Aggregation of globular proteinsClick to copy article linkArticle link copied!
Note: In lieu of an abstract, this is the article's first page.
Cited By
This article is cited by 121 publications.
- Asuka A. Orr, Aoxiang Tao, Olgun Guvench, Alexander D. MacKerell, Jr.. Site Identification by Ligand Competitive Saturation-Biologics Approach for Structure-Based Protein Charge Prediction. Molecular Pharmaceutics 2023, 20
(5)
, 2600-2611. https://doi.org/10.1021/acs.molpharmaceut.3c00064
- Yoshihide Furuichi, Shogo Yoshimoto, Tomohiro Inaba, Nobuhiko Nomura, Katsutoshi Hori. Process Description of an Unconventional Biofilm Formation by Bacterial Cells Autoagglutinating through Sticky, Long, and Peritrichate Nanofibers. Environmental Science & Technology 2020, 54
(4)
, 2520-2529. https://doi.org/10.1021/acs.est.9b06577
- Chongyi Chen, Hailin Fu, Ryan Baumgartner, Ziyuan Song, Yao Lin, Jianjun Cheng. Proximity-Induced Cooperative Polymerization in “Hinged” Helical Polypeptides. Journal of the American Chemical Society 2019, 141
(22)
, 8680-8683. https://doi.org/10.1021/jacs.9b02298
- Hiroshi Imamura and Shinya Honda . Kinetics of Antibody Aggregation at Neutral pH and Ambient Temperatures Triggered by Temporal Exposure to Acid. The Journal of Physical Chemistry B 2016, 120
(36)
, 9581-9589. https://doi.org/10.1021/acs.jpcb.6b05473
- Roy J. B. M. Delahaije, Harry Gruppen, Evelien L. van Eijk−van Boxtel, Leonardo Cornacchia, and Peter A. Wierenga . Controlling the Ratio between Native-Like, Non-Native-Like, and Aggregated β-Lactoglobulin after Heat Treatment. Journal of Agricultural and Food Chemistry 2016, 64
(21)
, 4362-4370. https://doi.org/10.1021/acs.jafc.6b00816
- Florian Platten, Jan Hansen, Johanna Milius, Dana Wagner, and Stefan U. Egelhaaf . Additivity of the Specific Effects of Additives on Protein Phase Behavior. The Journal of Physical Chemistry B 2015, 119
(48)
, 14986-14993. https://doi.org/10.1021/acs.jpcb.5b08078
- Roy J. B. M. Delahaije, Peter A. Wierenga, Marco L. F. Giuseppin, and Harry Gruppen . Comparison of Heat-Induced Aggregation of Globular Proteins. Journal of Agricultural and Food Chemistry 2015, 63
(21)
, 5257-5265. https://doi.org/10.1021/acs.jafc.5b00927
- Deepti Karandur, Ka-Yiu Wong, and B. Montgomery Pettitt . Solubility and Aggregation of Gly5 in Water. The Journal of Physical Chemistry B 2014, 118
(32)
, 9565-9572. https://doi.org/10.1021/jp503358n
- Madeleine B. Borgia, Adrian A. Nickson, Jane Clarke, and Michael J. Hounslow . A Mechanistic Model for Amorphous Protein Aggregation of Immunoglobulin-like Domains. Journal of the American Chemical Society 2013, 135
(17)
, 6456-6464. https://doi.org/10.1021/ja308852b
- Yisheng Xu, Daniel Seeman, Yunfeng Yan, Lianhong Sun, Jared Post, and Paul L. Dubin . Effect of Heparin on Protein Aggregation: Inhibition versus Promotion. Biomacromolecules 2012, 13
(5)
, 1642-1651. https://doi.org/10.1021/bm3003539
- Yisheng Xu, Yunfeng Yan, Daniel Seeman, Lianhong Sun, and Paul L. Dubin . Multimerization and Aggregation of Native-State Insulin: Effect of Zinc. Langmuir 2012, 28
(1)
, 579-586. https://doi.org/10.1021/la202902a
- Tom F. A. De Greef, Maarten M. J. Smulders, Martin Wolffs, Albert P. H. J. Schenning, Rint P. Sijbesma and E. W. Meijer. Supramolecular Polymerization. Chemical Reviews 2009, 109
