ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Chemiluminescence of organic hydrazides

Cite this: Acc. Chem. Res. 1970, 3, 2, 54–62
Publication Date (Print):February 1, 1970
https://doi.org/10.1021/ar50026a003
    ACS Legacy Archive

    Article Views

    720

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    PDF (987 KB)

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Cited By

    This article is cited by 106 publications.

    1. Ling Yue, Ya-Jun Liu. Conical Intersection in Chemiluminescence of Cyclic Peroxides. The Journal of Physical Chemistry Letters 2022, 13 (46) , 10671-10687. https://doi.org/10.1021/acs.jpclett.2c02783
    2. Hong-Xia Zhang, Rui-Li Guo, Xing-Long Zhang, Meng-Yue Wang, Bao-Yin Zhao, Ya-Ru Gao, Qiong Jia, Yong-Qiang Wang. Synthesis of Acyl Hydrazides via a Radical Chemistry of Azocarboxylic tert-Butyl Esters. The Journal of Organic Chemistry 2022, 87 (10) , 6573-6587. https://doi.org/10.1021/acs.joc.2c00139
    3. Ling Yue, Ya-Jun Liu. Three S0/S1 Conical Intersections Control Electron-Transfer-Catalyzed Chemiluminescence of 1,2-Dioxetanedione. Journal of Chemical Theory and Computation 2021, 17 (6) , 3483-3494. https://doi.org/10.1021/acs.jctc.1c00356
    4. Ling Yue, Yi-Tong Liu. Mechanistic Insight into pH-Dependent Luminol Chemiluminescence in Aqueous Solution. The Journal of Physical Chemistry B 2020, 124 (35) , 7682-7693. https://doi.org/10.1021/acs.jpcb.0c06301
    5. Ling Yue, Ya-Jun Liu. Two Conical Intersections Control Luminol Chemiluminescence. Journal of Chemical Theory and Computation 2019, 15 (3) , 1798-1805. https://doi.org/10.1021/acs.jctc.8b01114
    6. Morgane Vacher, Ignacio Fdez. Galván, Bo-Wen Ding, Stefan Schramm, Romain Berraud-Pache, Panče Naumov, Nicolas Ferré, Ya-Jun Liu, Isabelle Navizet, Daniel Roca-Sanjuán, Wilhelm J. Baader, Roland Lindh. Chemi- and Bioluminescence of Cyclic Peroxides. Chemical Reviews 2018, 118 (15) , 6927-6974. https://doi.org/10.1021/acs.chemrev.7b00649
    7. Manabu Nakazono, Yuji Oshikawa, Mizuho Nakamura, Hidehiro Kubota, and Shinkoh Nanbu . Strongly Chemiluminescent Acridinium Esters under Neutral Conditions: Synthesis, Properties, Determination, and Theoretical Study. The Journal of Organic Chemistry 2017, 82 (5) , 2450-2461. https://doi.org/10.1021/acs.joc.6b02748
    8. T. Spencer Bailey and Michael D. Pluth . Chemiluminescent Detection of Enzymatically Produced Hydrogen Sulfide: Substrate Hydrogen Bonding Influences Selectivity for H2S over Biological Thiols. Journal of the American Chemical Society 2013, 135 (44) , 16697-16704. https://doi.org/10.1021/ja408909h
    9. Raquel Maeztu, Gustavo González-Gaitano and Gloria Tardajos . Enhancement of the Chemiluminescence of Two Isoluminol Derivatives by Nanoencapsulation with Natural Cyclodextrins. The Journal of Physical Chemistry B 2010, 114 (32) , 10541-10549. https://doi.org/10.1021/jp103546u
