ACS Publications. Most Trusted. Most Cited. Most Read
Triplet–Triplet Annihilation Upconversion in CdS-Decorated SiO2 Nanocapsules for Sub-Bandgap Photocatalysis
My Activity

Figure 1Loading Img
    Research Article

    Triplet–Triplet Annihilation Upconversion in CdS-Decorated SiO2 Nanocapsules for Sub-Bandgap Photocatalysis
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemical and Environmental, Engineering School of Engineering and Applied Science, Yale University, New Haven, Connecticut 06511, United States
    School of Civil and Environmental Engineering, Pusan National University, Busan 609-735, Republic Korea
    § Green Process and Materials R&D Group, Korea Institute of Industrial Technology (KITECH), 89 Yangdaegiro-gil, Ipjang-myeon, Cheonan, 331-825 Chungnam Korea
    *E-mail: [email protected]. Tel: +1-203-432-4386. Fax: +1-203-432-4387.
    Other Access OptionsSupporting Information (1)

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2015, 7, 1, 318–325
    Click to copy citationCitation copied!
    https://doi.org/10.1021/am506233h
    Published December 18, 2014
    Copyright © 2014 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    This study reports the first successful nanoscale encapsulation of triplet–triplet annihilation upconversion (TTA-UC) medium within a rigid silica shell using a self-assembly microemulsion process. These newly synthesized nanocapsules present a few critical advances that could be instrumental for a wide range of aqueous-based photonics applications, including photocatalysis, artificial photosynthesis, and bioimaging. The nanocapsules form a homogeneous suspension that can produce intense, diffuse UC emission in water without deoxygenation, closely resembling conventional TTA-UC processes that have been performed in deoxygenated organic solvents. The silica shell provides sites for further surface modification, which allows, when combined with its nanoscale dimension and structural rigidity, this TTA-UC system to acquire various useful functionalities. A benchmark TTA-UC pair, palladium(II) tetraphenyltetrabenzoporphyrin as a sensitizer and perylene as an acceptor, was used to demonstrate efficient red-to-blue (635 nm, 1.95 eV → 470 nm, 2.6 eV) upconversion in the oxygen-rich aqueous phase. The nanocapsule surface was further functionalized with cadmium sulfide nanoparticles (Eg = 2.4 eV) to demonstrate sub-bandgap sensitization and subsequent aqueous-phase catalytic oxidation.

    Copyright © 2014 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Additional information about the TTA-UC mechanism, quantum yield measurement, sample characterization with XPS and SEM, and changes in emission spectra due to CdS NP loading onto the SNCs. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 96 publications.

    1. Conner C. Harper, Tracy H. Schloemer, Jacob S. Jordan, Nicole Heflin, Pournima Narayanan, Qi Zhou, Daniel N. Congreve, Evan R. Williams. Understanding the Formation Dynamics and Physical Properties of Nanocapsules Using Charge Detection Mass Spectrometry. ACS Nano 2025, 19 (3) , 3414-3423. https://doi.org/10.1021/acsnano.4c12461
    2. Joseph M. O’Shea, Young Ju Yun, Abdelqader M. Jamhawi, Francesca Peccati, Gonzalo Jiménez-Osés, Anoklase Jean-Luc Ayitou. Doublet Spin State Mediated Photoluminescence Upconversion in Organic Radical Donor-Triplet Acceptor Dyads. Journal of the American Chemical Society 2025, 147 (1) , 1017-1027. https://doi.org/10.1021/jacs.4c14303
    3. Hong-Juan Feng, Le Zeng, Jia-Yao Li, Wen-Yue Lin, Fang Qi, Lin-Han Jiang, Ming-Yu Zhang, Yang Zhao, Ling Huang, Dai-Wen Pang. Natural Protein Photon Upconversion Supramolecular Assemblies for Background-Free Biosensing. Journal of the American Chemical Society 2024, 146 (31) , 21791-21805. https://doi.org/10.1021/jacs.4c06012
    4. Hong-Juan Feng, Fang Qi, Jia-Yao Li, Wen-Yue Lin, Lin-Han Jiang, Ming-Yu Zhang, Le Zeng, Ling Huang. Dual Roles of the Photooxidation of Organic Amines for Enhanced Triplet–Triplet Annihilation Upconversion in Nanoparticles. Nano Letters 2024, 24 (28) , 8770-8777. https://doi.org/10.1021/acs.nanolett.4c02529
    5. Michael C. Burroughs, Tracy H. Schloemer, Daniel N. Congreve, Danielle J. Mai. Gelation Dynamics during Photo-Cross-Linking of Polymer Nanocomposite Hydrogels. ACS Polymers Au 2023, 3 (2) , 217-227. https://doi.org/10.1021/acspolymersau.2c00051
    6. Tracy Schloemer, Pournima Narayanan, Qi Zhou, Emma Belliveau, Michael Seitz, Daniel N. Congreve. Nanoengineering Triplet–Triplet Annihilation Upconversion: From Materials to Real-World Applications. ACS Nano 2023, 17 (4) , 3259-3288. https://doi.org/10.1021/acsnano.3c00543
    7. Yueqi Zhong, Jiangzhi Zi, Fan Wu, Zhao Li, Xue Luan, Fangfang Gao, Zichao Lian. Defect-Mediated Electron Transfer in Pt-CuInS2/CdS Heterostructured Nanocrystals for Enhanced Photocatalytic H2 Evolution. ACS Applied Nano Materials 2022, 5 (6) , 7704-7713. https://doi.org/10.1021/acsanm.2c00154
    8. Haklae Lee, Myung-Soo Lee, Masanori Uji, Naoyuki Harada, Jeong-Min Park, Jiyeon Lee, Sung Eun Seo, Chul Soon Park, Jinyeong Kim, Seon Joo Park, Suk Ho Bhang, Nobuhiro Yanai, Nobuo Kimizuka, Oh Seok Kwon, Jae-Hyuk Kim. Nanoencapsulated Phase-Change Materials: Versatile and Air-Tolerant Platforms for Triplet–Triplet Annihilation Upconversion. ACS Applied Materials & Interfaces 2022, 14 (3) , 4132-4143. https://doi.org/10.1021/acsami.1c21080
    9. Felipe Saenz, Alessandra Ronchi, Michele Mauri, Derek Kiebala, Angelo Monguzzi, Christoph Weder. Block Copolymer Stabilized Liquid Nanodroplets Facilitate Efficient Triplet Fusion-Based Photon Upconversion in Solid Polymer Matrices. ACS Applied Materials & Interfaces 2021, 13 (36) , 43314-43322. https://doi.org/10.1021/acsami.1c09813
    10. Bryce S. Richards, Damien Hudry, Dmitry Busko, Andrey Turshatov, Ian A. Howard. Photon Upconversion for Photovoltaics and Photocatalysis: A Critical Review. Chemical Reviews 2021, 121 (15) , 9165-9195. https://doi.org/10.1021/acs.chemrev.1c00034
    11. Jakob B. Bilger, Christoph Kerzig, Christopher B. Larsen, Oliver S. Wenger. A Photorobust Mo(0) Complex Mimicking [Os(2,2′-bipyridine)3]2+ and Its Application in Red-to-Blue Upconversion. Journal of the American Chemical Society 2021, 143 (3) , 1651-1663. https://doi.org/10.1021/jacs.0c12805
    12. A. Gorski, M. Kijak, E. Zenkevich, V. Knyukshto, A. Starukhin, A. Semeikin, T. Lyubimova, T. Roliński, J. Waluk. Magnetic Circular Dichroism of meso-Phenyl-Substituted Pd-Octaethylporphyrins. The Journal of Physical Chemistry A 2020, 124 (40) , 8144-8158. https://doi.org/10.1021/acs.jpca.0c06669
    13. Zihao Xu, Zhiyuan Huang, Chenyang Li, Tingting Huang, Francesco A. Evangelista, Ming L. Tang, Tianquan Lian. Tuning the Quantum Dot (QD)/Mediator Interface for Optimal Efficiency of QD-Sensitized Near-Infrared-to-Visible Photon Upconversion Systems. ACS Applied Materials & Interfaces 2020, 12 (32) , 36558-36567. https://doi.org/10.1021/acsami.0c10269
    14. Hui Wang, Wenxiu Liu, Sen Jin, Xiaodong Zhang, Yi Xie. Low-Dimensional Semiconductors in Artificial Photosynthesis: An Outlook for the Interactions between Particles/Quasiparticles. ACS Central Science 2020, 6 (7) , 1058-1069. https://doi.org/10.1021/acscentsci.0c00540
    15. Fuminao Kishimoto, Toru Wakihara, Tatsuya Okubo. Water-Dispersible Triplet–Triplet Annihilation Photon Upconversion Particle: Molecules Integrated in Hydrophobized Two–Dimensional Interlayer Space of Montmorillonite and Their Application for Photocatalysis in the Aqueous Phase. ACS Applied Materials & Interfaces 2020, 12 (6) , 7021-7029. https://doi.org/10.1021/acsami.9b15957
    16. Shih-Shou Lo, Yi-Ting Yang, Mu-Ting Li, Wen-Shiung Tsai, Sheng-Hao Wang, Der-Jun Jan. Monodisperse Al-Doped ZnO/Perovskite Nanocapsule. ACS Applied Materials & Interfaces 2020, 12 (1) , 1299-1305. https://doi.org/10.1021/acsami.9b16533