(11)
, 5687-5754. https://doi.org/10.1021/cr900181u
- Shinji Takeoka,, Takeru Ohgushi,, Kouichiro Terase,, Taizen Ohmori, and, Eishun Tsuchida. Layer-Controlled Hemoglobin Vesicles by Interaction of Hemoglobin with a Phospholipid Assembly. Langmuir 1996, 12
(7)
, 1755-1759. https://doi.org/10.1021/la940936j
- Paula Khati, Rozenn Le Parc, Dominique Chevalier-Lucia, Laetitia Picart-Palmade. High pressure and heat-induced potato protein aggregates: A comparison of aggregation kinetics, structure modifications, and protein interactions.. Food Hydrocolloids 2024, 151 , 109838. https://doi.org/10.1016/j.foodhyd.2024.109838
- Keisuke Yuzu, Hiroshi Imamura, Takuro Nozaki, Yuki Fujii, Shaymaa Mohamed Mohamed Badawy, Ken Morishima, Aya Okuda, Rintaro Inoue, Masaaki Sugiyama, Eri Chatani. Mechanistic Modeling of Amyloid Oligomer and Protofibril Formation in Bovine Insulin. Journal of Molecular Biology 2024, 436
(6)
, 168461. https://doi.org/10.1016/j.jmb.2024.168461
- Ashish Kumar Dhillon, Arti Sharma, Vikas Yadav, Ruchi Singh, Tripti Ahuja, Sanmitra Barman, Soumik Siddhanta. Raman spectroscopy and its
plasmon
‐enhanced counterparts: A toolbox to probe protein dynamics and aggregation. WIREs Nanomedicine and Nanobiotechnology 2024, 16
(1)
https://doi.org/10.1002/wnan.1917
- Katharina Tatjana Kopp, Lien Saerens, Jody Voorspoels, Guy Van den Mooter. Solidification and oral delivery of biologics to the colon- A review. European Journal of Pharmaceutical Sciences 2023, 190 , 106523. https://doi.org/10.1016/j.ejps.2023.106523
- Furio Surfaro, Ralph Maier, Kai-Florian Pastryk, Fajun Zhang, Frank Schreiber, Roland Roth. An alternative approach to the osmotic second virial coefficient of protein solutions and its application to liquid–liquid phase separation. The Journal of Chemical Physics 2023, 158
(16)
https://doi.org/10.1063/5.0143696
- Kyongok Kang, Florian Platten. Electric-field induced modulation of amorphous protein aggregates: polarization, deformation, and reorientation. Scientific Reports 2022, 12
(1)
https://doi.org/10.1038/s41598-022-06995-x
- Duowei Lu, Pedram Fatehi. Interaction of rough ellipsoidal particles with random surface asperities in colloidal systems. Chemical Engineering Science 2022, 260 , 117869. https://doi.org/10.1016/j.ces.2022.117869
- Wei Yang, Xiaoqing Qu, Chujun Deng, Lei Dai, Haoyu Zhou, Guihua Xu, Bo Li, Nazarenko Yulia, Changzhong Liu. Heat sensitive protein-heat stable protein interaction: Synergistic enhancement in the thermal co-aggregation and gelation of lactoferrin and α-lactalbumin. Food Research International 2021, 142 , 110179. https://doi.org/10.1016/j.foodres.2021.110179
- Jai Pathak, Sean Nugent, Michael Bender, Christopher Roberts, Robin Curtis, Jack Douglas. Comparison of Huggins Coefficients and Osmotic Second Virial Coefficients of Buffered Solutions of Monoclonal Antibodies. Polymers 2021, 13
(4)
, 601. https://doi.org/10.3390/polym13040601
- Gema Dura, Daniel T. Peters, Helen Waller, Adrian I. Yemm, Neil D. Perkins, Ana Marina Ferreira, Maria Crespo-Cuadrado, Jeremy H. Lakey, David A. Fulton. A Thermally Reformable Protein Polymer. Chem 2020, 6
(11)
