Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Mandelate Racemase: Structure-Function Studies of a Pseudosymmetric Enzyme
My Activity
    Article

    Mandelate Racemase: Structure-Function Studies of a Pseudosymmetric Enzyme
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 1995, 28, 4, 178–186
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ar00052a003
    Published April 1, 1995

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 82 publications.

    1. Oliver P. Kuehm, Joshua A. Hayden, Stephen L. Bearne. A Phenylboronic Acid-Based Transition State Analogue Yields Nanomolar Inhibition of Mandelate Racemase. Biochemistry 2023, 62 (12) , 1929-1942. https://doi.org/10.1021/acs.biochem.3c00143
    2. Karen N. Allen, Christian P. Whitman. The Birth of Genomic Enzymology: Discovery of the Mechanistically Diverse Enolase Superfamily. Biochemistry 2021, 60 (46) , 3515-3528. https://doi.org/10.1021/acs.biochem.1c00494
    3. Colin D. Douglas, Lia Grandinetti, Nicole M. Easton, Oliver P. Kuehm, Joshua A. Hayden, Meghan C. Hamilton, Martin St. Maurice, Stephen L. Bearne. Slow-Onset, Potent Inhibition of Mandelate Racemase by 2-Formylphenylboronic Acid. An Unexpected Adduct Clasps the Catalytic Machinery. Biochemistry 2021, 60 (32) , 2508-2518. https://doi.org/10.1021/acs.biochem.1c00374
    4. Amar Nath Sharma, Lia Grandinetti, Erin R. Johnson, Martin St. Maurice, Stephen L. Bearne. Potent Inhibition of Mandelate Racemase by Boronic Acids: Boron as a Mimic of a Carbon Acid Center. Biochemistry 2020, 59 (33) , 3026-3037. https://doi.org/10.1021/acs.biochem.0c00478
    5. Marc Nadal-Ferret, Ricard Gelabert, Miquel Moreno, and José M. Lluch . Are There Really Low-Barrier Hydrogen Bonds in Proteins? The Case of Photoactive Yellow Protein. Journal of the American Chemical Society 2014, 136 (9) , 3542-3552. https://doi.org/10.1021/ja4116617
    6. M. Ashley Spies, Joseph G. Reese, Dylan Dodd, Katherine L. Pankow, Steven R. Blanke and Jerome Baudry . Determinants of Catalytic Power and Ligand Binding in Glutamate Racemase. Journal of the American Chemical Society 2009, 131 (14) , 5274-5284. https://doi.org/10.1021/ja809660g
    7. John F. Rakus,, Alexander A. Fedorov,, Elena V. Fedorov,, Margaret E. Glasner,, Jacob E. Vick,, Patricia C. Babbitt,, Steven C. Almo, and, John A. Gerlt. Evolution of Enzymatic Activities in the Enolase Superfamily:  d-Mannonate Dehydratase from Novosphingobium aromaticivorans,. Biochemistry 2007, 46 (45) , 12896-12908. https://doi.org/10.1021/bi701703w
    8. M. Ashley Spies and, Michael D. Toney. Intrinsic Primary and Secondary Hydrogen Kinetic Isotope Effects for Alanine Racemase from Global Analysis of Progress Curves. Journal of the American Chemical Society 2007, 129 (35) , 10678-10685. https://doi.org/10.1021/ja067643k
    9. Tina L. Amyes and, John P. Richard. Enzymatic Catalysis of Proton Transfer at Carbon:  Activation of Triosephosphate Isomerase by Phosphite Dianion. Biochemistry 2007, 46 (19) , 5841-5854. https://doi.org/10.1021/bi700409b