    10. Raquel Maeztu, Gloria Tardajos and Gustavo González-Gaitano . Natural Cyclodextrins as Efficient Boosters of the Chemiluminescence of Luminol and Isoluminol: Exploration of Potential Applications. The Journal of Physical Chemistry B 2010, 114 (8) , 2798-2806. https://doi.org/10.1021/jp909707x
    11. Catherine Dekerckheer,, Kristin Bartik,, Jean-Paul Lecomte, and, Jacques Reisse. Pulsed Sonochemistry. The Journal of Physical Chemistry A 1998, 102 (46) , 9177-9182. https://doi.org/10.1021/jp982489c
    12. Frank McCapra. Chemical mechanisms in bioluminescence. Accounts of Chemical Research 1976, 9 (6) , 201-208. https://doi.org/10.1021/ar50102a001
    13. Timothy G. Burdo and W. Rudolf. Seitz. Mechanism of cobalt catalysis of luminol chemiluminescence. Analytical Chemistry 1975, 47 (9) , 1639-1643. https://doi.org/10.1021/ac60359a019
    14. Charles E. White and Alfred. Weissler. Fluorometric analysis. Analytical Chemistry 1972, 44 (5) , 182-206. https://doi.org/10.1021/ac60313a031
    15. Busra Kesimal, Burcu Balci, Deniz Cakal, Ahmet M. Önal, Atilla Cihaner. Synthesis and Characterization of a Luminol Based Chemiluminescent Trimeric System. Journal of Fluorescence 2023, 33 (4) , 1525-1535. https://doi.org/10.1007/s10895-023-03172-9
    16. Ling Yue. Trajectory surface hopping molecular dynamics on Chemiluminescence of cyclic peroxides. Journal of the Chinese Chemical Society 2023, 70 (3) , 269-286. https://doi.org/10.1002/jccs.202200329
    17. Daniel Roca-Sanjuán. Chemi- and bioluminescence: A practical tutorial on computational chemiluminescence. 2023, 351-366. https://doi.org/10.1016/B978-0-323-91738-4.00007-5
    18. Robert C. Allen. Haloperoxidase-Catalyzed Luminol Luminescence. Antioxidants 2022, 11 (3) , 518. https://doi.org/10.3390/antiox11030518
    19. Edyta Raczuk, Barbara Dmochowska, Justyna Samaszko-Fiertek, Janusz Madaj. Different Schiff Bases—Structure, Importance and Classification. Molecules 2022, 27 (3) , 787. https://doi.org/10.3390/molecules27030787
    20. Ana Borrego-Sánchez, Angelo Giussani, Mercedes Rubio, Daniel Roca-Sanjuán. On the chemiluminescence emission of luminol: protic and aprotic solvents and encapsulation to improve the properties in aqueous solution. Physical Chemistry Chemical Physics 2020, 22 (47) , 27617-27625. https://doi.org/10.1039/D0CP04571C
    21. Manabu Nakazono, Shinkoh Nanbu, Takeyuki Akita, Kenji Hamase. Chemiluminescence of methoxycarbonylphenyl 10-methyl-10λ4 -2,7-disubstituted acridine-9-carboxylate derivatives. Journal of Photochemistry and Photobiology A: Chemistry 2020, 403 , 112851. https://doi.org/10.1016/j.jphotochem.2020.112851
    22. Yutao Zhang, Chenxu Yan, Chao Wang, Zhiqian Guo, Xiaogang Liu, Wei‐Hong Zhu. A Sequential Dual‐Lock Strategy for Photoactivatable Chemiluminescent Probes Enabling Bright Duplex Optical Imaging. Angewandte Chemie 2020, 132 (23) , 9144-9151. https://doi.org/10.1002/ange.202000165
    23. Yutao Zhang, Chenxu Yan, Chao Wang, Zhiqian Guo, Xiaogang Liu, Wei‐Hong Zhu. A Sequential Dual‐Lock Strategy for Photoactivatable Chemiluminescent Probes Enabling Bright Duplex Optical Imaging. Angewandte Chemie International Edition 2020, 59 (23) , 9059-9066. https://doi.org/10.1002/anie.202000165
