ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

The Dynamic Nature of RNA as Key to Understanding Riboswitch Mechanisms

View Author Information
Institute of Organic Chemistry and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 52a, 6020 Innsbruck, Austria
Cite this: Acc. Chem. Res. 2011, 44, 12, 1339–1348
Publication Date (Web):June 16, 2011
https://doi.org/10.1021/ar200035g
Copyright © 2011 American Chemical Society

Article Views

4521

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)

Abstract

Abstract Image

Riboswitches are gene regulation elements within RNA that recognize specific metabolites. They predominantly occur in the untranslated leader regions of bacterial messenger RNA (mRNA). Upon metabolite binding to the aptamer domain, a structural change in the adjoining downstream expression platform signals “on” or “off” for gene expression.

Researchers have achieved much progress in characterizing ligand-bound riboswitch states at the molecular level; an impressive number of high-resolution structures of aptamer–ligand complexes is now available. These structures have significantly contributed toward our understanding of how riboswitches interact with their natural ligands and with structurally related analogues. In contrast, relatively little is known about the nature of the unbound (apo) form of riboswitches. Moreover, the details of how changes in the aptamer domain are transduced into conformational changes in the decision-making expression platform remain murky.

In this Account, we report on recent efforts aimed at the characterization of free states, ligand recognition, and ligand-induced folding in riboswitches. Riboswitch action is best approached as a cotranscriptional process, which implies sequential folding and release of the aptamer prior to the signaling of the expression platform. Thus, a complex interplay of several factors has to be taken into account, such as speed of transcription, transcriptional pausing, kinetics and thermodynamics of RNA structure formation, and kinetics and thermodynamics of ligand binding. The response mechanism appears to be best described as a process in which ligand recognition critically dictates the folding pathway of the nascent mRNA during its expression; the resulting structures determine the interactions with the transcriptional or translational apparatus.

We discuss experimental methods that offer insight into the dynamics of the free riboswitch state. These include probing experiments, such as in-line and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) techniques, small-angle X-ray scattering (SAXS) analysis, NMR spectroscopy, and fluorescence spectroscopy, including single-molecule fluorescence resonance energy transfer (smFRET) imaging. One of our research contributions is an approach, termed 2ApFold, that incorporates noninvasive 2-aminopurine modifications in riboswitches. The fluorescence response of these moieties is used to delineate the order of secondary–tertiary structure formation and rearrangements taking place during ligand-induced folding. This information can be used to explore the kinetics of ligand recognition and to analyze the degree of structure preorganization of the free riboswitch state.

Furthermore, we discuss a recent smFRET study on the SAM-II riboswitch; this report underscores the importance of choosing strategic labeling patterns that leave maximal conformational freedom to the regulatory interaction. Finally, we comment on how riboswitch ligand recognition appeals to the concepts of conformational selection and induced fit, and on the question of whether riboswitches act under thermodynamic or kinetic control.

This Account highlights the fact that a thorough understanding of RNA dynamics in vitro is required to shed light on cellular riboswitch mechanisms. Elucidating these mechanisms will contribute not only to ongoing efforts to target riboswitches with antibiotics but also to attempts to engineer artificial cell regulation systems.

Cited By

This article is cited by 147 publications.