    10. Wen Shan Yew,, Alexander A. Fedorov,, Elena V. Fedorov,, John F. Rakus,, Richard W. Pierce,, Steven C. Almo, and, John A. Gerlt. Evolution of Enzymatic Activities in the Enolase Superfamily:  l-Fuconate Dehydratase from Xanthomonas campestris,. Biochemistry 2006, 45 (49) , 14582-14597. https://doi.org/10.1021/bi061687o
    11. Wen Shan Yew,, Alexander A. Fedorov,, Elena V. Fedorov,, Bryant McKay Wood,, Steven C. Almo, and, John A. Gerlt. Evolution of Enzymatic Activities in the Enolase Superfamily:  d-Tartrate Dehydratase from Bradyrhizobium japonicum,. Biochemistry 2006, 45 (49) , 14598-14608. https://doi.org/10.1021/bi061688g
    12. Xavier Prat-Resina,, Àngels González-Lafont, and, José M. Lluch. Reaction Mechanism of the Mandelate Anion Racemization Catalyzed by Mandelate Racemase Enzyme:  A QM/MM Molecular Dynamics Free Energy Study. The Journal of Physical Chemistry B 2005, 109 (44) , 21089-21101. https://doi.org/10.1021/jp052239d
    13. C. Li,, Y. Xia,, X. Gao, and, P. D. Gershon. Mechanism of RNA 2‘-O-Methylation:  Evidence that the Catalytic Lysine Acts To Steer Rather than Deprotonate the Target Nucleophile. Biochemistry 2004, 43 (19) , 5680-5687. https://doi.org/10.1021/bi0359980
    14. Zhenlin Zhong,, Timothy S. Snowden,, Michael D. Best, and, Eric V. Anslyn. Rate of Enolate Formation Is Not Very Sensitive to the Hydrogen Bonding Ability of Donors to Carboxyl Oxygen Lone Pair Acceptors; A Ramification of the Principle of Non-Perfect Synchronization for General-Base-Catalyzed Enolate Formation. Journal of the American Chemical Society 2004, 126 (11) , 3488-3495. https://doi.org/10.1021/ja0306011
    15. Luis F. Pacios. Topological Descriptors of the Electron Density and the Electron Localization Function in Hydrogen Bond Dimers at Short Intermonomer Distances. The Journal of Physical Chemistry A 2004, 108 (7) , 1177-1188. https://doi.org/10.1021/jp030978t
    16. Erika A. Taylor Ringia,, James B. Garrett,, James B. Thoden,, Hazel M. Holden,, Ivan Rayment, and, John A. Gerlt. Evolution of Enzymatic Activity in the Enolase Superfamily:  Functional Studies of the Promiscuous o-Succinylbenzoate Synthase from Amycolatopsis. Biochemistry 2004, 43 (1) , 224-229. https://doi.org/10.1021/bi035815+
    17. Maite Roca,, Sergio Martí,, Juan Andrés,, Vicent Moliner,, Iñaki Tuñón,, Juan Bertrán, and, Ian H. Williams. Theoretical Modeling of Enzyme Catalytic Power:  Analysis of “Cratic” and Electrostatic Factors in Catechol O-Methyltransferase. Journal of the American Chemical Society 2003, 125 (25) , 7726-7737. https://doi.org/10.1021/ja0299497
    18. Martin E. Tanner. Understanding Nature's Strategies for Enzyme-Catalyzed Racemization and Epimerization. Accounts of Chemical Research 2002, 35 (4) , 237-246. https://doi.org/10.1021/ar000056y
    19. Robert D. Bach,, Olga Dmitrenko, and, Mikhail N. Glukhovtsev. A Theoretical Study of the Effect of a Tetraalkylammonium Counterion on the Hydrogen Bond Strength in Z-Hydrogen Maleate. Journal of the American Chemical Society 2001, 123 (29) , 7134-7145. https://doi.org/10.1021/ja010362m