    24. Angelo Giussani, Pooria Farahani, Daniel Martínez‐Muñoz, Marcus Lundberg, Roland Lindh, Daniel Roca‐Sanjuán. Molecular Basis of the Chemiluminescence Mechanism of Luminol. Chemistry – A European Journal 2019, 25 (20) , 5202-5213. https://doi.org/10.1002/chem.201805918
    25. Yan Jin, Yonghua Sun, Chongying Li, Chao Yang. A highly selective chemiluminescent probe for the detection of chromium(VI). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 192 , 82-87. https://doi.org/10.1016/j.saa.2017.10.062
    26. Manabu Nakazono, Shinkoh Nanbu. Enhancement effect on the chemiluminescence of acridinium esters under neutral conditions. Luminescence 2018, 33 (2) , 345-348. https://doi.org/10.1002/bio.3419
    27. Aysun Degirmenci, Fatih Algi. Synthesis, chemiluminescence and energy transfer efficiency of 2,3-dihydrophthalazine-1,4-dione and BODIPY dyad. Dyes and Pigments 2017, 140 , 92-99. https://doi.org/10.1016/j.dyepig.2017.01.037
    28. Melek Pamuk Algi, Zahide Oztas, Seha Tirkeş, Atilla Cihaner, Fatih Algi. Atomistic Engineering of Chemiluminogens: Synthesis, Properties and Polymerization of 2,3-Dihydro-Pyrrolo[3,4-d]Pyridazine-1,4-Dione Scaffolds. Journal of Fluorescence 2017, 27 (2) , 509-519. https://doi.org/10.1007/s10895-016-1978-x
    29. Axel G. Griesbeck, Yrene Díaz‐Miara, Robert Fichtler, Axel Jacobi von Wangelin, Raúl Pérez‐Ruiz, Diego Sampedro. Steric Enhancement of the Chemiluminescence of Luminols. Chemistry – A European Journal 2015, 21 (28) , 9975-9979. https://doi.org/10.1002/chem.201500798
    30. Anzhelika G. Vorobyeva, Michael Stanton, Aurélien Godinat, Kjetil B. Lund, Grigory G. Karateev, Kevin P. Francis, Elizabeth Allen, Juri G. Gelovani, Emmet McCormack, Mark Tangney, Elena A. Dubikovskaya, . Development of a Bioluminescent Nitroreductase Probe for Preclinical Imaging. PLOS ONE 2015, 10 (6) , e0131037. https://doi.org/10.1371/journal.pone.0131037
    31. T. Spencer Bailey, Michael D. Pluth. Chemiluminescent Detection of Enzymatically Produced H2S. 2015, 81-99. https://doi.org/10.1016/bs.mie.2014.11.012
    32. Yuezhen He, Xiaoxun Wang, Yuzhong Zhang, Feng Gao, Yongxin Li, Hongqi Chen, Lun Wang. An ultrasensitive chemiluminescent immunosensor for the detection of human leptin using hemin/G-quadruplex DNAzymes-assembled signal amplifier. Talanta 2013, 116 , 816-821. https://doi.org/10.1016/j.talanta.2013.07.074
    33. Felipe A. Augusto, Glalci A. de Souza, Sergio P. de Souza Júnior, Muhammad Khalid, Wilhelm J. Baader. Efficiency of Electron Transfer Initiated Chemiluminescence. Photochemistry and Photobiology 2013, 89 (6) , 1299-1317. https://doi.org/10.1111/php.12102
    34. Nawal A. Alarfaj, Maha F. El‐Tohamy. Automated Sequential‐injection Chemiluminescence Determination of Glucosamine Sulphate via Luminol‐Hydrogen Peroxide System. Journal of the Chinese Chemical Society 2013, 60 (10) , 1246-1252. https://doi.org/10.1002/jccs.201300187