, 3132-3151. https://doi.org/10.1016/j.chempr.2020.09.020
- L. Lin, M. Wong, H.C. Deeth, H.E. Oh. Calcium-induced skim milk gels: Impact of holding temperature and ionic strength. International Dairy Journal 2020, 104 , 104657. https://doi.org/10.1016/j.idairyj.2020.104657
- Rohit Bansal, Md. Anzarul Haque, Md. Imtaiyaz Hassan, Abdul S. Ethayathulla, Punit Kaur. Structural and conformational behavior of MurE ligase from Salmonella enterica serovar Typhi at different temperature and pH conditions. International Journal of Biological Macromolecules 2020, 150 , 389-399. https://doi.org/10.1016/j.ijbiomac.2020.01.306
- Lucas A. Lane. Physics in nanomedicine: Phenomena governing the
in vivo
performance of nanoparticles. Applied Physics Reviews 2020, 7
(1)
https://doi.org/10.1063/1.5052455
- Yue Hu, Jayant Arora, Sangeeta B. Joshi, Reza Esfandiary, C. Russell Middaugh, David D. Weis, David B. Volkin. Characterization of Excipient Effects on Reversible Self-Association, Backbone Flexibility, and Solution Properties of an IgG1 Monoclonal Antibody at High Concentrations: Part 1. Journal of Pharmaceutical Sciences 2020, 109
(1)
, 340-352. https://doi.org/10.1016/j.xphs.2019.06.005
- Natalia Sh. Lebedeva, Elena S. Yurina, Yury A. Gubarev, Oskar I. Koifman. Effect of macrocyclic compounds to protein aggregation. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2019, 95
(3-4)
, 199-206. https://doi.org/10.1007/s10847-019-00947-1
- Steffen Großhans, Gang Wang, Jürgen Hubbuch. Water on hydrophobic surfaces: mechanistic modeling of polyethylene glycol-induced protein precipitation. Bioprocess and Biosystems Engineering 2019, 42
(4)
, 513-520. https://doi.org/10.1007/s00449-018-2054-5
- Ellen Koepf, Rudolf Schroeder, Gerald Brezesinski, Wolfgang Friess. The film tells the story: Physical-chemical characteristics of IgG at the liquid-air interface. European Journal of Pharmaceutics and Biopharmaceutics 2017, 119 , 396-407. https://doi.org/10.1016/j.ejpb.2017.07.006
- Jissy Jose, Laurice Pouvreau, Anneke H. Martin. Mixing whey and soy proteins: Consequences for the gel mechanical response and water holding. Food Hydrocolloids 2016, 60 , 216-224. https://doi.org/10.1016/j.foodhyd.2016.03.031
- Kai Baumgartner, Sven Amrhein, Stefan A. Oelmeier, Jürgen Hubbuch. The influence of mixed salts on the capacity of
HIC
adsorbers: A predictive correlation to the surface tension and the aggregation temperature. Biotechnology Progress 2016, 32
(2)
, 346-354. https://doi.org/10.1002/btpr.2166
- Sandeep Vemula, Sushma Vemula, Akshay Dedaniya, Srinivasa Reddy Ronda. In vitro refolding with simultaneous purification of recombinant human parathyroid hormone (rhPTH 1–34) from Escherichia coli directed by protein folding size exclusion chromatography (PF-SEC): implication of solution additives and their role on aggregates and renaturation. Analytical and Bioanalytical Chemistry 2016, 408
(1)
, 217-229. https://doi.org/10.1007/s00216-015-9097-0
- Carmen Velasco, JoséIgnacio Calvo, Laura Palacio, Javier Carmona, Pedro Prádanos, Antonio Hernández. Flux kinetics, limit and critical fluxes for low pressure dead-end microfiltration. The case of BSA filtration through a positively charged membrane. Chemical Engineering Science 2015, 129 , 58-68. https://doi.org/10.1016/j.ces.2015.02.003