  1. Jun Li, Xiaoyu Zhang, Liang Hong, Yu Liu. Entropy Driving the Mg2+-Induced Folding of TPP Riboswitch RNA. The Journal of Physical Chemistry B 2022, 126 (46) , 9457-9464. https://doi.org/10.1021/acs.jpcb.2c03688
  2. Shivangi Sharma, Vishal Singh, Parbati Biswas. Analysis of the Passage Times for Unfolding/Folding of the Adenine Riboswitch Aptamer. ACS Physical Chemistry Au 2022, 2 (4) , 353-363. https://doi.org/10.1021/acsphyschemau.1c00056
  3. Sunil Kumar, Govardhan Reddy. TPP Riboswitch Populates Holo-Form-like Structure Even in the Absence of Cognate Ligand at High Mg2+ Concentration. The Journal of Physical Chemistry B 2022, 126 (12) , 2369-2381. https://doi.org/10.1021/acs.jpcb.1c10794
  4. Bidyut Sarkar, Kunihiko Ishii, Tahei Tahara. Microsecond Folding of preQ1 Riboswitch and Its Biological Significance Revealed by Two-Dimensional Fluorescence Lifetime Correlation Spectroscopy. Journal of the American Chemical Society 2021, 143 (21) , 7968-7978. https://doi.org/10.1021/jacs.1c01077
  5. Jinsi Li, Xuerong Fang, Xin Ming. Visibly Emitting Thiazolyl-Uridine Analogues as Promising Fluorescent Probes. The Journal of Organic Chemistry 2020, 85 (7) , 4602-4610. https://doi.org/10.1021/acs.joc.9b03208
  6. Yoko Sakata, Munehiro Tamiya, Masahiro Okada, Shigehisa Akine. Switching of Recognition First and Reaction First Mechanisms in Host–Guest Binding Associated with Chemical Reactions. Journal of the American Chemical Society 2019, 141 (39) , 15597-15604. https://doi.org/10.1021/jacs.9b06926
  7. Mohammed Dwidar, Yusuke Seike, Shungo Kobori, Charles Whitaker, Tomoaki Matsuura, Yohei Yokobayashi. Programmable Artificial Cells Using Histamine-Responsive Synthetic Riboswitch. Journal of the American Chemical Society 2019, 141 (28) , 11103-11114. https://doi.org/10.1021/jacs.9b03300
  8. Hsuan-Lei Sung, David J. Nesbitt. Novel Heat-Promoted Folding Dynamics of the yybP-ykoY Manganese Riboswitch: Kinetic and Thermodynamic Studies at the Single-Molecule Level. The Journal of Physical Chemistry B 2019, 123 (26) , 5412-5422. https://doi.org/10.1021/acs.jpcb.9b02852
  9. Aline Umuhire Juru, Neeraj N. Patwardhan, Amanda E. Hargrove. Understanding the Contributions of Conformational Changes, Thermodynamics, and Kinetics of RNA–Small Molecule Interactions. ACS Chemical Biology 2019, 14 (5) , 824-838. https://doi.org/10.1021/acschembio.8b00945
  10. Hsuan-Lei Sung, David J. Nesbitt. Single-Molecule FRET Kinetics of the Mn2+ Riboswitch: Evidence for Allosteric Mg2+ Control of “Induced-Fit” vs “Conformational Selection” Folding Pathways. The Journal of Physical Chemistry B 2019, 123 (9) , 2005-2015. https://doi.org/10.1021/acs.jpcb.8b11841
  11. Christopher S. Eubanks, Amanda E. Hargrove. RNA Structural Differentiation: Opportunities with Pattern Recognition. Biochemistry 2019, 58 (4) , 199-213. https://doi.org/10.1021/acs.biochem.8b01090
  12. David J. Wales, Matthew D. Disney, Ilyas Yildirim. Computational Investigation of RNA A-Bulges Related to the Microtubule-Associated Protein Tau Causing Frontotemporal Dementia and Parkinsonism. The Journal of Physical Chemistry B 2019, 123 (1) , 57-65. https://doi.org/10.1021/acs.jpcb.8b09139
  13. Jiří Šponer, Giovanni Bussi, Miroslav Krepl, Pavel Banáš, Sandro Bottaro, Richard A. Cunha, Alejandro Gil-Ley, Giovanni Pinamonti, Simón Poblete, Petr Jurečka, Nils G. Walter, Michal Otyepka. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chemical Reviews 2018, 118 (8) , 4177-4338. https://doi.org/10.1021/acs.chemrev.7b00427