    20. Hideaki Ohshiro,, Keita Mitsui,, Nobuyuki Ando,, Yoichi Ohsawa,, Wataru Koinuma,, Hirobumi Takahashi,, Shin-ichi Kondo,, Tatsuya Nabeshima, and, Yumihiko Yano. Oxidation-Active Flavin Models: Oxidation of α-Hydroxy Acids by Benzo-dipteridine Bearing Metal-Binding Site in the Presence of Divalent Metal Ion and Base in Organic Solvents. Journal of the American Chemical Society 2001, 123 (11) , 2478-2486. https://doi.org/10.1021/ja0009121
    21. Mary Jo Ondrechen,, James M. Briggs, and, J. Andrew McCammon. A Model for Enzyme−Substrate Interaction in Alanine Racemase. Journal of the American Chemical Society 2001, 123 (12) , 2830-2834. https://doi.org/10.1021/ja0029679
    22. Mireia Garcia-Viloca,, Àngels González-Lafont, and, José M. Lluch. A QM/MM Study of the Racemization of Vinylglycolate Catalyzed by Mandelate Racemase Enzyme. Journal of the American Chemical Society 2001, 123 (4) , 709-721. https://doi.org/10.1021/ja002879o
    23. Robert D. Bach,, Carlo Canepa, and, Mikhail N. Glukhovtsev. Influence of Electrostatic Effects on Activation Barriers in Enzymatic Reactions:  Pyridoxal 5‘-Phosphate-Dependent Decarboxylation of α-Amino Acids. Journal of the American Chemical Society 1999, 121 (28) , 6542-6555. https://doi.org/10.1021/ja9907616
    24. Mireia Garcia-Viloca,, Ricard Gelabert,, Àngels González-Lafont,, Miquel Moreno, and, José M. Lluch. Temperature Dependence of Proton NMR Chemical Shift As a Criterion To Identify Low-Barrier Hydrogen Bonds. Journal of the American Chemical Society 1998, 120 (39) , 10203-10209. https://doi.org/10.1021/ja9742141
    25. David C. Hawkinson,, Jeffrey M. Feiock,, John B. Nevy, and, Yue-Zhong Wu. Enolization and Hydrolysis of 7-Nitroisochroman-3-one in Aqueous Solution:  Generation of a Relatively Stable Lactone Enolate. The Journal of Organic Chemistry 1998, 63 (16) , 5345-5349. https://doi.org/10.1021/jo980032t
    26. Ya-Jun Zheng and, Thomas C. Bruice. Rapid Enzyme-Catalyzed Heterolytic C−H Bond Cleavage by a Base Strength Amplification Mechanism:  A Theoretical Examination of the Mechanism of Oxidation of Vitamin K. Journal of the American Chemical Society 1998, 120 (7) , 1623-1624. https://doi.org/10.1021/ja973140q
    27. Mireia Garcia-Viloca,, Ricard Gelabert,, Angels González-Lafont,, Miquel Moreno, and, José M. Lluch. Is an Extremely Low-Field Proton Signal in the NMR Spectrum Conclusive Evidence for a Low-Barrier Hydrogen Bond?. The Journal of Physical Chemistry A 1997, 101 (46) , 8727-8733. https://doi.org/10.1021/jp972335h
    28. Y. Chiang,, A. J. Kresge,, V. V. Popik, and, N. P. Schepp. The Mandelic Acid Keto−Enol System in Aqueous Solution. Generation of the Enol by Hydration of Phenylhydroxyketene and Phenylcarboxycarbene. Journal of the American Chemical Society 1997, 119 (42) , 10203-10212. https://doi.org/10.1021/ja971774r
    29. Mireia Garcia-Viloca,, Angels González-Lafont, and, José M. Lluch. On pKa Matching as a Requirement To Form a Low-Barrier Hydrogen Bond. A Theoretical Study in Gas Phase. The Journal of Physical Chemistry A 1997, 101 (21) , 3880-3886. https://doi.org/10.1021/jp964031l
    30. Mireia Garcia-Viloca,, Angels González-Lafont, and, José M. Lluch. Theoretical Study of the Low-Barrier Hydrogen Bond in the Hydrogen Maleate Anion in the Gas Phase. Comparison with Normal Hydrogen Bonds. Journal of the American Chemical Society 1997, 119 (5) , 1081-1086. https://doi.org/10.1021/ja962662n