- Florian Platten, Néstor E. Valadez-Pérez, Ramón Castañeda-Priego, Stefan U. Egelhaaf. Extended law of corresponding states for protein solutions. The Journal of Chemical Physics 2015, 142
(17)
https://doi.org/10.1063/1.4919127
- Lucas A. Lane, Ximei Qian, Andrew M. Smith, Shuming Nie. Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo. Annual Review of Physical Chemistry 2015, 66
(1)
, 521-547. https://doi.org/10.1146/annurev-physchem-040513-103718
- Lucrèce Nicoud, Marta Owczarz, Paolo Arosio, Massimo Morbidelli. A multiscale view of therapeutic protein aggregation: A colloid science perspective. Biotechnology Journal 2015, 10
(3)
, 367-378. https://doi.org/10.1002/biot.201400858
- Prasad S. Sarangapani, Steven D. Hudson, Ronald L. Jones, Jack F. Douglas, Jai A. Pathak. Critical Examination of the Colloidal Particle Model of Globular Proteins. Biophysical Journal 2015, 108
(3)
, 724-737. https://doi.org/10.1016/j.bpj.2014.11.3483
- Xun Gong, Anil K. Sharma, Michael S. Strano, Debabrata Mukhopadhyay. Selective Assembly of DNA-Conjugated Single-Walled Carbon Nanotubes from the Vascular Secretome. ACS Nano 2014, 8
(9)
, 9126-9136. https://doi.org/10.1021/nn5026912
- Rajoshi Chaudhuri, Yuan Cheng, C. Russell Middaugh, David B. Volkin. High-Throughput Biophysical Analysis of Protein Therapeutics to Examine Interrelationships Between Aggregate Formation and Conformational Stability. The AAPS Journal 2014, 16
(1)
, 48-64. https://doi.org/10.1208/s12248-013-9539-6
- Prasad S. Sarangapani, Steven D. Hudson, Kalman B. Migler, Jai A. Pathak. The Limitations of an Exclusively Colloidal View of Protein Solution Hydrodynamics and Rheology. Biophysical Journal 2013, 105
(10)
, 2418-2426. https://doi.org/10.1016/j.bpj.2013.10.012
- Yuji Nakamura, Hiroshi Ueno, Ken Kokubo, Naohiko Ikuma, Takumi Oshima. Magic number effect on cluster formation of polyhydroxylated fullerenes in water–alcohol binary solution. Journal of Nanoparticle Research 2013, 15
(6)
https://doi.org/10.1007/s11051-013-1755-6
- Jai A. Pathak, Rumi R. Sologuren, Rojaramani Narwal. Do Clustering Monoclonal Antibody Solutions Really Have a Concentration Dependence of Viscosity?. Biophysical Journal 2013, 104
(4)
, 913-923. https://doi.org/10.1016/j.bpj.2013.01.007
- Rita Carrotta, Silvia Vilasi, Fabio Librizzi, Vincenzo Martorana, Donatella Bulone, Pier Luigi San Biagio. α-Casein Inhibition Mechanism in Concanavalin A Aggregation Process. The Journal of Physical Chemistry B 2012, 116
(50)
, 14700-14707. https://doi.org/10.1021/jp307417x
- S.P. Rozhkov, А.S. Goryunov. Salt induced thermodynamic instability, concentration heterogeneity and phase transitions in lysozyme solutions. Biophysical Chemistry 2012, 170 , 34-41. https://doi.org/10.1016/j.bpc.2012.08.001
- Hermann Weingärtner, Chiara Cabrele, Christian Herrmann. How ionic liquids can help to stabilize native proteins. Phys. Chem. Chem. Phys. 2012, 14
(2)
, 415-426. https://doi.org/10.1039/C1CP21947B
- Tatyana Eronina, Vera Borzova, Olga Maloletkina, Sergey Kleymenov, Regina Asryants, Kira Markossian, Boris Kurganov, . A Protein Aggregation Based Test for Screening of the Agents Affecting Thermostability of Proteins. PLoS ONE 2011, 6
(7)