    35. Lateef U. Syed, Luxi Zhang Swisher, Hannah Huff, Caitlin Rochford, Fengli Wang, Jianwei Liu, Judy Wu, Mark Richter, Sivasai Balivada, Deryl Troyer, Jun Li. Luminol-labeled gold nanoparticles for ultrasensitive chemiluminescence-based chemical analyses. The Analyst 2013, 138 (19) , 5600. https://doi.org/10.1039/c3an01005h
    36. A. L. S. Chandel, S. A. Khan, R. S. Kher, Ashish Tiwari. Investigation on the chemiluminescence reaction of the phenylhydrazine‐luminol–peroxide system. Luminescence 2012, 27 (6) , 455-458. https://doi.org/10.1002/bio.1374
    37. Yutaka Yamagishi, Sang-Hyun Son, Maiko Yuasa, Koji Yamada. Design and Synthesis of a Chemiluminescent Solvatochromic Dye. Chemistry Letters 2012, 41 (5) , 504-506. https://doi.org/10.1246/cl.2012.504
    38. Jiro Motoyoshiya. Chemiluminescence in Organic Reactions: Fundamental Investigation and Application of Peroxyoxalate Chemiluminescence and Related Chemiluminescent Reactions. Journal of Synthetic Organic Chemistry, Japan 2012, 70 (10) , 1018-1029. https://doi.org/10.5059/yukigoseikyokaishi.70.1018
    39. Raquel Maeztu, Gustavo González-Gaitano, Gloria Tardajos, Peter Stilbs. Chemiluminescence of phthalhydrazide derivatives in organized media: Interactions with surfactants and cyclodextrins. Journal of Luminescence 2011, 131 (4) , 662-668. https://doi.org/10.1016/j.jlumin.2010.11.012
    40. Demet Asil, Atilla Cihaner, Fatih Algı, Ahmet M. Önal. A Diverse‐Stimuli Responsive Chemiluminescent Probe with Luminol Scaffold and Its Electropolymerization. Electroanalysis 2010, 22 (19) , 2254-2260. https://doi.org/10.1002/elan.201000141
    41. Manabu Nakazono, Ai Jinguji, Shinkoh Nanbu, Ryoichi Kuwano, Zilong Zheng, Kenichiro Saita, Yuji Oshikawa, Yuta Mikuni, Tatsuhiro Murakami, Yi Zhao, Shigeki Sasaki, Kiyoshi Zaitsu. Fluorescence and chemiluminescence properties of indolylmaleimides: experimental and theoretical studies. Physical Chemistry Chemical Physics 2010, 12 (33) , 9783. https://doi.org/10.1039/c003021j
    42. Yun Luo, Yi Li, Baoqiang Lv, Zaide Zhou, Dan Xiao, Martin M. F. Choi. A new luminol derivative as a fluorescent probe for trace analysis of copper(II). Microchimica Acta 2009, 164 (3-4) , 411-417. https://doi.org/10.1007/s00604-008-0076-4
    43. Manabu NAKAZONO. Development of Highly Selective and Sensitive Fluorescent and Chemiluminescent Reagents. YAKUGAKU ZASSHI 2008, 128 (6) , 919-924. https://doi.org/10.1248/yakushi.128.919
    44. Jiro Motoyoshiya, Masanori Hotta, Yoshinori Nishii, Hiromu Aoyama. Chemiluminescence of 4‐styrylphthal‐hydrazides with crown ether as ionophore. Luminescence 2008, 23 (1) , 37-41. https://doi.org/10.1002/bio.1014
    45. Junyan Han, Jiney Jose, Erwen Mei, Kevin Burgess. Chemiluminescent Energy‐Transfer Cassettes Based on Fluorescein and Nile Red. Angewandte Chemie International Edition 2007, 46 (10) , 1684-1687. https://doi.org/10.1002/anie.200603307
    46. Junyan Han, Jiney Jose, Erwen Mei, Kevin Burgess. Chemiluminescent Energy‐Transfer Cassettes Based on Fluorescein and Nile Red. Angewandte Chemie 2007, 119 (10) , 1714-1717. https://doi.org/10.1002/ange.200603307