  14. David J. Wales and Ilyas Yildirim . Improving Computational Predictions of Single-Stranded RNA Tetramers with Revised α/γ Torsional Parameters for the Amber Force Field. The Journal of Physical Chemistry B 2017, 121 (14) , 2989-2999. https://doi.org/10.1021/acs.jpcb.7b00819
  15. Maja Etzel and Mario Mörl . Synthetic Riboswitches: From Plug and Pray toward Plug and Play. Biochemistry 2017, 56 (9) , 1181-1198. https://doi.org/10.1021/acs.biochem.6b01218
  16. Jackie M. Esquiaqui, Eileen M. Sherman, Jing-Dong Ye, and Gail E. Fanucci . Conformational Flexibility and Dynamics of the Internal Loop and Helical Regions of the Kink–Turn Motif in the Glycine Riboswitch by Site-Directed Spin-Labeling. Biochemistry 2016, 55 (31) , 4295-4305. https://doi.org/10.1021/acs.biochem.6b00287
  17. Ashish Sachan, Muslum Ilgu, Aaron Kempema, George A. Kraus, and Marit Nilsen-Hamilton . Specificity and Ligand Affinities of the Cocaine Aptamer: Impact of Structural Features and Physiological NaCl. Analytical Chemistry 2016, 88 (15) , 7715-7723. https://doi.org/10.1021/acs.analchem.6b01633
  18. Marina Frener and Ronald Micura . Conformational Rearrangements of Individual Nucleotides during RNA-Ligand Binding Are Rate-Differentiated. Journal of the American Chemical Society 2016, 138 (11) , 3627-3630. https://doi.org/10.1021/jacs.5b11876
  19. Krishna C. Suddala, Jiarui Wang, Qian Hou, and Nils G. Walter . Mg2+ Shifts Ligand-Mediated Folding of a Riboswitch from Induced-Fit to Conformational Selection. Journal of the American Chemical Society 2015, 137 (44) , 14075-14083. https://doi.org/10.1021/jacs.5b09740
  20. Daniel Matzner and Günter Mayer . (Dis)similar Analogues of Riboswitch Metabolites as Antibacterial Lead Compounds. Journal of Medicinal Chemistry 2015, 58 (8) , 3275-3286. https://doi.org/10.1021/jm500868e
  21. Hari Bhaskaran, Takaaki Taniguchi, Takeo Suzuki, Tsutomu Suzuki, and John J. Perona . Structural Dynamics of a Mitochondrial tRNA Possessing Weak Thermodynamic Stability. Biochemistry 2014, 53 (9) , 1456-1465. https://doi.org/10.1021/bi401449z
  22. Bo Zhao, Alexandar L. Hansen, and Qi Zhang . Characterizing Slow Chemical Exchange in Nucleic Acids by Carbon CEST and Low Spin-Lock Field R1ρ NMR Spectroscopy. Journal of the American Chemical Society 2014, 136 (1) , 20-23. https://doi.org/10.1021/ja409835y
  23. Maria Pechlaner, Roland K. O. Sigel, Wilfred F. van Gunsteren, and Jožica Dolenc . Structure and Conformational Dynamics of the Domain 5 RNA Hairpin of a Bacterial Group II Intron Revealed by Solution Nuclear Magnetic Resonance and Molecular Dynamics Simulations. Biochemistry 2013, 52 (40) , 7099-7113. https://doi.org/10.1021/bi400784r
  24. T. Sanjoy Singh, B. J. Rao, and G. Krishnamoorthy . GTP Binding Leads to Narrowing of the Conformer Population While Preserving the Structure of the RNA Aptamer: A Site-Specific Time-Resolved Fluorescence Dynamics Study. Biochemistry 2012, 51 (46) , 9260-9269. https://doi.org/10.1021/bi301110u
  25. Kady-Ann Steen, Greggory M. Rice, and Kevin M. Weeks . Fingerprinting Noncanonical and Tertiary RNA Structures by Differential SHAPE Reactivity. Journal of the American Chemical Society 2012, 134 (32) , 13160-13163. https://doi.org/10.1021/ja304027m
  26. Marino J. E. Resendiz, Arne Schön, Ernesto Freire, and Marc M. Greenberg . Photochemical Control of RNA Structure by Disrupting π-Stacking. Journal of the American Chemical Society 2012, 134 (30) , 12478-12481. https://doi.org/10.1021/ja306304w
  27. Tobias Santner, Ulrike Rieder, Christoph Kreutz, and Ronald Micura . Pseudoknot Preorganization of the PreQ1 Class I Riboswitch. Journal of the American Chemical Society 2012, 134 (29) , 11928-11931. https://doi.org/10.1021/ja3049964