, e22154. https://doi.org/10.1371/journal.pone.0022154
- . References to Part Two. 2011, 359-367. https://doi.org/10.1016/S0166-526X(11)56024-6
- Konstantin O. Muranov, Olga I. Maloletkina, Nikolay B. Poliansky, Kira A. Markossian, Sergey Yu. Kleymenov, Sergey P. Rozhkov, Andrei S. Goryunov, Michail A. Ostrovsky, Boris I. Kurganov. Mechanism of aggregation of UV-irradiated βL-crystallin. Experimental Eye Research 2011, 92
(1)
, 76-86. https://doi.org/10.1016/j.exer.2010.11.005
- Zoya Bumagina, Bella Gurvits, Natalya Artemova, Konstantin Muranov, Boris Kurganov. Paradoxical Acceleration of Dithiothreitol-Induced Aggregation of Insulin in the Presence of a Chaperone. International Journal of Molecular Sciences 2010, 11
(11)
, 4556-4579. https://doi.org/10.3390/ijms11114556
- Frank Luechau, Tau Chuan Ling, Andrew Lyddiatt. A descriptive model and methods for up-scaled process routes for interfacial partition of bioparticles in aqueous two-phase systems. Biochemical Engineering Journal 2010, 50
(3)
, 122-130. https://doi.org/10.1016/j.bej.2010.04.006
- Klaus Gast. Dynamic and Static Light Scattering. 2010, 477-524. https://doi.org/10.1002/9780470602614.ch17
- Christian Beyschau Andersen, Mauro Manno, Christian Rischel, Matthías Thórólfsson, Vincenzo Martorana. Aggregation of a multidomain protein: A coagulation mechanism governs aggregation of a model IgG1 antibody under weak thermal stress. Protein Science 2010, 19
(2)
, 279-290. https://doi.org/10.1002/pro.309
- Søren N. Olsen, Kim B. Andersen, Ted W. Randolph, John F. Carpenter, Peter Westh. Role of electrostatic repulsion on colloidal stability of Bacillus halmapalus alpha-amylase. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2009, 1794
(7)
, 1058-1065. https://doi.org/10.1016/j.bbapap.2009.02.010
- Vincent K. Shen, Jason K. Cheung, Jeffrey R. Errington, Thomas M. Truskett. Insights Into Crowding Effects on Protein Stability From a Coarse-Grained Model. Journal of Biomechanical Engineering 2009, 131
(7)
https://doi.org/10.1115/1.3127259
- Avanish S. Parmar, Martin Muschol. Hydration and Hydrodynamic Interactions of Lysozyme: Effects of Chaotropic versus Kosmotropic Ions. Biophysical Journal 2009, 97
(2)
, 590-598. https://doi.org/10.1016/j.bpj.2009.04.045
- Xiaoling Wang, Tapan K. Das, Satish K. Singh, Sandeep Kumar. Potential aggregation prone regions in biotherapeutics. mAbs 2009, 1
(3)
, 254-267. https://doi.org/10.4161/mabs.1.3.8035
- Yan Liu, Rong Guo. Aggregation properties of aqueous casein hydrolysate solutions at different pH. International Dairy Journal 2008, 18
(10-11)
, 1022-1027. https://doi.org/10.1016/j.idairyj.2008.05.005
- Klaus Gast, Andreas J. Modler. Studying Protein Folding and Aggregation by Laser Light Scattering. 2008, 673-709. https://doi.org/10.1002/9783527610754.sa07
- K.H. Strucksberg, T. Rosenkranz, J. Fitter. Reversible and irreversible unfolding of multi-domain proteins. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2007, 1774
(12)
, 1591-1603. https://doi.org/10.1016/j.bbapap.2007.09.005
- Christopher J. Roberts. Non‐native protein aggregation kinetics. Biotechnology and Bioengineering 2007, 98
(5)
, 927-938. https://doi.org/10.1002/bit.21627