    47. Manabu Nakazono, Takae Hino, Kiyoshi Zaitsu. Photosensitive luminol derivatives and measurement of ultraviolet ray power. Journal of Photochemistry and Photobiology A: Chemistry 2007, 186 (1) , 99-105. https://doi.org/10.1016/j.jphotochem.2006.07.017
    48. Hideki Okamoto, Masaru Kimura. Preparation of an Azacrowned Isoluminol and Its Chemiluminescence Initiated by Alkali-metal Iodides in Acetonitrile. Chemistry Letters 2005, 34 (10) , 1452-1453. https://doi.org/10.1246/cl.2005.1452
    49. Jiro Motoyoshiya, Kazuya Yokota, Takuro Fukami, Shoji Konno, Aya Yamamoto, Masanori Hotta, Ryu Koike, Sachiko Yoshioka, Yoshinori Nishi, Hiromu Aoyama. Synthesis of 4-styrylphthalhydrazides and their chemiluminescence reaction. Emitters and chemiluminescence efficiency highly dependent on electronic nature of styryl goups. Journal of Heterocyclic Chemistry 2005, 42 (6) , 1063-1068. https://doi.org/10.1002/jhet.5570420605
    50. Paul S. Francis. The emitting species formed by the oxidation of hydrazides with hypohalites or N‐halosuccinimides. Luminescence 2004, 19 (4) , 205-208. https://doi.org/10.1002/bio.774
    51. Manabu Nakazono, Makoto Asechi, Kiyoshi Zaitsu. Synthesis of photosensitive luminol releasing compound, luminol-O-2-nitrobenzylate. Journal of Photochemistry and Photobiology A: Chemistry 2004, 163 (1-2) , 149-152. https://doi.org/10.1016/j.jphotochem.2003.11.006
    52. A. Wróblewska, O. M. Huta, S. V. Midyanyj, I. O. Patsay, J. Rak, J. Błażejowski. Origin of Chemiluminescence Accompanying the Reaction of the 9-Cyano-10-methylacridinium Cation with Hydrogen Peroxide. The Journal of Organic Chemistry 2004, 69 (5) , 1607-1614. https://doi.org/10.1021/jo0354387
    53. Paul S. Francis, Neil W. Barnett, Simon W. Lewis, Kieran F. Lim. Hypohalites and related oxidants as chemiluminescence reagents: a review. Luminescence 2004, 19 (2) , 94-115. https://doi.org/10.1002/bio.756
    54. Emanuela Licandro, Dario Perdicchia. N ‐Acylhydrazines: Future Perspectives Offered by New Syntheses and Chemistry. European Journal of Organic Chemistry 2004, 2004 (4) , 665-675. https://doi.org/10.1002/ejoc.200300416
    55. Irena Bronstein, Larry J. Kricka, Richard S. Givens. Chemiluminescence. 2000https://doi.org/10.1002/0471238961.0308051302181514.a01
    56. Robert C. Allen, David C. Dale, Fletcher B. Taylor. Blood phagocyte luminescence: gauging systemic immune activation. 2000, 591-629. https://doi.org/10.1016/S0076-6879(00)05515-4
    57. T. Sudhaharan, A.Ram Reddy. A Bifunctional Luminogenic Substrate for Two Luminescent Enzymes: Firefly Luciferase and Horseradish Peroxidase. Analytical Biochemistry 1999, 271 (2) , 159-167. https://doi.org/10.1006/abio.1999.4114
    58. Janusz Rak, Piotr Skurski, Jerzy Błażejowski. Toward an Understanding of the Chemiluminescence Accompanying the Reaction of 9-Carboxy-10-methylacridinium Phenyl Ester with Hydrogen Peroxide. The Journal of Organic Chemistry 1999, 64 (9) , 3002-3008. https://doi.org/10.1021/jo980566u