  28. Sharla Wood, Adrian R. Ferré-D’Amaré, and David Rueda . Allosteric Tertiary Interactions Preorganize the c-di-GMP Riboswitch and Accelerate Ligand Binding. ACS Chemical Biology 2012, 7 (5) , 920-927. https://doi.org/10.1021/cb300014u
  29. Francesco Colizzi and Giovanni Bussi . RNA Unwinding from Reweighted Pulling Simulations. Journal of the American Chemical Society 2012, 134 (11) , 5173-5179. https://doi.org/10.1021/ja210531q
  30. Marie F. Soulière, Andrea Haller, Renate Rieder, and Ronald Micura . A Powerful Approach for the Selection of 2-Aminopurine Substitution Sites to Investigate RNA Folding. Journal of the American Chemical Society 2011, 133 (40) , 16161-16167. https://doi.org/10.1021/ja2063583
  31. Chen Zhuo, Chengwei Zeng, Rui Yang, Haoquan Liu, Yunjie Zhao. RPflex: A Coarse-Grained Network Model for RNA Pocket Flexibility Study. International Journal of Molecular Sciences 2023, 24 (6) , 5497. https://doi.org/10.3390/ijms24065497
  32. Ting Yu, Taigang Liu, Yujie Wang, Shuhao Zhang, Wenbing Zhang. Thermodynamics and kinetics of an A-U RNA base pair under force studied by molecular dynamics simulations. Physical Review E 2023, 107 (2) https://doi.org/10.1103/PhysRevE.107.024404
  33. Xiaochen Xu, Michaela Egger, Chunyan Li, Hao Chen, Ronald Micura, Aiming Ren. Structure-based investigations of the NAD+-II riboswitch. Nucleic Acids Research 2023, 51 (1) , 54-67. https://doi.org/10.1093/nar/gkac1227
  34. Thomas Binet, Bérangère Avalle, Miraine Dávila Felipe, Irene Maffucci, . AptaMat: a matrix-based algorithm to compare single-stranded oligonucleotides secondary structures. Bioinformatics 2023, 39 (1) https://doi.org/10.1093/bioinformatics/btac752
  35. Luqian Zheng, Qianqian Song, Xiaochen Xu, Xin Shen, Chunyan Li, Hongcheng Li, Hao Chen, Aiming Ren. Structure-based insights into recognition and regulation of SAM-sensing riboswitches. Science China Life Sciences 2023, 66 (1) , 31-50. https://doi.org/10.1007/s11427-022-2188-7
  36. Christian Steinmetzger, Claudia Höbartner. Probing of Fluorogenic RNA Aptamers via Supramolecular Förster Resonance Energy Transfer with a Universal Fluorescent Nucleobase Analog. 2023, 155-173. https://doi.org/10.1007/978-1-0716-2695-5_12
  37. Rajeev Yadav, Julia R. Widom, Adrien Chauvier, Nils G. Walter. An anionic ligand snap-locks a long-range interaction in a magnesium-folded riboswitch. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-021-27827-y
  38. Steve L. Bonilla, Jeffrey S. Kieft. The promise of cryo-EM to explore RNA structural dynamics. Journal of Molecular Biology 2022, 434 (18) , 167802. https://doi.org/10.1016/j.jmb.2022.167802
  39. Harindranath Kadavath, Roland Riek. Multistate Structures and Dynamics at Atomic Resolution Using Exact Nuclear Overhauser Enhancements (eNOEs). 2022, 29-55. https://doi.org/10.1039/9781839165702-00029
  40. Yuanzhe Zhou, Yangwei Jiang, Shi‐Jie Chen. RNA –ligand molecular docking: Advances and challenges. WIREs Computational Molecular Science 2022, 12 (3) https://doi.org/10.1002/wcms.1571
  41. Takeshi Tabuchi, Yohei Yokobayashi. High-throughput screening of cell-free riboswitches by fluorescence-activated droplet sorting. Nucleic Acids Research 2022, 50 (6) , 3535-3550. https://doi.org/10.1093/nar/gkac152
  42. Sunandan Mukherjee, Chandran Nithin. Advanced computational tools for quantitative analysis of protein–nucleic acid interfaces. 2022, 163-180. https://doi.org/10.1016/B978-0-323-90264-9.00011-8
  43. Pierre Dagenais, Geneviève Desjardins, Pascale Legault. An integrative NMR-SAXS approach for structural determination of large RNAs defines the substrate-free state of a trans -cleaving Neurospora Varkud Satellite ribozyme. Nucleic Acids Research 2021, 49 (20) , 11959-11973. https://doi.org/10.1093/nar/gkab963