    31. Patricia C. Babbitt,, Miriam S. Hasson,, Joseph E. Wedekind,, David R. J. Palmer,, William C. Barrett,, George H. Reed,, Ivan Rayment,, Dagmar Ringe,, George L. Kenyon, and, John A. Gerlt. The Enolase Superfamily:  A General Strategy for Enzyme-Catalyzed Abstraction of the α-Protons of Carboxylic Acids. Biochemistry 1996, 35 (51) , 16489-16501. https://doi.org/10.1021/bi9616413
    32. Tina L. Amyes and, John P. Richard. Determination of the pKa of Ethyl Acetate:  Brønsted Correlation for Deprotonation of a Simple Oxygen Ester in Aqueous Solution. Journal of the American Chemical Society 1996, 118 (13) , 3129-3141. https://doi.org/10.1021/ja953664v
    33. David R. J. Palmer and, John A. Gerlt. Evolution of Enzymatic Activities:  Multiple Pathways for Generating and Partitioning a Common Enolic Intermediate by Glucarate Dehydratase from Pseudomonas putida. Journal of the American Chemical Society 1996, 118 (42) , 10323-10324. https://doi.org/10.1021/ja962126v
    34. Stephen L. Bearne. Capturing the free energy of transition state stabilization: insights from the inhibition of mandelate racemase. Philosophical Transactions of the Royal Society B: Biological Sciences 2023, 378 (1871) https://doi.org/10.1098/rstb.2022.0041
    35. Stephen L. Bearne, Joshua A. Hayden. Application of circular dichroism-based assays to racemases and epimerases: Recognition and catalysis of reactions of chiral substrates by mandelate racemase. 2023, 127-169. https://doi.org/10.1016/bs.mie.2023.03.014
    36. Mitesh Nagar, Joshua A. Hayden, Einat Sagey, George Worthen, Mika Park, Amar Nath Sharma, Christopher M. Fetter, Oliver P. Kuehm, Stephen L. Bearne. Altering the binding determinant on the interdigitating loop of mandelate racemase shifts specificity towards that of d-tartrate dehydratase. Archives of Biochemistry and Biophysics 2022, 718 , 109119. https://doi.org/10.1016/j.abb.2022.109119
    37. . Organic Synthesis with Isomerases. 2022, 221-320. https://doi.org/10.1002/9781118995167.ch6
    38. José M. Saa, Antonio Frontera. On the Role of Water as a Catalyst in Prebiotic Chemistry. ChemPhysChem 2020, 21 (4) , 313-320. https://doi.org/10.1002/cphc.201901069
    39. Stephen L. Bearne. The role of Brønsted base basicity in estimating carbon acidity at enzyme active sites: a caveat. Organic & Biomolecular Chemistry 2019, 17 (30) , 7161-7165. https://doi.org/10.1039/C9OB00863B
    40. Matthew L Harty, Amar Nath Sharma, Stephen L Bearne. Catalytic properties of the metal ion variants of mandelate racemase reveal alterations in the apparent electrophilicity of the metal cofactor. Metallomics 2019, 11 (3) , 707-723. https://doi.org/10.1039/c8mt00330k
    41. Mitesh Nagar, Himank Kumar, Stephen L Bearne. A platform for chemical modification of mandelate racemase: characterization of the C92S/C264S and γ-thialysine 166 variants. Protein Engineering, Design and Selection 2018, 31 (4) , 135-145. https://doi.org/10.1093/protein/gzy011
    42. Stephen L. Bearne, Martin St. Maurice. A Paradigm for C H Bond Cleavage: Structural and Functional Aspects of Transition State Stabilization by Mandelate Racemase. 2017, 113-160. https://doi.org/10.1016/bs.apcsb.2017.04.007