    59. J. Schiller, J. Arnhold, J. Schwinn, H. Sprinz, O. Brede, K. Arnold. Differences in the reactivity of phthalic hydrazide and luminol with hydroxyl radicals. Free Radical Research 1999, 30 (1) , 45-57. https://doi.org/10.1080/10715769900300061
    60. Rene Miranda, Roberto Osnaya, Ibeth Oviedo, Abel Ciprián, Tonatiuh Cruz, Mariano Martinez. FACILE ROUTE TO AMINO PHTHALIMIDES AND ISOTHIOCYANATE ANALOGUES; NOVEL REAGENTS TO PREPARE FLUORESCENT PROTEIN CONJUGATES.. Heterocyclic Communications 1999, 5 (4) https://doi.org/10.1515/HC.1999.5.4.331
    61. Masao Nakamura, Shingo Nakamura. One- and Two-Electron Oxidations of Luminol by Peroxidase Systems. Free Radical Biology and Medicine 1998, 24 (4) , 537-544. https://doi.org/10.1016/S0891-5849(97)00326-2
    62. LaChelle Maddox, Middleton Reeves, Kristopher Wood, Kenneth Roberts, Joe Studer, John Wetzel, Joel T. Smith, Kin Whittington, John L. Alls, Jill E. Parker, Eric Holwitt, Johnathan Kiel, John R. Wright. Acoustic Wave Dosimetry Based on Diazotized Luminol Solutions. Microchemical Journal 1998, 58 (2) , 209-217. https://doi.org/10.1006/mchj.1997.1541
    63. Richard G. Compton, John C. Eklund, Frank Marken. Sonoelectrochemical processes: A review. Electroanalysis 1997, 9 (7) , 509-522. https://doi.org/10.1002/elan.1140090702
    64. Kiminori Ushida, Akira Kira. Aqueous scintillator based on chemiluminescence of luminol. Applied Radiation and Isotopes 1996, 47 (4) , 441-444. https://doi.org/10.1016/0969-8043(95)00324-X
    65. E.M. PIETRZAK, A.S. DENES. COMPARISON OF LUMINOL CHEMILUMINESCENCE WITH ATP BIOLUMINESCENCE FOR THE ESTIMATION OF TOTAL BACTERIAL LOAD IN PURE CULTURES. Journal of Rapid Methods & Automation in Microbiology 1996, 4 (3) , 207-218. https://doi.org/10.1111/j.1745-4581.1996.tb00124.x
    66. Isbli L. Nantes, Giuseppe Cilento, Etelvino J. H. Bechara, Aníbal E. Vercesi. CHEMILUMINESCENT DIPHENYLACETALDEHYDE OXIDATION BY MITOCHONDRIA IS PROMOTED BY CYTOCHROMES and LEADS TO OXIDATIVE INJURY OF THE ORGANELLE. Photochemistry and Photobiology 1995, 62 (3) , 522-527. https://doi.org/10.1111/j.1751-1097.1995.tb02378.x
    67. S. Douglass Gilman, Charlotte E. Silverman, Andrew G. Ewing. Electrogenerated chemiluminescence detection for capillary electrophoresis. Journal of Microcolumn Separations 1994, 6 (2) , 97-106. https://doi.org/10.1002/mcs.1220060203
    68. F. M. Macdonald, V. M. Lingard. L. 1993, 639-642. https://doi.org/10.1007/978-1-4899-7270-5_11
    69. EMIL H. WHITE, MIN LI, DAVID F. ROSWELL. THE CHEMILUMINESCENCE OF AMIDES AND MONOACYL HYDRAZIDES BASED ON FIREFLY DEHYDROLUCIFERIN. Photochemistry and Photobiology 1991, 53 (1) , 125-130. https://doi.org/10.1111/j.1751-1097.1991.tb08477.x
    70. A. B. Theocharis, N. E. Alexandrou, A. Terzis. Generation and dienophilic properties of 1‐benzyl‐1 H ‐1,2,3‐triazolo[4,5‐ d ]pyridazine‐4,7‐dione. Journal of Heterocyclic Chemistry 1990, 27 (6) , 1741-1744. https://doi.org/10.1002/jhet.5570270643