- Cedric Hurth, Chunzeng Li, Allen J. Bard. Direct Probing of Electrical Double Layers by Scanning Electrochemical Potential Microscopy. The Journal of Physical Chemistry C 2007, 111
(12)
, 4620-4627. https://doi.org/10.1021/jp0661084
- S. P. Rozhkov. Solubility and phase transitions in the water-protein-salt system. Biophysics 2006, 51
(5)
, 726-730. https://doi.org/10.1134/S0006350906050095
- Ricardo J. Solá, Wasfi Al‐Azzam, Kai Griebenow. Engineering of protein thermodynamic, kinetic, and colloidal stability: Chemical Glycosylation with monofunctionally activated glycans. Biotechnology and Bioengineering 2006, 94
(6)
, 1072-1079. https://doi.org/10.1002/bit.20933
- Harminder Bajaj, Vikas K. Sharma, Advait Badkar, David Zeng, Sandeep Nema, Devendra S. Kalonia. Protein Structural Conformation and Not Second Virial Coefficient Relates to Long-Term Irreversible Aggregation of a Monoclonal Antibody and Ovalbumin in Solution. Pharmaceutical Research 2006, 23
(6)
, 1382-1394. https://doi.org/10.1007/s11095-006-0018-y
- Irina Gitlin, Jeffrey D. Carbeck, George M. Whitesides. Why Are Proteins Charged? Networks of Charge–Charge Interactions in Proteins Measured by Charge Ladders and Capillary Electrophoresis. Angewandte Chemie International Edition 2006, 45
(19)
, 3022-3060. https://doi.org/10.1002/anie.200502530
- Irina Gitlin, Jeffrey D. Carbeck, George M. Whitesides. Warum sind Proteine geladen? Netzwerke aus Ladungs‐Ladungs‐Wechselwirkungen in Proteinen, analysiert über Ladungsleitern und Kapillarelektrophorese. Angewandte Chemie 2006, 118
(19)
, 3090-3131. https://doi.org/10.1002/ange.200502530
- Vincent K. Shen, Jason K. Cheung, Jeffrey R. Errington, Thomas M. Truskett. Coarse-Grained Strategy for Modeling Protein Stability in Concentrated Solutions. II: Phase Behavior. Biophysical Journal 2006, 90
(6)
, 1949-1960. https://doi.org/10.1529/biophysj.105.076497
- Jason K. Cheung, Thomas M. Truskett. Coarse-Grained Strategy for Modeling Protein Stability in Concentrated Solutions. Biophysical Journal 2005, 89
(4)
, 2372-2384. https://doi.org/10.1529/biophysj.105.062067
- Klaus Gast, Andreas J. Modler. Studying Protein Folding and Aggregation by Laser Light Scattering. 2005, 673-709. https://doi.org/10.1002/9783527619498.ch19
- S.P. Rozhkov. Phase transitions and precrystallization processes in a water–protein–electrolyte system. Journal of Crystal Growth 2004, 273
(1-2)
, 266-279. https://doi.org/10.1016/j.jcrysgro.2004.08.021
- Michael Gottschalk, Bertil Halle. Self-Association of Lysozyme as Seen by Magnetic Relaxation Dispersion. The Journal of Physical Chemistry B 2003, 107
(31)
, 7914-7922. https://doi.org/10.1021/jp034527k
- Michael Gottschalk, Kandadai Venu, Bertil Halle. Protein Self-Association in Solution: The Bovine Pancreatic Trypsin Inhibitor Decamer. Biophysical Journal 2003, 84
(6)
, 3941-3958. https://doi.org/10.1016/S0006-3495(03)75122-4
- Margaret Speed Ricci, Casim A. Sarkar, Eric M. Fallon, Douglas A. Lauffenburger, David N. Brems. pH Dependence of structural stability of interleukin-2 and granulocyte colony-stimulating factor. Protein Science 2003, 12
(5)
, 1030-1038. https://doi.org/10.1110/ps.0230103
- R.I. Dima, D. Thirumalai. Exploring protein aggregation and self‐propagation using lattice models: Phase diagram and kinetics. Protein Science 2002, 11