    43. Sun Ja Cho, Jeong Ah Kim, Sun Bok Lee. Identification and characterization of 3,6-anhydro-L-galactonate cycloisomerase belonging to theenolase superfamily. Biotechnology and Bioprocess Engineering 2015, 20 (3) , 462-472. https://doi.org/10.1007/s12257-015-0359-7
    44. . Isomerases. 2012, 213-224. https://doi.org/10.1002/9781118348970.ch10
    45. . Enzyme Models Classified by Reaction. 2009, 61-194. https://doi.org/10.1039/9781847559784-00061
    46. Davide Tessaro, Gianluca Molla, Loredano Pollegioni, Stefano Servi. Chemo‐Enzymatic Deracemization Methods. 2008, 195-228. https://doi.org/10.1002/9783527623839.ch13
    47. Krzysztof Okrasa, Colin Levy, Bernhard Hauer, Nina Baudendistel, David Leys, Jason Micklefield. Structure and Mechanism of an Unusual Malonate Decarboxylase and Related Racemases. Chemistry – A European Journal 2008, 14 (22) , 6609-6613. https://doi.org/10.1002/chem.200800918
    48. Bettina M. Nestl, Anne Bodlenner, Rainer Stuermer, Bernhard Hauer, Wolfgang Kroutil, Kurt Faber. Biocatalytic racemization of synthetically important functionalized α-hydroxyketones using microbial cells. Tetrahedron: Asymmetry 2007, 18 (12) , 1465-1474. https://doi.org/10.1016/j.tetasy.2007.06.005
    49. Tracey L. Thaler, Phillip R. Gibbs, Rick P. Trebino, Andreas S. Bommarius. Search for Extraterrestrial Life Using Chiral Molecules: Mandelate Racemase as a Test Case. Astrobiology 2006, 6 (6) , 901-910. https://doi.org/10.1089/ast.2006.6.901
    50. John A. Gerlt. Enzymatic Catalysis of Proton Transfer at Carbon Atoms. 2006, 1107-1137. https://doi.org/10.1002/9783527611546.ch35
    51. M. Ashley Spies, Michael D. Toney. Multiple Hydrogen Transfers in Enzyme Action. 2006, 1139-1170. https://doi.org/10.1002/9783527611546.ch36
    52. Bettina M. Nestl, Silvia M. Glueck, Melanie Hall, Wolfgang Kroutil, Rainer Stuermer, Bernhard Hauer, Kurt Faber. Biocatalytic Racemization of (Hetero)Aryl‐aliphatic α‐Hydroxycarboxylic Acids by Lactobacillus spp. Proceeds via an Oxidation–Reduction Sequence. European Journal of Organic Chemistry 2006, 2006 (20) , 4573-4577. https://doi.org/10.1002/ejoc.200600454
    53. P. Gadler, S.M. Glueck, W. Kroutil, B.M. Nestl, B. Larissegger-Schnell, B.T. Ueberbacher, S.R. Wallner, K. Faber. Biocatalytic approaches for the quantitative production of single stereoisomers from racemates. Biochemical Society Transactions 2006, 34 (2) , 296-300. https://doi.org/10.1042/BST0340296
    54. Ulfried Felfer, Marian Goriup, Marion F. Koegl, Ulrike Wagner, Barbara Larissegger‐Schnell, Kurt Faber, Wolfgang Kroutil. The Substrate Spectrum of Mandelate Racemase: Minimum Structural Requirements for Substrates and Substrate Model. Advanced Synthesis & Catalysis 2005, 347 (7-8) , 951-961. https://doi.org/10.1002/adsc.200505012
    55. Ralph M. Pollack. Enzymatic mechanisms for catalysis of enolization: ketosteroid isomerase. Bioorganic Chemistry 2004, 32 (5) , 341-353. https://doi.org/10.1016/j.bioorg.2004.06.005
    56. Barbara Schnell, Kurt Faber, Wolfgang Kroutil. Enzymatic Racemisation and its Application to Synthetic Biotransformations. Advanced Synthesis & Catalysis 2003, 345 (6-7) , 653-666. https://doi.org/10.1002/adsc.200303009