    71. Rafi D. Jalkian, M. Bonner Denton. Ultra-Trace-Level Determination of Cobalt, Chromium, and Hydrogen Peroxide by Luminol Chemiluminescence Detected with a Charge-Coupled Device. Applied Spectroscopy 1988, 42 (7) , 1194-1199. https://doi.org/10.1366/0003702884429931
    72. . Chapter 11 Polysaccharides and Oligosaccharides. 1988, B239-B297. https://doi.org/10.1016/S0301-4770(08)61451-7
    73. Karl-Dietrich Gundermann, Frank McCapra. Luminol and Related Compounds. 1987, 77-108. https://doi.org/10.1007/978-3-642-71645-4_7
    74. Kelsey D. Cook. Electrohydrodynamic mass spectrometry. Mass Spectrometry Reviews 1986, 5 (4) , 467-519. https://doi.org/10.1002/mas.1280050404
    75. Robert C. Allen. [36] Phagocytic leukocyte oxygenation activities and chemiluminescence: A kinetic approach to analysis. 1986, 449-493. https://doi.org/10.1016/0076-6879(86)33085-4
    76. C.D. Kalkar, S.V. Doshi, Madhuri Pendse. Aqualuminescence of alkaline luminol in the presence of fluorescein. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes 1986, 37 (1) , 41-45. https://doi.org/10.1016/0883-2889(86)90194-2
    77. L. A. Crum, J. B. Fowlkes. Acoustic cavitation generated by microsecond pulses of ultrasound. Nature 1986, 319 (6048) , 52-54. https://doi.org/10.1038/319052a0
    78. Yoshihito Ikariyama, Masuo Aizawa, Shuichi Suzuki. Solvent effects of dimethyl sulfoxide on the chemiluminescent reaction of luminol-H2O2 system catalyzed by horseradish peroxidase. Journal of Molecular Catalysis 1985, 31 (1) , 39-48. https://doi.org/10.1016/0304-5102(85)85071-9
    79. Anthony K. Campbell, Maurice B. Hallett, Ian Weeks. Chemiluminescence as an Analytical Tool in Cell Biology and Medicine. 1985, 317-416. https://doi.org/10.1002/9780470110522.ch7
    80. D.H. Sherman. Increasing sensitivity of luminescent enzyme immunoassays. Trends in Biotechnology 1984, 2 (1) , 1-2. https://doi.org/10.1016/0167-7799(84)90043-X
    81. Wataru Ando, Rikiya Sato, Hideki Sonobe, Takeshi Akasaka. Reaction of singlet oxygen with azines: Implications for dioxirane intermediate. Tetrahedron Letters 1984, 25 (8) , 853-856. https://doi.org/10.1016/S0040-4039(01)80045-9
    82. Mitchell S. Gandelman, John W. Birks. Photooxygenation-chemiluminescence high-performance liquid chromatographic detector for the determination of aliphatic alcohols, aldehydes, ethers and saccharides. Journal of Chromatography A 1982, 242 (1) , 21-31. https://doi.org/10.1016/S0021-9673(00)87244-1
    83. Martin D. Williams, John S. Leigh, Britton Chance. HYDROGEN PEROXIDE IN HUMAN BREATH AND ITS PROBABLE ROLE IN SPONTANEOUS BREATH LUMINESCENCE. Annals of the New York Academy of Sciences 1982, 386 (1 Peroxisomes a) , 478-483. https://doi.org/10.1111/j.1749-6632.1982.tb21457.x
    84. ROBERT CHARLES ALLEN. Biochemiexcitation: Chemiluminescence and the Study of Biological Oxygenation Reactions. 1982, 309-344. https://doi.org/10.1016/B978-0-12-044080-1.50015-8
    85. Gary B. Schuster, Steven P. Schmidt. Chemiluminescence of Organic Compounds. 1982, 187-238. https://doi.org/10.1016/S0065-3160(08)60140-9