  44. Xiaochen Xu, Michaela Egger, Hao Chen, Karolina Bartosik, Ronald Micura, Aiming Ren. Insights into xanthine riboswitch structure and metal ion-mediated ligand recognition. Nucleic Acids Research 2021, 49 (12) , 7139-7153. https://doi.org/10.1093/nar/gkab486
  45. Abdallah S. Abdelsattar, Youssef Mansour, Fareed Aboul‐ela. The Perturbed Free‐Energy Landscape: Linking Ligand Binding to Biomolecular Folding. ChemBioChem 2021, 22 (9) , 1499-1516. https://doi.org/10.1002/cbic.202000695
  46. Christoph Kaiser, Jeannine Schneider, Florian Groher, Beatrix Suess, Josef Wachtveitl. What defines a synthetic riboswitch? – Conformational dynamics of ciprofloxacin aptamers with similar binding affinities but varying regulatory potentials. Nucleic Acids Research 2021, 49 (7) , 3661-3671. https://doi.org/10.1093/nar/gkab166
  47. P. Broft, S. Dzatko, M. Krafcikova, A. Wacker, Robert Hänsel‐Hertsch, Volker Dötsch, L. Trantirek, Harald Schwalbe. In‐Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells. Angewandte Chemie International Edition 2021, 60 (2) , 865-872. https://doi.org/10.1002/anie.202007184
  48. P. Broft, S. Dzatko, M. Krafcikova, A. Wacker, Robert Hänsel‐Hertsch, Volker Dötsch, L. Trantirek, Harald Schwalbe. In‐Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells. Angewandte Chemie 2021, 133 (2) , 878-885. https://doi.org/10.1002/ange.202007184
  49. Shanker S.S. Panchapakesan, Lukas Corey, Sarah N. Malkowski, Gadareth Higgs, Ronald R. Breaker. A second riboswitch class for the enzyme cofactor NAD +. RNA 2021, 27 (1) , 99-105. https://doi.org/10.1261/rna.077891.120
  50. Alla Peselis, Alexander Serganov. Cooperativity and Allostery in RNA Systems. 2021, 255-271. https://doi.org/10.1007/978-1-0716-1154-8_15
  51. Hao Chen, Michaela Egger, Xiaochen Xu, Laurin Flemmich, Olga Krasheninina, Aiai Sun, Ronald Micura, Aiming Ren. Structural distinctions between NAD+ riboswitch domains 1 and 2 determine differential folding and ligand binding. Nucleic Acids Research 2020, 48 (21) , 12394-12406. https://doi.org/10.1093/nar/gkaa1029
  52. Felix Nußbaumer, Raphael Plangger, Manuel Roeck, Christoph Kreutz. Aromatic 19 F– 13 C TROSY—[ 19 F, 13 C]‐Pyrimidine Labeling for NMR Spectroscopy of RNA. Angewandte Chemie 2020, 132 (39) , 17210-17217. https://doi.org/10.1002/ange.202006577
  53. Felix Nußbaumer, Raphael Plangger, Manuel Roeck, Christoph Kreutz. Aromatic 19 F– 13 C TROSY—[ 19 F, 13 C]‐Pyrimidine Labeling for NMR Spectroscopy of RNA. Angewandte Chemie International Edition 2020, 59 (39) , 17062-17069. https://doi.org/10.1002/anie.202006577
  54. Karolina Bartosik, Katarzyna Debiec, Anna Czarnecka, Elzbieta Sochacka, Grazyna Leszczynska. Synthesis of Nucleobase-Modified RNA Oligonucleotides by Post-Synthetic Approach. Molecules 2020, 25 (15) , 3344. https://doi.org/10.3390/molecules25153344
  55. Huan Li, Yidan Tang, Bingling Li. Homogeneous and Universal Detection of Various Targets with a Dual‐Step Transduced Toehold Switch Sensor. ChemBioChem 2020, 21 (10) , 1418-1422. https://doi.org/10.1002/cbic.201900749
  56. Christian Steinmetzger, Carmen Bäuerlein, Claudia Höbartner. Supramolecular Fluorescence Resonance Energy Transfer in Nucleobase‐Modified Fluorogenic RNA Aptamers. Angewandte Chemie 2020, 132 (17) , 6826-6830. https://doi.org/10.1002/ange.201916707
  57. Christian Steinmetzger, Carmen Bäuerlein, Claudia Höbartner. Supramolecular Fluorescence Resonance Energy Transfer in Nucleobase‐Modified Fluorogenic RNA Aptamers. Angewandte Chemie International Edition 2020, 59 (17) , 6760-6764. https://doi.org/10.1002/anie.201916707