(5)
, 1036-1049. https://doi.org/10.1110/ps.4220102
- F. N. Braun. Adhesion and liquid–liquid phase separation in globular protein solutions. The Journal of Chemical Physics 2002, 116
(15)
, 6826-6830. https://doi.org/10.1063/1.1461358
- Irina M Kuznetsova, Olga V Stepanenko, Konstantin K Turoverov, Li Zhu, Jun-Mei Zhou, Anthony L Fink, Vladimir N Uversky. Unraveling multistate unfolding of rabbit muscle creatine kinase. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 2002, 1596
(1)
, 138-155. https://doi.org/10.1016/S0167-4838(02)00212-1
- Vladimir N. Uversky, Sergey E. Permyakov, Vasily E. Zagranichny, Igor L. Rodionov, Anthony L. Fink, Alexandra M. Cherskaya, Lyubov A.Wasserman, and, Eugene A. Permyakov. Effect of Zinc and Temperature on the Conformation of the γ Subunit of Retinal Phosphodiesterase: A Natively Unfolded Protein. Journal of Proteome Research 2002, 1
(2)
, 149-159. https://doi.org/10.1021/pr0155127
- Richard J. St. John, John F. Carpenter, Claude Balny, Theodore W. Randolph. High Pressure Refolding of Recombinant Human Growth Hormone from Insoluble Aggregates. Journal of Biological Chemistry 2001, 276
(50)
, 46856-46863. https://doi.org/10.1074/jbc.M107671200
- Vladimir N. Uversky, Jie Li, Anthony L. Fink. Metal-triggered Structural Transformations, Aggregation, and Fibrillation of Human α-Synuclein. Journal of Biological Chemistry 2001, 276
(47)
, 44284-44296. https://doi.org/10.1074/jbc.M105343200
- L Homchaudhuri, R Swaminathan. Novel Absorption and Fluorescence Characteristics of
l
-Lysine. Chemistry Letters 2001, 30
(8)
, 844-845. https://doi.org/10.1246/cl.2001.844
- Russell Schwartz, Sorin Istrail, Jonathan King. Frequencies of amino acid strings in globular protein sequences indicate suppression of blocks of consecutive hydrophobic residues. Protein Science 2001, 10
(5)
, 1023-1031. https://doi.org/10.1110/ps.33201
- John David Dignam, Xiaogang Qu, Jonathan B. Chaires. Equilibrium Unfolding of Bombyx mori Glycyl-tRNA Synthetase. Journal of Biological Chemistry 2001, 276
(6)
, 4028-4037. https://doi.org/10.1074/jbc.M006840200
- Gail E. Marlow, B. Montgomery Pettitt. Simulations of the bis-penicillamine enkephalin in sodium chloride solution: A parameter study. Biopolymers 2001, 60
(2)
, 134-152. https://doi.org/10.1002/1097-0282(2001)60:2<134::AID-BIP1009>3.0.CO;2-M
- Aphrodite Kapurniotu. Amyloidogenicity and cytotoxicity of islet amyloid polypeptide. Biopolymers 2001, 60
(6)
, 438-459. https://doi.org/10.1002/1097-0282(2001)60:6<438::AID-BIP10182>3.0.CO;2-A
- Joel R Gillespie, Vladimir N Uversky. Structure and function of α-fetoprotein: a biophysical overview. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 2000, 1480
(1-2)
, 41-56. https://doi.org/10.1016/S0167-4838(00)00104-7
- Vladimir N. Uversky, Joel R. Gillespie, Ian S. Millett, Anna V. Khodyakova, Raisa N. Vasilenko, Anatoly M. Vasiliev, Igor L. Rodionov, Galina D. Kozlovskaya, Dmitry A. Dolgikh, Anthony L. Fink, Sebastian Doniach, Eugene A. Permyakov, Vyacheslav M. Abramov. Zn2+-Mediated Structure Formation and Compaction of the “Natively Unfolded” Human Prothymosin α. Biochemical and Biophysical Research Communications 2000, 267
(2)