    86. N.J. TURRO, V. RAMAMURTHY. Chemical Generation of Excited States. 1980, 1-23. https://doi.org/10.1016/B978-0-12-481303-8.50006-8
    87. Karl‐Dietrich Gundermann. Konstitution und Chemilumineszenz, XI. Oligomere von 5‐Amino‐8‐vinylphthalazin‐l,4(2H,3H)‐dion. Liebigs Annalen der Chemie 1979, 1979 (8) , 1085-1093. https://doi.org/10.1002/jlac.197919790802
    88. David F. Roswell, Emil H. White. [36] The chemiluminescence of luminol and related hydrazides. 1978, 409-423. https://doi.org/10.1016/0076-6879(78)57038-9
    89. Vida Slawson, Arthur W. Adamson. Chemiluminescent autoxidation of linolenic acid films on silica gel. Lipids 1976, 11 (6) , 472-477. https://doi.org/10.1007/BF02532838
    90. C.T. PENG. CHEMILUMINESCENCE. 1976, 313-329. https://doi.org/10.1016/B978-0-12-522350-8.50033-7
    91. Peter Lechtken, Hans‐Christian Steinmetzer. Photofragmentierung von Tetramethyl‐1,2‐dioxetan Ein effizientes Beispiel einer adiabatischen Photoreaktion. Chemische Berichte 1975, 108 (10) , 3159-3175. https://doi.org/10.1002/cber.19751081007
    92. Karl-Dietrich Gundermann. Grundlagen und Anwendungsmöglichkeiten von Chemilumineszenz, der Umwandlung von chemischer Energie in Licht. 1975, 33-70. https://doi.org/10.1007/978-3-322-85474-2_3
    93. J. MICHL. Use of Correlation Diagrams for Interpretation of Organic Reactivity. 1975, 125-169. https://doi.org/10.1016/B978-0-12-245607-7.50010-6
    94. Karl‐Dietrich Gundermann, Dinesh Lathia, Wilfried Nolte, Klaus‐Dieter Röker. Konstitution und Chemilumineszenz, VI 1) Einfluß der Substituentenposition auf die Chemilumineszenz von Benzo[ f ]phthalazin‐1,4( 2H,3H )‐dionen. Justus Liebigs Annalen der Chemie 1974, 1974 (5) , 798-808. https://doi.org/10.1002/jlac.197419740510
    95. Emil H. White, Jeffrey D. Miano, Carol J. Watkins, Eves J. Breaux. Chemically Produced Excited States. Angewandte Chemie International Edition in English 1974, 13 (4) , 229-243. https://doi.org/10.1002/anie.197402291
    96. Emil H. White, Jeffrey D. Miano, Carol J. Watkins, Eves J. Breaux. Chemisch erzeugte angeregte Zustände. Angewandte Chemie 1974, 86 (8) , 292-307. https://doi.org/10.1002/ange.19740860803
    97. Frank Mccapra. Chemiluminescent Reactions of Acridines. 1973, 615-630. https://doi.org/10.1002/9780470186596.ch10
    98. MI. T. BECK, F. JOÓ. MECHANISM OF THE REACTION BETWEEN LUMINOL AND MOLECULAR OXYGEN. Photochemistry and Photobiology 1972, 16 (6) , 491-497. https://doi.org/10.1111/j.1751-1097.1972.tb06317.x
    99. J. D. GORSUCH, D. M. HERCULES. STUDIES ON THE CHEMILUMINESCENCE OF LUMINOL IN DIMETHYLSULFOXIDE AND DIMETHYLSULFOXIDE‐WATER MIXTURES*. Photochemistry and Photobiology 1972, 15 (6) , 567-583. https://doi.org/10.1111/j.1751-1097.1972.tb06268.x
    100. J. LEE, H. H. SELIGER. QUANTUM YIELDS OF THE LUMINOL CHEMILUMINESCENCE REACTION IN AQUEOUS AND APROTIC SOLVENTS*. Photochemistry and Photobiology 1972, 15 (2) , 227-237. https://doi.org/10.1111/j.1751-1097.1972.tb06241.x
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect