Li Liu, Lingguang Yi, Guoxiong Guo, Min Li, Jianjun Xie, Yan Ouyang, Xianyou Wang. High-performance lithium storage of Ti 3+ -doped anatase TiO 2 @C composite spheres. RSC Advances 2016, 6 (102) , 99695-99703. https://doi.org/10.1039/C6RA22105J
    65. Ya Xiong, Jiangfeng Qian, Yuliang Cao, Xinping Ai, Hanxi Yang. Graphene-supported TiO 2 nanospheres as a high-capacity and long-cycle life anode for sodium ion batteries. Journal of Materials Chemistry A 2016, 4 (29) , 11351-11356. https://doi.org/10.1039/C6TA04402F
    66. Yueni Mei, Yunhui Huang, Xianluo Hu. Nanostructured Ti-based anode materials for Na-ion batteries. Journal of Materials Chemistry A 2016, 4 (31) , 12001-12013. https://doi.org/10.1039/C6TA04611H
    67. Purna Chandra Rath, Jagabandhu Patra, Diganta Saikia, Mrinalini Mishra, Jeng-Kuei Chang, Hsien-Ming Kao. Highly enhanced electrochemical performance of ultrafine CuO nanoparticles confined in ordered mesoporous carbons as anode materials for sodium-ion batteries. Journal of Materials Chemistry A 2016, 4 (37) , 14222-14233. https://doi.org/10.1039/C6TA05238J
    68. Guoqiang Zou, Hongshuai Hou, Yan Zhang, Zhaodong Huang, Xiaoqing Qiu, Xiaobo Ji. Porous Carbon Induced Anatase TiO 2 Nanodots/Carbon Composites for High-Performance Sodium-Ion Batteries. Journal of The Electrochemical Society 2016, 163 (14) , A3117-A3125. https://doi.org/10.1149/2.1341614jes
    69. Fuhua Yang, Zhian Zhang, Yu Han, Ke Du, Yanqing Lai, Jie Li. TiO 2 /carbon hollow spheres as anode materials for advanced sodium ion batteries. Electrochimica Acta 2015, 178 , 871-876. https://doi.org/10.1016/j.electacta.2015.08.051
    70. Yeqian Ge, Jiadeng Zhu, Yao Lu, Chen Chen, Yiping Qiu, Xiangwu Zhang. The study on structure and electrochemical sodiation of one-dimensional nanocrystalline TiO2@C nanofiber composites. Electrochimica Acta 2015, 176 , 989-996. https://doi.org/10.1016/j.electacta.2015.07.105
    71. Jang-Yeon Hwang, Seung-Taek Myung, Joo-Hyeong Lee, Ali Abouimrane, Ilias Belharouak, Yang-Kook Sun. Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy 2015, 16 , 218-226. https://doi.org/10.1016/j.nanoen.2015.06.017
    72. Yeqian Ge, Han Jiang, Jiadeng Zhu, Yao Lu, Chen Chen, Yi Hu, Yiping Qiu, Xiangwu Zhang. High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries. Electrochimica Acta 2015, 157 , 142-148. https://doi.org/10.1016/j.electacta.2015.01.086
    73. Liping Zhao, Li Qi, Hongyu Wang. MoS 2 –C/graphite, an electric energy storage device using Na + -based organic electrolytes. RSC Advances 2015, 5 (20) , 15431-15437. https://doi.org/10.1039/C4RA14868A
    74. Kyu-Nam Jung, Ji-Young Seong, Sung-Soo Kim, Gyoung-Ja Lee, Jong-Won Lee. One-dimensional nanofiber architecture of an anatase TiO 2 –carbon composite with improved sodium storage performance. RSC Advances 2015, 5 (128) , 106252-106257. https://doi.org/10.1039/C5RA14655K
    75. Jeongwoo Lee, Yu-Ming Chen, Yu Zhu, Bryan D. Vogt. Tuning SEI formation on nanoporous carbon–titania composite sodium ion batteries anodes and performance with subtle processing changes. RSC Advances 2015, 5 (120) , 99329-99338. https://doi.org/10.1039/C5RA14907J
    76. Yan Zhang, Yingchang Yang, Hongshuai Hou, Xuming Yang, Jun Chen, Mingjun Jing, Xinnan Jia, Xiaobo Ji. Enhanced sodium storage behavior of carbon coated anatase TiO 2 hollow spheres. Journal of Materials Chemistry A 2015, 3 (37) , 18944-18952. https://doi.org/10.1039/C5TA04009D

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2014, 6, 23, 21011–21018
    Click to copy citationCitation copied!
    https://doi.org/10.1021/am5058037
    Published November 14, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    2147

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.