    57. A. Williams. Acid–Base Catalysis – Biological. 2002https://doi.org/10.1002/0471227617.eoc001
    58. David Amar, Paul North, Vanda Miskiniene, Narimantas Cénas, Florence Lederer. Hydroxamates as Substrates and Inhibitors for FMN-Dependent 2-Hydroxy Acid Dehydrogenases. Bioorganic Chemistry 2002, 30 (3) , 145-162. https://doi.org/10.1006/bioo.2002.1237
    59. Xavier Prat-Resina, Mireia Garcia-Viloca, Angels González-Lafont, José M. Lluch. On the modulation of the substrate activity for the racemization catalyzed by mandelate racemase enzyme. A QM/MM study. Phys. Chem. Chem. Phys. 2002, 4 (21) , 5365-5371. https://doi.org/10.1039/B204693H
    60. Ulfried Felfer, Ulrike T. Strauss, Wolfgang Kroutil, Walter M.F. Fabian, Kurt Faber. Substrate spectrum of mandelate racemase. Journal of Molecular Catalysis B: Enzymatic 2001, 15 (4-6) , 213-222. https://doi.org/10.1016/S1381-1177(01)00035-2
    61. Marian Goriup, Ulrike T. Strauss, Ulfried Felfer, Wolfgang Kroutil, Kurt Faber. Substrate spectrum of mandelate racemase. Journal of Molecular Catalysis B: Enzymatic 2001, 15 (4-6) , 207-211. https://doi.org/10.1016/S1381-1177(01)00036-4
    62. John A. Gerlt, Patricia C. Babbitt. Divergent Evolution of Enzymatic Function: Mechanistically Diverse Superfamilies and Functionally Distinct Suprafamilies. Annual Review of Biochemistry 2001, 70 (1) , 209-246. https://doi.org/10.1146/annurev.biochem.70.1.209
    63. Patricia C. Babbitt, John A. Gerlt. New functions from old scaffolds: How nature reengineers enzymes for new functions. 2001, 1-28. https://doi.org/10.1016/S0065-3233(01)55001-9
    64. Ulrike T. Strauss, Kurt Faber. Bio- and Chemo-Catalytic Deracemisation Techniques. 2000, 1-23. https://doi.org/10.1007/978-94-010-0924-9_1
    65. Ulrike T Strauss, Kurt Faber. Deracemization of (±)-mandelic acid using a lipase–mandelate racemase two-enzyme system. Tetrahedron: Asymmetry 1999, 10 (21) , 4079-4081. https://doi.org/10.1016/S0957-4166(99)00436-X
    66. Stephen L. Bearne, Martin St. Maurice, Mark D. Vaughan. An Assay for Mandelate Racemase Using High-Performance Liquid Chromatography. Analytical Biochemistry 1999, 269 (2) , 332-336. https://doi.org/10.1006/abio.1999.4018
    67. Ursula Schell, Sari Helin, Tommi Kajander, Michael Schl�mann, Adrian Goldman. Structural basis for the activity of two muconate cycloisomerase variants toward substituted muconates. Proteins: Structure, Function, and Genetics 1999, 34 (1) , 125-136. https://doi.org/10.1002/(SICI)1097-0134(19990101)34:1<125::AID-PROT10>3.0.CO;2-Y
    68. John A. Gerlt. Stabilization of Reactive Intermediates and Transition States in Enzyme Active Sites by Hydrogen Bonding. 1999, 5-29. https://doi.org/10.1016/B978-0-08-091283-7.00131-4
    69. Christian P. Whitman. Keto–Enol Tautomerism in Enzymatic Reactions. 1999, 31-50. https://doi.org/10.1016/B978-0-08-091283-7.00132-6
    70. Shu-ou Shan, Daniel Herschlag. [11] Hydrogen bonding in enzymatic catalysis: Analysis of energetic contributions. 1999, 246-276. https://doi.org/10.1016/S0076-6879(99)08013-1
    71. A. J. Kresge. Flash photolytic generation and investigation of short-lived reaction intermediates: a case study. Journal of Physical Organic Chemistry 1998, 11 (5) , 292-298. https://doi.org/10.1002/(SICI)1099-1395(199805)11:5<292::AID-POC996>3.0.CO;2-U
    72. Amy Kaufman Katz, Jenny P. Glusker. Roles of zinc and magnesium ions in enzymes. 1998, 227-279. https://doi.org/10.1016/S1087-3295(98)80008-X
    73. Eelco J. Ebbers, Gerry J.A. Ariaans, Joannes P.M. Houbiers, Alle Bruggink, Binne Zwanenburg. Controlled racemization of optically active organic compounds: Prospects for asymmetric transformation. Tetrahedron 1997, 53 (28) , 9417-9476. https://doi.org/10.1016/S0040-4020(97)00324-4
    74. Hartmut Stecher, Ulfried Felfer, Kurt Faber. Large-scale production of Mandelate racemase by Pseudomonas putida ATCC 12633: optimization of enzyme induction and development of a stable crude enzyme preparation. Journal of Biotechnology 1997, 56 (1) , 33-40. https://doi.org/10.1016/S0168-1656(97)00076-X
    75. Jerzy Cioslowski, Gernot Boche. Geometry‐Tunable Lewis Acidity of Amidinium Cations and Its Relevance to Redox Reactions of the Thauer Metal‐Free Hydrogenase: A Theoretical Study. Angewandte Chemie International Edition in English 1997, 36 (1-2) , 107-109. https://doi.org/10.1002/anie.199701071
    76. Jerzy Cioslowski, Gernot Boche. Konformationsgesteuerte Lewis‐Acidität von Amidinium‐Ionen und ihre Bedeutung für die Redoxreaktionen der Thauerschen metallfreien Hydrogenase – eine theoretische Studie. Angewandte Chemie 1997, 109 (1-2) , 165-167. https://doi.org/10.1002/ange.19971090155
    77. Jiali Gao. A theoretical investigation of the enol content of acetic acid and the acetate ion in aqueous solution. Journal of Molecular Structure: THEOCHEM 1996, 370 (2-3) , 203-208. https://doi.org/10.1016/S0166-1280(96)04702-1
    78. Anthony J. Kirby. Enzyme Mechanisms, Models, and Mimics. Angewandte Chemie International Edition in English 1996, 35 (7) , 706-724. https://doi.org/10.1002/anie.199607061
    79. Anthony J. Kirby. Enzyme — Mechanismen, Modellreaktionen und Mimetica. Angewandte Chemie 1996, 108 (7) , 770-790. https://doi.org/10.1002/ange.19961080705
    80. Masha V. Sergeeva, Vihra Yomtova, Adrian Parkinson, Marjolein Overgaauw, Rikus Pomp, Arjen Schots, Anthony J. Kirby, Riet Hilhorst. Hapten Design for Antibody‐Catalyzed Decarboxylation and Ring‐Opening Reactions of Benzisoxazoles. Israel Journal of Chemistry 1996, 36 (2) , 177-183. https://doi.org/10.1002/ijch.199600024
    81. Victor S Lamzin, Zbigniew Dauter, Keith S Wilson. How nature deals with stereoisomers. Current Opinion in Structural Biology 1995, 5 (6) , 830-836. https://doi.org/10.1016/0959-440X(95)80018-2
    82. G. L. KENYON, J. A. GERLT, G. A. PETSKO, J. W. KOZARICH. ChemInform Abstract: Mandelate Racemase: Structure‐Function Studies of a Pseudosymmetric Enzyme. ChemInform 1995, 26 (34) https://doi.org/10.1002/chin.199534315

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 1995, 28, 4, 178–186
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ar00052a003
    Published April 1, 1995

    Article Views

    516

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.