    17. Hak-Lae Lee, Jung Hwan Park, Hyun-Seok Choe, Myung-Soo Lee, Jeong-Min Park, Naoyuki Harada, Yoichi Sasaki, Nobuhiro Yanai, Nobuo Kimizuka, Jintao Zhu, Suk Ho Bhang, Jae-Hyuk Kim. Upconverting Oil-Laden Hollow Mesoporous Silica Microcapsules for Anti-Stokes-Based Biophotonic Applications. ACS Applied Materials & Interfaces 2019, 11 (30) , 26571-26580. https://doi.org/10.1021/acsami.9b06620
    18. Samuel N. Sanders, Mahesh K. Gangishetty, Matthew Y. Sfeir, Daniel N. Congreve. Photon Upconversion in Aqueous Nanodroplets. Journal of the American Chemical Society 2019, 141 (23) , 9180-9184. https://doi.org/10.1021/jacs.9b03992
    19. Hiromasa Nishikiori, Masahiro Takeshita, Yoshihiro Komatsu, Hiroshi Satozono, Katsuya Teshima. Photon Upconverted Emission Based on Dye-Sensitized Triplet–Triplet Annihilation in Silica Sol–Gel System. ACS Omega 2018, 3 (8) , 8529-8536. https://doi.org/10.1021/acsomega.8b01107
    20. Anna L. Hagstrom, Hak-Lae Lee, Myung-Soo Lee, Hyun-Seok Choe, Joori Jung, Byung-Geon Park, Won-Sik Han, Jong-Soo Ko, Jae-Hong Kim, Jae-Hyuk Kim. Flexible and Micropatternable Triplet–Triplet Annihilation Upconversion Thin Films for Photonic Device Integration and Anticounterfeiting Applications. ACS Applied Materials & Interfaces 2018, 10 (10) , 8985-8992. https://doi.org/10.1021/acsami.7b17789
    21. Sushant P. Sahu, Stephanie L. Cates, Hyoung-Il Kim, Jae-Hong Kim, Ezra L. Cates. The Myth of Visible Light Photocatalysis Using Lanthanide Upconversion Materials. Environmental Science & Technology 2018, 52 (5) , 2973-2980. https://doi.org/10.1021/acs.est.7b05941
    22. Sven H. C. Askes, Vincent C. Leeuwenburgh, Wim Pomp, Hadi Arjmandi-Tash, Stefania Tanase, Thomas Schmidt, and Sylvestre Bonnet . Water-Dispersible Silica-Coated Upconverting Liposomes: Can a Thin Silica Layer Protect TTA-UC against Oxygen Quenching?. ACS Biomaterials Science & Engineering 2017, 3 (3) , 322-334. https://doi.org/10.1021/acsbiomaterials.6b00678
    23. Sven H. C. Askes, Philip Brodie, Gilles Bruylants, and Sylvestre Bonnet . Temperature Dependence of Triplet–Triplet Annihilation Upconversion in Phospholipid Membranes. The Journal of Physical Chemistry B 2017, 121 (4) , 780-786. https://doi.org/10.1021/acs.jpcb.6b10039
    24. Anna L. Hagstrom, Fan Deng, and Jae-Hong Kim . Enhanced Triplet–Triplet Annihilation Upconversion in Dual-Sensitizer Systems: Translating Broadband Light Absorption to Practical Solid-State Materials. ACS Photonics 2017, 4 (1) , 127-137. https://doi.org/10.1021/acsphotonics.6b00679
    25. Nobuo Kimizuka, Nobuhiro Yanai, and Masa-aki Morikawa . Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly. Langmuir 2016, 32 (47) , 12304-12322. https://doi.org/10.1021/acs.langmuir.6b03363
    26. Hyoung-il Kim, Seunghyun Weon, Homan Kang, Anna L. Hagstrom, Oh Seok Kwon, Yoon-Sik Lee, Wonyong Choi, and Jae-Hong Kim . Plasmon-Enhanced Sub-Bandgap Photocatalysis via Triplet–Triplet Annihilation Upconversion for Volatile Organic Compound Degradation. Environmental Science & Technology 2016, 50 (20) , 11184-11192. https://doi.org/10.1021/acs.est.6b02729
    27. Cédric Mongin, Jessica H. Golden, and Felix N. Castellano . Liquid PEG Polymers Containing Antioxidants: A Versatile Platform for Studying Oxygen-Sensitive Photochemical Processes. ACS Applied Materials & Interfaces 2016, 8 (36) , 24038-24048. https://doi.org/10.1021/acsami.6b05697
    28. Xinpeng Jiang, Xinyan Guo, Jiang Peng, Dahui Zhao, and Yuguo Ma . Triplet–Triplet Annihilation Photon Upconversion in Polymer Thin Film: Sensitizer Design. ACS Applied Materials & Interfaces 2016, 8 (18) , 11441-11449. https://doi.org/10.1021/acsami.6b01339
    29. Xinpeng Jiang, Jiang Peng, Jianchun Wang, Xinyan Guo, Dahui Zhao, and Yuguo Ma . Iridium-Based High-Sensitivity Oxygen Sensors and Photosensitizers with Ultralong Triplet Lifetimes. ACS Applied Materials & Interfaces 2016, 8 (6) , 3591-3600. https://doi.org/10.1021/acsami.5b07860
    30. Oh Seok Kwon, Hyun Seok Song, João Conde, Hyoung-il Kim, Natalie Artzi, and Jae-Hong Kim . Dual-Color Emissive Upconversion Nanocapsules for Differential Cancer Bioimaging In Vivo. ACS Nano 2016, 10 (1) , 1512-1521. https://doi.org/10.1021/acsnano.5b07075
    31. Catherine E. McCusker and Felix N. Castellano . Efficient Visible to Near-UV Photochemical Upconversion Sensitized by a Long Lifetime Cu(I) MLCT Complex. Inorganic Chemistry 2015, 54 (12) , 6035-6042. https://doi.org/10.1021/acs.inorgchem.5b00907
    32. Prashanth Venkatesan, Jui-Yen Lin, Deblina Roy, Parthivi Aloni, Zhi-Fu Lin, Ruey-An Doong. Enhanced solar-driven photoelectrocatalytic water treatment and hydrogen evolution with triplet-triplet annihilation upconversion with Mo-doped BiVO4 nanocomposite films. Applied Catalysis B: Environment and Energy 2025, 365 , 124913. https://doi.org/10.1016/j.apcatb.2024.124913
    33. Enlai Yang, Rui Jiang, Ying Xu, Jiahao Liang, Yang Yang, Luqiang Yu, Pengfei Wang, Xu-dong Wang. Real-Time Measurement of a Single Living Cell Energy Metabolism Using Highly Photostable and Organelle-Targeted Oxygen Nanosensors. Sensors and Actuators B: Chemical 2025, 19 , 137420. https://doi.org/10.1016/j.snb.2025.137420
    34. Prashanth Venkatesan, Preeti Pal, Siew Suan Ng, Jui-Yen Lin, Ruey-An Doong. Sensitized triplet-triplet annihilation-based photon upconversion: Assembly strategy and key consideration for sustainable energy and biomedical applications. Coordination Chemistry Reviews 2025, 523 , 216266. https://doi.org/10.1016/j.ccr.2024.216266
    35. Haein Cho, Sung Eun Seo, Oh Seok Kwon, Hyoung-il Kim. Photonic crystal-assisted sub-bandgap photocatalysis via triplet-triplet annihilation upconversion for the degradation of environmental organic pollutants. Journal of Hazardous Materials 2024, 477 , 135208. https://doi.org/10.1016/j.jhazmat.2024.135208
    36. Ling Huang, Gang Han. Triplet–triplet annihilation photon upconversion-mediated photochemical reactions. Nature Reviews Chemistry 2024, 8 (4) , 238-255. https://doi.org/10.1038/s41570-024-00585-3
    37. Chuang Han, Bidyut Kumar Kundu, Yujun Liang, Yujie Sun. Near‐Infrared Light‐Driven Photocatalysis with an Emphasis on Two‐Photon Excitation: Concepts, Materials, and Applications. Advanced Materials 2024, 36 (5) https://doi.org/10.1002/adma.202307759
    38. Toshiko Mizokuro, Yoshihiro Kikkawa, Hirokazu Ohsawa, Kenji Kobayashi, Kenji Kamada. Improvement in the upconversion efficiency of an alternating multilayer structure based on 9,10-bis(4-methylphenyl) anthracene and platinum octaethylporphyrin vacuum deposited on an in-plane oriented polythiophene film. Thin Solid Films 2024, 791 , 140228. https://doi.org/10.1016/j.tsf.2024.140228
    39. Jinqiang Zhang, Hong Wu, Lei Shi, Zhentao Wu, Shu Zhang, Shaobin Wang, Hongqi Sun. Photocatalysis coupling with membrane technology for sustainable and continuous purification of wastewater. Separation and Purification Technology 2024, 329 , 125225. https://doi.org/10.1016/j.seppur.2023.125225
    40. Haein Cho, Sung Eun Seo, Oh Seok Kwon, Hyoung-il Kim. Photonic Crystal-Assisted Sub-Bandgap Photocatalysis Via Triplet-Triplet Annihilation Upconversion for the Degradation of Environmental Organic Pollutants. 2024https://doi.org/10.2139/ssrn.4772398
    41. Felix Glaser, Matthias Schmitz, Christoph Kerzig. Coulomb interactions for mediator-enhanced sensitized triplet–triplet annihilation upconversion in solution. Nanoscale 2023, 16 (1) , 123-137. https://doi.org/10.1039/D3NR05265F
    42. Wenyue Lin, Jiayao Li, Hongjuan Feng, Fang Qi, Ling Huang. Recent Advances in Triplet–Triplet Annihilation Upconversion for Bioimaging and Biosensing. Journal of Analysis and Testing 2023, 7 (4) , 327-344. https://doi.org/10.1007/s41664-023-00264-0
    43. Chun-Hui Gao, Shi-Ming Zhang, Fang-Fang Feng, San-San Hu, Qian-Fan Zhao, Yong-Zheng Chen. Constructing a CdS QDs/silica gel composite with high photosensitivity and prolonged recyclable operability for enhanced visible-light-driven NADH regeneration. Journal of Colloid and Interface Science 2023, 652 , 1043-1052. https://doi.org/10.1016/j.jcis.2023.08.090
    44. Le Zeng, Ling Huang, Wenhai Lin, Lin-Han Jiang, Gang Han. Red light-driven electron sacrificial agents-free photoreduction of inert aryl halides via triplet-triplet annihilation. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36679-7
    45. Lukas Naimovičius, Edvinas Radiunas, Manvydas Dapkevičius, Pankaj Bharmoria, Kasper Moth-Poulsen, Karolis Kazlauskas. The statistical probability factor in triplet mediated photon upconversion: a case study with perylene. Journal of Materials Chemistry C 2023, 11 (42) , 14826-14832. https://doi.org/10.1039/D3TC03158F
    46. Jotaro Honda, Kosuke Sugawa, Hironobu Tahara, Joe Otsuki. Plasmonic Metal Nanostructures Meet Triplet–Triplet Annihilation-Based Photon Upconversion Systems: Performance Improvements and Application Trends. Nanomaterials 2023, 13 (9) , 1559. https://doi.org/10.3390/nano13091559
    47. Tracy H. Schloemer, Samuel N. Sanders, Pournima Narayanan, Qi Zhou, Manchen Hu, Daniel N. Congreve. Controlling the durability and optical properties of triplet–triplet annihilation upconversion nanocapsules. Nanoscale 2023, 15 (15) , 6880-6889. https://doi.org/10.1039/D3NR00067B
    48. Lei Sun, Xuemei Yuan, Yuanyuan Che, Yi Wang, Jianzhang Zhao, Haijun Xu. Truxene-linked di-coumarin-mono-corrole tetrad: Synthesis, photophysical properties and application in Triplet−Triplet annihilation upconversion. Journal of Luminescence 2023, 256 , 119612. https://doi.org/10.1016/j.jlumin.2022.119612
    49. Wera Larsson, Masakazu Morimoto, Masahiro Irie, Joakim Andréasson, Bo Albinsson. Diarylethene Isomerization by Using Triplet–Triplet Annihilation Photon Upconversion. Chemistry – A European Journal 2023, 29 (13) https://doi.org/10.1002/chem.202203651
    50. Shanshan Liu, Heyuan Liu, Yujia Hu, Chenyang Zhao, Haibin Huang, Guiyang Yu, Zhi Li, Zhaobin Liu, Yanli Chen, Xiyou Li. Boosting photocatalytic hydrogen evolution via triplet–triplet annihilation upconversion. Chemical Engineering Journal 2023, 452 , 139203. https://doi.org/10.1016/j.cej.2022.139203
    51. Se-Yeun Hwang, Dayoon Song, Eun-Ji Seo, Frank Hollmann, Youngmin You, Jin-Byung Park. Triplet–triplet annihilation-based photon-upconversion to broaden the wavelength spectrum for photobiocatalysis. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-13406-8
    52. Raúl Pérez-Ruiz. Photon Upconversion Systems Based on Triplet–Triplet Annihilation as Photosensitizers for Chemical Transformations. Topics in Current Chemistry 2022, 380 (4) https://doi.org/10.1007/s41061-022-00378-6
    53. Bin Yao, Hongfei Sun, Youzhou He, Song Wang, Xingyan Liu. Recent Advances in the Photoreactions Triggered by Porphyrin-Based Triplet–Triplet Annihilation Upconversion Systems: Molecular Innovations and Nanoarchitectonics. International Journal of Molecular Sciences 2022, 23 (14) , 8041. https://doi.org/10.3390/ijms23148041
    54. Cui Wang, Winald R. Kitzmann, Florian Weigert, Christoph Förster, Xifan Wang, Katja Heinze, Ute Resch‐Genger. Matrix Effects on Photoluminescence and Oxygen Sensitivity of a Molecular Ruby. ChemPhotoChem 2022, 6 (6) https://doi.org/10.1002/cptc.202100296
    55. Samuel N. Sanders, Tracy H. Schloemer, Mahesh K. Gangishetty, Daniel Anderson, Michael Seitz, Arynn O. Gallegos, R. Christopher Stokes, Daniel N. Congreve. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 2022, 604 (7906) , 474-478. https://doi.org/10.1038/s41586-022-04485-8
    56. Sung Eun Seo, Hyun-Seok Choe, Haein Cho, Hyoung-il Kim, Jae-Hyuk Kim, Oh Seok Kwon. Recent advances in materials for and applications of triplet–triplet annihilation-based upconversion. Journal of Materials Chemistry C 2022, 10 (12) , 4483-4496. https://doi.org/10.1039/D1TC03551G
    57. Natalia Kiseleva, Mikhail A. Filatov, Jan C. Fischer, Milian Kaiser, Marius Jakoby, Dmitry Busko, Ian A. Howard, Bryce S. Richards, Andrey Turshatov. BODIPY–pyrene donor–acceptor sensitizers for triplet–triplet annihilation upconversion: the impact of the BODIPY-core on upconversion efficiency. Physical Chemistry Chemical Physics 2022, 24 (6) , 3568-3578. https://doi.org/10.1039/D1CP05382E
    58. Angelo Monguzzi. Photon Upconversion Based on Sensitized Triplet-Triplet Annihilation (sTTA) in Solids. 2022, 49-70. https://doi.org/10.1007/978-3-030-70358-5_4
    59. Ling Huang, Timmy Le, Kai Huang, Gang Han. Enzymatic enhancing of triplet–triplet annihilation upconversion by breaking oxygen quenching for background-free biological sensing. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-22282-1
    60. Can Gao, Wallace W. H. Wong, Zhengsheng Qin, Shih‐Chun Lo, Ebinazar B. Namdas, Huanli Dong, Wenping Hu. Application of Triplet–Triplet Annihilation Upconversion in Organic Optoelectronic Devices: Advances and Perspectives. Advanced Materials 2021, 33 (45) https://doi.org/10.1002/adma.202100704
    61. Xue Li, Wenting Liu, Jiaojiao Fang, Hengming Huang, Cheng Zhu, Yaru Ni, Liang Fang, Jiahui Kou, Chunhua Lu, Zhongzi Xu. Dual-layered up-conversion films with tunable multi-peaks spectrum for efficient photocatalytic degradation. Journal of Photochemistry and Photobiology A: Chemistry 2021, 417 , 113360. https://doi.org/10.1016/j.jphotochem.2021.113360
    62. Waqas Ahmad, Jingjing Wang, Huanhuan Li, Qin Ouyang, Wanhua Wu, Quansheng Chen. Strategies for combining triplet–triplet annihilation upconversion sensitizers and acceptors in a host matrix. Coordination Chemistry Reviews 2021, 439 , 213944. https://doi.org/10.1016/j.ccr.2021.213944
    63. Maryam Mahmoodi, Ezzat Rafiee, Sara Eavani, Foad Gholami. NIR-driven upconversion nanophotocatalyst based on hybrid inorganic-organic polyoxometalate for photodegradation of liquorice and biologically treated yeast extract industrial wastewater. Materials Chemistry and Physics 2021, 267 , 124603. https://doi.org/10.1016/j.matchemphys.2021.124603
    64. Yosuke Kageshima, Shutaro Tateyama, Fuminao Kishimoto, Katsuya Teshima, Kazunari Domen, Hiromasa Nishikiori. Photocatalytic oxygen evolution triggered by photon upconverted emission based on triplet–triplet annihilation. Physical Chemistry Chemical Physics 2021, 23 (9) , 5673-5679. https://doi.org/10.1039/D0CP06139E
    65. Felipe Saenz, Alessandra Ronchi, Michele Mauri, Roberto Vadrucci, Francesco Meinardi, Angelo Monguzzi, Christoph Weder. Nanostructured Polymers Enable Stable and Efficient Low‐Power Photon Upconversion. Advanced Functional Materials 2021, 31 (1) https://doi.org/10.1002/adfm.202004495
    66. Hui Wang, Sen Jin, Xiaodong Zhang, Yi Xie. Excitonic Effects in Polymeric Photocatalysts. Angewandte Chemie 2020, 132 (51) , 23024-23035. https://doi.org/10.1002/ange.202002241
    67. Hui Wang, Sen Jin, Xiaodong Zhang, Yi Xie. Excitonic Effects in Polymeric Photocatalysts. Angewandte Chemie International Edition 2020, 59 (51) , 22828-22839. https://doi.org/10.1002/anie.202002241
    68. Toshiko Mizokuro, Aizitiaili Abulikemu, Kengo Suzuki, Yusuke Sakagami, Ritsuki Nishii, Tetsuro Jin, Kenji Kamada. Triplet–triplet annihilation upconversion through triplet energy transfer at a nanoporous solid–liquid interface. Physical Chemistry Chemical Physics 2020, 22 (32) , 17807-17813. https://doi.org/10.1039/D0CP01735C
    69. Sung Eun Seo, Chul Soon Park, Seon Joo Park, Kyung Ho Kim, Jiyeon Lee, Jinyeong Kim, Sang Hun Lee, Hyun Seok Song, Tai Hwan Ha, Jae-Hyuk Kim, Hee Won Yim, Hyoung-il Kim, Oh Seok Kwon. Single-photon-driven up-/down-conversion nanohybrids for in vivo mercury detection and real-time tracking. Journal of Materials Chemistry A 2020, 8 (4) , 1668-1677. https://doi.org/10.1039/C9TA10921H
    70. Jiaojiao Fang, Yukai Chen, Wei Wang, Liang Fang, Chunhua Lu, Cheng Zhu, Jiahui Kou, Yaru Ni, Zhongzi Xu. Highly efficient photocatalytic hydrogen generation of g-C3N4-CdS sheets based on plasmon-enhanced triplet–triplet annihilation upconversion. Applied Catalysis B: Environmental 2019, 258 , 117762. https://doi.org/10.1016/j.apcatb.2019.117762
    71. Ling Huang, Eugenia Kakadiaris, Tereza Vaneckova, Kai Huang, Marketa Vaculovicova, Gang Han. Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles. Biomaterials 2019, 201 , 77-86. https://doi.org/10.1016/j.biomaterials.2019.02.008
    72. Wenlong Chen, Fengling Song, Shanliang Tang, Gaobo Hong, Yingnan Wu, Xiaojun Peng. Red-to-blue photon up-conversion with high efficiency based on a TADF fluorescein derivative. Chemical Communications 2019, 55 (30) , 4375-4378. https://doi.org/10.1039/C9CC01868A
    73. Sundaram Chandrasekaran, Seung Hyun Hur. Mesoporous ruthenium metal organic framework core shell templated CdS/rGO nanosheets catalyst for efficient bifunctional electro-catalytic oxygen reactions. Materials Research Bulletin 2019, 112 , 95-103. https://doi.org/10.1016/j.materresbull.2018.12.010
    74. Sven H. C. Askes, Sylvestre Bonnet. Solving the oxygen sensitivity of sensitized photon upconversion in life science applications. Nature Reviews Chemistry 2018, 2 (12) , 437-452. https://doi.org/10.1038/s41570-018-0057-z
    75. Victor Gray, Kasper Moth-Poulsen, Bo Albinsson, Maria Abrahamsson. Towards efficient solid-state triplet–triplet annihilation based photon upconversion: Supramolecular, macromolecular and self-assembled systems. Coordination Chemistry Reviews 2018, 362 , 54-71. https://doi.org/10.1016/j.ccr.2018.02.011
    76. Jacopo Pedrini, Angelo Monguzzi. Recent advances in the application triplet–triplet annihilation-based photon upconversion systems to solar technologies. Journal of Photonics for Energy 2018, 8 (02) , 1. https://doi.org/10.1117/1.JPE.8.022005
    77. Xinyan Guo, Yiming Liu, Qi Chen, Dahui Zhao, Yuguo Ma. New Bichromophoric Triplet Photosensitizer Designs and Their Application in Triplet–Triplet Annihilation Upconversion. Advanced Optical Materials 2018, 6 (4) https://doi.org/10.1002/adom.201700981
    78. Cheng Zhu, Jiaojiao Fang, Yaru Ni, Liang Fang, Chunhua Lu, Zhongzi Xu, Zhitao Kang. Enhancement of fluorescent properties of photonic crystals containing triplet–triplet annihilation upconversion materials via adjusting incident angles. Journal of Materials Science: Materials in Electronics 2018, 29 (2) , 1680-1689. https://doi.org/10.1007/s10854-017-8081-1
    79. Zhao Li, Qiwu Zhang, Xiaoman He, Min Chen. Enhanced visible light photocatalytic activity of the mechanochemically prepared nanosized Zn x Cd 1-x S/Zn-Al layered double hydroxide precursor heterojunctions. Applied Clay Science 2018, 151 , 201-210. https://doi.org/10.1016/j.clay.2017.10.012
    80. Chengchen Duan, Liuen Liang, Li Li, Run Zhang, Zhi Ping Xu. Recent progress in upconversion luminescence nanomaterials for biomedical applications. Journal of Materials Chemistry B 2018, 6 (2) , 192-209. https://doi.org/10.1039/C7TB02527K
    81. Roberto Vadrucci, Angelo Monguzzi, Felipe Saenz, Bodo D. Wilts, Yoan C. Simon, Christoph Weder. Nanodroplet‐Containing Polymers for Efficient Low‐Power Light Upconversion. Advanced Materials 2017, 29 (41) https://doi.org/10.1002/adma.201702992
    82. Jiaojiao Fang, Wei Wang, Cheng Zhu, Liang Fang, Junyang Jin, Yaru Ni, Chunhua Lu, Zhongzi Xu. CdS/Pt photocatalytic activity boosted by high-energetic photons based on efficient triplet–triplet annihilation upconversion. Applied Catalysis B: Environmental 2017, 217 , 100-107. https://doi.org/10.1016/j.apcatb.2017.05.069
    83. Jianlei Han, Fei Zhang, Jing You, Yonemura Hiroaki, Sunao Yamada, Toru Morifuji, Shirong Wang, Xianggao Li. The first transition metal phthalocyanines: sensitizing rubrene emission based on triplet–triplet annihilation. Photochemical & Photobiological Sciences 2017, 16 (9) , 1384-1390. https://doi.org/10.1039/c6pp00464d
    84. Li Liu, Panru Hu, Wenquan Cui, Xingang Li, Zisheng Zhang. Increased photocatalytic hydrogen evolution and stability over nano-sheet g-C3N4 hybridized CdS core@shell structure. International Journal of Hydrogen Energy 2017, 42 (27) , 17435-17445. https://doi.org/10.1016/j.ijhydene.2017.02.171
    85. Ji‐Hwan Kang, Sang Seok Lee, Josefa Guerrero, Alberto Fernandez‐Nieves, Shin‐Hyun Kim, Elsa Reichmanis. Ultrathin Double‐Shell Capsules for High Performance Photon Upconversion. Advanced Materials 2017, 29 (21) https://doi.org/10.1002/adma.201606830
    86. Qianqian Shen, Jinbo Xue, Haocheng Zhao, Mingzhe Shao, Xuguang Liu, Husheng Jia. The role of crystalline TiO2 nanoparticle in enhancing the photocatalytic and photoelectrocatalytic properties of CdS nanorods. Journal of Alloys and Compounds 2017, 695 , 1080-1087. https://doi.org/10.1016/j.jallcom.2016.10.233
    87. Kenji Kamada, Yusuke Sakagami, Toshiko Mizokuro, Yutaka Fujiwara, Kenji Kobayashi, Kaishi Narushima, Shuzo Hirata, Martin Vacha. Efficient triplet–triplet annihilation upconversion in binary crystalline solids fabricated via solution casting and operated in air. Materials Horizons 2017, 4 (1) , 83-87. https://doi.org/10.1039/C6MH00413J
    88. Bo Tian, Qiuhong Wang, Qianqian Su, Wei Feng, Fuyou Li. In vivo biodistribution and toxicity assessment of triplet-triplet annihilation-based upconversion nanocapsules. Biomaterials 2017, 112 , 10-19. https://doi.org/10.1016/j.biomaterials.2016.10.008
    89. Sundaram Chandrasekaran, Yen-Linh Thi Ngo, Lijun Sui, Eui Jung Kim, Dinh Khoi Dang, Jin Suk Chung, Seung Hyun Hur. Highly enhanced visible light water splitting of CdS by green to blue upconversion. Dalton Trans. 2017, 46 (40) , 13912-13919. https://doi.org/10.1039/C7DT02936E
    90. Ruolin Wang, Rui Qu, Chen Jing, Yan Zhai, Yingli An, Linqi Shi. Zinc porphyrin/fullerene/block copolymer micelle for enhanced electron transfer ability and stability. RSC Advances 2017, 7 (17) , 10100-10107. https://doi.org/10.1039/C7RA00196G
    91. Sven Askes, Michael Meijer, Tessel Bouwens, Iris Landman, Sylvestre Bonnet. Red Light Activation of Ru(II) Polypyridyl Prodrugs via Triplet-Triplet Annihilation Upconversion: Feasibility in Air and through Meat. Molecules 2016, 21 (11) , 1460. https://doi.org/10.3390/molecules21111460
    92. Sven H. C. Askes, Wim Pomp, Samantha L. Hopkins, Alexander Kros, Si Wu, Thomas Schmidt, Sylvestre Bonnet. Imaging Upconverting Polymersomes in Cancer Cells: Biocompatible Antioxidants Brighten Triplet–Triplet Annihilation Upconversion. Small 2016, 12 (40) , 5579-5590. https://doi.org/10.1002/smll.201601708
    93. Yuyang Zhou, Qingqing Zhang, Xiaomei Wang, Saijiang Zhu, Changqing Ye, Nan Xu, Zhengying Wu, Haonan Ma, Xingchen Zhou, Ruimei Leng, Ligen Wang, Wenshuai He. Green to Blue Annihilated Upconversion from a Simple Iridium(III) Sensitizer with Carboxylic Group. ChemistrySelect 2016, 1 (11) , 2630-2634. https://doi.org/10.1002/slct.201600386
    94. Hyoung-il Kim, Oh Seok Kwon, Sujeong Kim, Wonyong Choi, Jae-Hong Kim. Harnessing low energy photons (635 nm) for the production of H 2 O 2 using upconversion nanohybrid photocatalysts. Energy & Environmental Science 2016, 9 (3) , 1063-1073. https://doi.org/10.1039/C5EE03115J
    95. Jiang Peng, Xinyan Guo, Xinpeng Jiang, Dahui Zhao, Yuguo Ma. Developing efficient heavy-atom-free photosensitizers applicable to TTA upconversion in polymer films. Chemical Science 2016, 7 (2) , 1233-1237. https://doi.org/10.1039/C5SC03245H
    96. Stanislav Baluschev, Kartheek Katta, Yuri Avlasevich, Katharina Landfester. Annihilation upconversion in nanoconfinement: solving the oxygen quenching problem. Materials Horizons 2016, 3 (6) , 478-486. https://doi.org/10.1039/C6MH00289G
    97. Sven H. C. Askes, Miroslav Kloz, Gilles Bruylants, John T. M. Kennis, Sylvestre Bonnet. Triplet–triplet annihilation upconversion followed by FRET for the red light activation of a photodissociative ruthenium complex in liposomes. Physical Chemistry Chemical Physics 2015, 17 (41) , 27380-27390. https://doi.org/10.1039/C5CP04352B

    ACS Applied Materials & Interfaces

    Cite this: ACS Appl. Mater. Interfaces 2015, 7, 1, 318–325
    Click to copy citationCitation copied!
    https://doi.org/10.1021/am506233h
    Published December 18, 2014
    Copyright © 2014 American Chemical Society

    Article Views

    4026

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.