  58. Marie Teng-Pei Wu, Victoria D’Souza. Alternate RNA Structures. Cold Spring Harbor Perspectives in Biology 2020, 12 (1) , a032425. https://doi.org/10.1101/cshperspect.a032425
  59. Sarah N. Malkowski, Tara C.J. Spencer, Ronald R. Breaker. Evidence that the nadA motif is a bacterial riboswitch for the ubiquitous enzyme cofactor NAD +. RNA 2019, 25 (12) , 1616-1627. https://doi.org/10.1261/rna.072538.119
  60. Aiai Sun, Catherina Gasser, Fudong Li, Hao Chen, Stefan Mair, Olga Krasheninina, Ronald Micura, Aiming Ren. SAM-VI riboswitch structure and signature for ligand discrimination. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-13600-9
  61. Eva Neuner, Ronald Micura. Practical synthesis of N-(di-n-butylamino)methylene-protected 2-aminopurine riboside phosphoramidite for RNA solid-phase synthesis. Monatshefte für Chemie - Chemical Monthly 2019, 150 (11) , 1941-1946. https://doi.org/10.1007/s00706-019-02502-7
  62. Kristine L. Teppang, Raymond W. Lee, Dillon D. Burns, M. Benjamin Turner, Melissa E. Lokensgard, Andrew L. Cooksy, Byron W. Purse. Electronic Modifications of Fluorescent Cytidine Analogues Control Photophysics and Fluorescent Responses to Base Stacking and Pairing. Chemistry – A European Journal 2019, 25 (5) , 1249-1259. https://doi.org/10.1002/chem.201803653
  63. Ilyas Yildirim. Improvement of RNA Simulations with Torsional Revisions of the AMBER Force Field. 2019, 55-74. https://doi.org/10.1007/978-1-4939-9608-7_3
  64. Robb Welty, Suzette A. Pabit, Andrea M. Katz, George D. Calvey, Lois Pollack, Kathleen B. Hall. Divalent ions tune the kinetics of a bacterial GTPase center rRNA folding transition from secondary to tertiary structure. RNA 2018, 24 (12) , 1828-1838. https://doi.org/10.1261/rna.068361.118
  65. Christina Helmling, Dean-Paulos Klötzner, Florian Sochor, Rachel Anne Mooney, Anna Wacker, Robert Landick, Boris Fürtig, Alexander Heckel, Harald Schwalbe. Life times of metastable states guide regulatory signaling in transcriptional riboswitches. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-03375-w
  66. Gloria Lozano, Rosario Francisco-Velilla, Encarnacion Martinez-Salas. Ribosome-dependent conformational flexibility changes and RNA dynamics of IRES domains revealed by differential SHAPE. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-23845-x
  67. Eva Neuner, Marina Frener, Alexandra Lusser, Ronald Micura. Superior cellular activities of azido- over amino-functionalized ligands for engineered preQ 1 riboswitches in E.coli. RNA Biology 2018, 15 (10) , 1376-1383. https://doi.org/10.1080/15476286.2018.1534526
  68. Mst Ara Gulshan, Kasumi Tsuji, Shigeyoshi Matsumura, Tsunehiko Higuchi, Naoki Umezawa, Yoshiya Ikawa. Distinct modulation of group I ribozyme activity among stereoisomers of a synthetic pentamine with structural constraints. Biochemical and Biophysical Research Communications 2018, 504 (4) , 698-703. https://doi.org/10.1016/j.bbrc.2018.09.015
  69. Thea S. Lotz, Beatrix Suess. Small-Molecule-Binding Riboswitches. 2018, 75-88. https://doi.org/10.1128/9781683670247.ch5
  70. Parker J. Nichols, Alexandra Born, Morkos A. Henen, Dean Strotz, Chi N. Celestine, Peter Güntert, Beat Vögeli. Extending the Applicability of Exact Nuclear Overhauser Enhancements to Large Proteins and RNA. ChemBioChem 2018, 19 (16) , 1695-1701. https://doi.org/10.1002/cbic.201800237
  71. Thea S. Lotz, Beatrix Suess, , . Small-Molecule-Binding Riboswitches. Microbiology Spectrum 2018, 6 (4) https://doi.org/10.1128/microbiolspec.RWR-0025-2018