, 663-668. https://doi.org/10.1006/bbrc.1999.2013
- William S. Price, Fumihiko Tsuchiya, Yoji Arata. Lysozyme Aggregation and Solution Properties Studied Using PGSE NMR Diffusion Measurements. Journal of the American Chemical Society 1999, 121
(49)
, 11503-11512. https://doi.org/10.1021/ja992265n
- Irina M. Kuznetsova, Alexander G. Biktashev, Sofia Yu. Khaitlina, Konstantin S. Vassilenko, Konstantin K. Turoverov, Vladimir N. Uversky. Effect of Self-Association on the Structural Organization of Partially Folded Proteins: Inactivated Actin. Biophysical Journal 1999, 77
(5)
, 2788-2800. https://doi.org/10.1016/S0006-3495(99)77111-0
- Yi Cheng, Maozi Liu, Rongchang Li, Chen Wang, Chunli Bai, Kui Wang. Gadolinium induces domain and pore formation of human erythrocyte membrane: an atomic force microscopic study. Biochimica et Biophysica Acta (BBA) - Biomembranes 1999, 1421
(2)
, 249-260. https://doi.org/10.1016/S0005-2736(99)00125-X
- M. Murugesan, M. Aulice Scibioh, R. Jayakumar. Structural Transition of Nonionic Peptide Aggregates in Aqueous Medium. Langmuir 1999, 15
(17)
, 5467-5473. https://doi.org/10.1021/la9814079
- V. A. Davankov, M. M. Ilyin, G. I. Timofeeva, M. P. Tsyurupa, I. V. Yaminsky. Atomic force microscopy imaging of novel macromolecular species, nanosponges, and their clusters. Journal of Polymer Science Part A: Polymer Chemistry 1999, 37
(10)
, 1451-1455. https://doi.org/10.1002/(SICI)1099-0518(19990515)37:10<1451::AID-POLA7>3.0.CO;2-2
- Rakez Kayed, Jürgen Bernhagen, Norma Greenfield, Khuloud Sweimeh, Herwig Brunner, Wolfgang Voelter, Aphrodite Kapurniotu. Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in Vitro. Journal of Molecular Biology 1999, 287
(4)
, 781-796. https://doi.org/10.1006/jmbi.1999.2646
- Anthony L. Fink. Chaperone-Mediated Protein Folding. Physiological Reviews 1999, 79
(2)
, 425-449. https://doi.org/10.1152/physrev.1999.79.2.425
- Li Shi, David B. Volkin, Gautam Sanyal. Thermal Unfolding, Proteins. 1999https://doi.org/10.1002/0471250589.ebt207
- Daisuke Nohara, Akihiko Mizutani, Tomoya Sakai. Kinetic study on thermal denaturation of hen egg-white lysozyme involving precipitation. Journal of Bioscience and Bioengineering 1999, 87
(2)
, 199-205. https://doi.org/10.1016/S1389-1723(99)89013-6
- William S. Price, Fumihiko Tsuchiya, Yoji Arata. Protein Aggregation Studies Using PFG NMR Diffusion Measurements. 1999, 35-42. https://doi.org/10.1533/9781845698133.1.35
- Vladimir N. Uversky, Anthony L. Fink, Ritu Khurana, Anton S. Karnoup, Daniel J. Segel, Sebastian Doniach. Association of partially‐folded intermediates of staphylococcal nuclease induces structure and stability. Protein Science 1999, 8
(1)
, 161-173. https://doi.org/10.1110/ps.8.1.161
- David L. Daugherty, David Rozema, Peter E. Hanson, Samuel H. Gellman. Artificial Chaperone-assisted Refolding of Citrate Synthase. Journal of Biological Chemistry 1998, 273
(51)
, 33961-33971. https://doi.org/10.1074/jbc.273.51.33961
- Prashant Gupta, Carol K. Hall, Anne C. Voegler. Effect of denaturant and protein concentrations upon protein refolding and aggregation: A simple lattice model. Protein Science 1998, 7
(12)
, 2642-2652. https://doi.org/10.1002/pro.5560071218
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.