  72. Madeline E. Sherlock, Narasimhan Sudarsan, Ronald R. Breaker. Riboswitches for the alarmone ppGpp expand the collection of RNA-based signaling systems. Proceedings of the National Academy of Sciences 2018, 115 (23) , 6052-6057. https://doi.org/10.1073/pnas.1720406115
  73. Yohei Yokobayashi. Small Molecule-Responsive RNA Switches (Bacteria): Important Element of Programming Gene Expression in Response to Environmental Signals in Bacteria. 2018, 181-188. https://doi.org/10.1002/9783527688104.ch9
  74. Nemanja Milisavljevič, Pavla Perlíková, Radek Pohl, Michal Hocek. Enzymatic synthesis of base-modified RNA by T7 RNA polymerase. A systematic study and comparison of 5-substituted pyrimidine and 7-substituted 7-deazapurine nucleoside triphosphates as substrates. Organic & Biomolecular Chemistry 2018, 16 (32) , 5800-5807. https://doi.org/10.1039/C8OB01498A
  75. Kristin R. Gleitsman, Raghuvir N. Sengupta, Daniel Herschlag. Slow molecular recognition by RNA. RNA 2017, 23 (12) , 1745-1753. https://doi.org/10.1261/rna.062026.117
  76. Xinyue Zhang, Dong Zhang, Chenhan Zhao, Kai Tian, Ruicheng Shi, Xiao Du, Andrew J. Burcke, Jing Wang, Shi-Jie Chen, Li-Qun Gu. Nanopore electric snapshots of an RNA tertiary folding pathway. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-01588-z
  77. Dmitriy Ignatov, Jörgen Johansson. RNA‐mediated signal perception in pathogenic bacteria. WIREs RNA 2017, 8 (6) https://doi.org/10.1002/wrna.1429
  78. Changge Zheng, Wenji Zhai, Jianquan Hong, Xiaoxiao Zhang, Zhenhua Zhu, Ling Wang. Synthesis of two 6-aza-uridines modified by benzoheterocycle as environmentally sensitive fluorescent nucleosides. Tetrahedron Letters 2017, 58 (31) , 3008-3013. https://doi.org/10.1016/j.tetlet.2017.05.087
  79. Laurène Bastet, Adrien Chauvier, Navjot Singh, Antony Lussier, Anne-Marie Lamontagne, Karine Prévost, Eric Massé, Joseph T. Wade, Daniel A. Lafontaine. Translational control and Rho-dependent transcription termination are intimately linked in riboswitch regulation. Nucleic Acids Research 2017, 45 (12) , 7474-7486. https://doi.org/10.1093/nar/gkx434
  80. Christopher P. Jones, Adrian R. Ferré-D'Amaré. Long-Range Interactions in Riboswitch Control of Gene Expression. Annual Review of Biophysics 2017, 46 (1) , 455-481. https://doi.org/10.1146/annurev-biophys-070816-034042
  81. K. McCluskey, J. Carlos Penedo. An integrated perspective on RNA aptamer ligand-recognition models: clearing muddy waters. Physical Chemistry Chemical Physics 2017, 19 (10) , 6921-6932. https://doi.org/10.1039/C6CP08798A
  82. Kai Zhang, Ke Wang, Xue Zhu, Minhao Xie. Ultrasensitive fluorescence detection of transcription factors based on kisscomplex formation and the T7 RNA polymerase amplification method. Chemical Communications 2017, 53 (43) , 5846-5849. https://doi.org/10.1039/C7CC02231J
  83. Michael Andreas Juen, Christoph Hermann Wunderlich, Felix Nußbaumer, Martin Tollinger, Georg Kontaxis, Robert Konrat, D. Flemming Hansen, Christoph Kreutz. Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy. Angewandte Chemie International Edition 2016, 55 (39) , 12008-12012. https://doi.org/10.1002/anie.201605870
  84. Michael Andreas Juen, Christoph Hermann Wunderlich, Felix Nußbaumer, Martin Tollinger, Georg Kontaxis, Robert Konrat, D. Flemming Hansen, Christoph Kreutz. Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy. Angewandte Chemie 2016, 128 (39) , 12187-12191. https://doi.org/10.1002/ange.201605870
  85. Cibran Perez-Gonzalez, Daniel A. Lafontaine, J. Carlos Penedo. Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes. Frontiers in Chemistry 2016, 4 https://doi.org/10.3389/fchem.2016.00033
  86. Xiaojun Xu, Tao Yu, Shi-Jie Chen. Understanding the kinetic mechanism of RNA single base pair formation. Proceedings of the National Academy of Sciences 2016, 113 (1) , 116-121. https://doi.org/10.1073/pnas.1517511113
  87. Cibran Perez-Gonzalez, Jonathan P. Grondin, Daniel A. Lafontaine, J. Carlos Penedo. Biophysical Approaches to Bacterial Gene Regulation by Riboswitches. 2016, 157-191. https://doi.org/10.1007/978-3-319-32189-9_11
  88. Amanda J. Blythe, Archa H. Fox, Charles S. Bond. The ins and outs of lncRNA structure: How, why and what comes next?. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2016, 1859 (1) , 46-58. https://doi.org/10.1016/j.bbagrm.2015.08.009
  89. Erich Smith-Peter, Anne-Marie Lamontagne, Daniel A Lafontaine. Role of lysine binding residues in the global folding of the lysC riboswitch. RNA Biology 2015, 12 (12) , 1372-1382. https://doi.org/10.1080/15476286.2015.1094603
  90. Sha Gong, Yujie Wang, Wenbing Zhang. The regulation mechanism of yitJ and metF riboswitches. The Journal of Chemical Physics 2015, 143 (4) , 045103. https://doi.org/10.1063/1.4927390
  91. H. Bauke Albada, Eyal Golub, Itamar Willner. Computational docking simulations of a DNA-aptamer for argininamide and related ligands. Journal of Computer-Aided Molecular Design 2015, 29 (7) , 643-654. https://doi.org/10.1007/s10822-015-9844-5
  92. Mélodie Duval, Angelita Simonetti, Isabelle Caldelari, Stefano Marzi. Multiple ways to regulate translation initiation in bacteria: Mechanisms, regulatory circuits, dynamics. Biochimie 2015, 114 , 18-29. https://doi.org/10.1016/j.biochi.2015.03.007
  93. Kathryn D. Mouzakis, Elizabeth A. Dethoff, Marco Tonelli, Hashim Al-Hashimi, Samuel E. Butcher. Dynamic Motions of the HIV-1 Frameshift Site RNA. Biophysical Journal 2015, 108 (3) , 644-654. https://doi.org/10.1016/j.bpj.2014.12.006
  94. Boris Fürtig, Senada Nozinovic, Anke Reining, Harald Schwalbe. Multiple conformational states of riboswitches fine-tune gene regulation. Current Opinion in Structural Biology 2015, 30 , 112-124. https://doi.org/10.1016/j.sbi.2015.02.007
  95. Xianyang Fang, Jason R Stagno, Yuba R Bhandari, Xiaobing Zuo, Yun-Xing Wang. Small-angle X-ray scattering: a bridge between RNA secondary structures and three-dimensional topological structures. Current Opinion in Structural Biology 2015, 30 , 147-160. https://doi.org/10.1016/j.sbi.2015.02.010
  96. Satya Narayan, Mamta H. Kombrabail, Sudipta Das, Himanshu Singh, Kandala V. R. Chary, Basuthkar J. Rao, Guruswamy Krishnamoorthy. Site-specific fluorescence dynamics in an RNA ‘thermometer’ reveals the role of ribosome binding in its temperature-sensitive switch function. Nucleic Acids Research 2015, 43 (1) , 493-503. https://doi.org/10.1093/nar/gku1264
  97. Thomas Moschen, Christoph Hermann Wunderlich, Romana Spitzer, Jasmin Levic, Ronald Micura, Martin Tollinger, Christoph Kreutz. Ligand-Detected Relaxation Dispersion NMR Spectroscopy: Dynamics of preQ 1 -RNA Binding. Angewandte Chemie 2015, 127 (2) , 570-573. https://doi.org/10.1002/ange.201409779
  98. Sha Gong, Yujie Wang, Wenbing Zhang. Kinetic regulation mechanism of pbuE riboswitch. The Journal of Chemical Physics 2015, 142 (1) , 015103. https://doi.org/10.1063/1.4905214
  99. Sven Findeiß, Manja Wachsmuth, Mario Mörl, Peter F. Stadler. Design of Transcription Regulating Riboswitches. 2015, 1-22. https://doi.org/10.1016/bs.mie.2014.10.029
  100. Yi Xue, Dawn Kellogg, Isaac J. Kimsey, Bharathwaj Sathyamoorthy, Zachary W. Stein, Mitchell McBrairty, Hashim M. Al-Hashimi. Characterizing RNA Excited States Using NMR Relaxation Dispersion. 2015, 39-73. https://doi.org/10.1016/bs.mie.2015.02.002
Load all citations

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect