ACS Publications. Most Trusted. Most Cited. Most Read
Role of Proton-Coupled Electron Transfer in O–O Bond Activation
My Activity
    Article

    Role of Proton-Coupled Electron Transfer in O–O Bond Activation
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, 6-335, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307
    * Corresponding author. E-mail: [email protected]
    Other Access Options

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2007, 40, 7, 543–553
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ar7000638
    Published June 27, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The selective reduction of oxygen to water requires four electrons and four protons. The design of catalysts that promote oxygen reduction therefore requires the management of both electron and proton inventories. Pacman and Hangman porphyrins provide a cleft for oxygen binding, a redox shuttle for oxygen reduction, and functionality for tuning the acid–base properties of bound oxygen and its intermediates. With proper control of the proton-coupled electron transfer events, O–O bond breaking of oxygen, and more generally oxygenated substrates, may be achieved with high efficiencies. The rule set developed for oxygen reduction may be applied to a variety of other small molecule activation reactions of consequence to energy conversion.

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 365 publications.

    1. Kaixin Guo, Jiachen Jiao, Lei Zhang, Hui Sun, Xiaoxiao Miao, Jie Li, Qiuxia Han. Constructing an Isopolymolybdate-Based Bifunctional Photocatalyst for Promoting Nitroaromatic Reduction and C–H Oxidation. Inorganic Chemistry 2025, 64 (1) , 58-66. https://doi.org/10.1021/acs.inorgchem.4c04145
    2. Daoyang Zhang, Rachel L. Snider, Matthew R. Crawley, Ming Fang, Karla R. Sanchez-Lievanos, Spencer Ang, Timothy R. Cook. Gram-Scale, One-Pot Synthesis of a Cofacial Porphyrin Bridged by Ortho-xylene as a Scaffold for Dinuclear Architectures. Inorganic Chemistry 2024, 63 (47) , 22532-22541. https://doi.org/10.1021/acs.inorgchem.4c03958
    3. Lukas Sorge, Philipp Sikora, Katja Heinze. Face-to-Face Gold Porphyrins. Inorganic Chemistry 2024, 63 (45) , 21742-21752. https://doi.org/10.1021/acs.inorgchem.4c02421
    4. Koustav Pal, Debabrata Das, Krishna Gopal Ghosh, Devarajulu Sureshkumar. Visible-Light Driven Synthesis of Vinyl Amines without Photocatalyst. The Journal of Organic Chemistry 2024, 89 (20) , 15317-15324. https://doi.org/10.1021/acs.joc.4c01624
    5. Joseph E. Schneider, Shilin Zeng, Sophie W. Anferov, Alexander S. Filatov, John S. Anderson. Isolation and Crystallographic Characterization of an Octavalent Co2O2 Diamond Core. Journal of the American Chemical Society 2024, 146 (34) , 23998-24008. https://doi.org/10.1021/jacs.4c07335
    6. Davide Lionetti, Sandy Suseno, Angela A. Shiau, Graham de Ruiter, Theodor Agapie. Redox Processes Involving Oxygen: The Surprising Influence of Redox-Inactive Lewis Acids. JACS Au 2024, 4 (2) , 344-368. https://doi.org/10.1021/jacsau.3c00675
    7. Xingshuai Lv, Junxian Liu, Liangzhi Kou, Kar Wei Ng, Shuangpeng Wang, Thomas Frauenheim, Hui Pan. Three-Dimensional Dual-Site Catalysts for Industrial Ammonia Synthesis at Dramatically Decreased Temperatures and Pressures. ACS Catalysis 2023, 13 (20) , 13561-13568. https://doi.org/10.1021/acscatal.3c03160
    8. Doyk Hwang, Liam M. Wrigley, Micah Lee, Andrzej L. Sobolewski, Wolfgang Domcke, Cody W. Schlenker. Local Hydrogen Bonding Determines Branching Pathways in Intermolecular Heptazine Photochemistry. The Journal of Physical Chemistry B 2023, 127 (30) , 6703-6713. https://doi.org/10.1021/acs.jpcb.3c01397
    9. George Kleinhans, Aino J. Karhu, Hugo Boddaert, Sadia Tanweer, David Wunderlin, Daniela I. Bezuidenhout. LNL-Carbazole Pincer Ligand: More than the Sum of Its Parts. Chemical Reviews 2023, 123 (13) , 8781-8858. https://doi.org/10.1021/acs.chemrev.3c00202
    10. Benyu Zhou, François P. Gabbaï. Four-Electron Reduction of O2 Using Distibines in the Presence of ortho-Quinones. Journal of the American Chemical Society 2023, 145 (25) , 13758-13767. https://doi.org/10.1021/jacs.3c02223
    11. Pietro Franceschi, Elena Rossin, Giulio Goti, Angelo Scopano, Alberto Vega-Peñaloza, Mirco Natali, Deepak Singh, Andrea Sartorel, Luca Dell’Amico. A Proton-Coupled Electron Transfer Strategy to the Redox-Neutral Photocatalytic CO2 Fixation. The Journal of Organic Chemistry 2023, 88 (10) , 6454-6464. https://doi.org/10.1021/acs.joc.2c02952
    12. Daoyang Zhang, Matthew R. Crawley, Amanda N. Oldacre, Lea J. Kyle, Samantha N. MacMillan, Timothy R. Cook. Lowering the Symmetry of Cofacial Porphyrin Prisms for Selective Oxygen Reduction Electrocatalysis. Inorganic Chemistry 2023, 62 (5) , 1766-1775. https://doi.org/10.1021/acs.inorgchem.2c01109
    13. Hao Wan, Alexander Bagger, Jan Rossmeisl. Improved Electrocatalytic Selectivity and Activity for Ammonia Synthesis on Diporphyrin Catalysts. The Journal of Physical Chemistry C 2022, 126 (39) , 16636-16642. https://doi.org/10.1021/acs.jpcc.2c05646
    14. Yuqin Wei, Long Zhao, Rui Yuan, Zhaoli Xue, John Mack, Choonzo Chiyumba, Tebello Nyokong, Jianming Zhang. Promotion of Catalytic Oxygen Reduction Reactions: The Utility of Proton Management Substituents on Cobalt Porphyrins. Inorganic Chemistry 2022, 61 (33) , 13085-13095. https://doi.org/10.1021/acs.inorgchem.2c01591
    15. Arnab Ghatak, Soumya Samanta, Abhijit Nayek, Sudipta Mukherjee, Somdatta Ghosh Dey, Abhishek Dey. Second-Sphere Hydrogen-Bond Donors and Acceptors Affect the Rate and Selectivity of Electrochemical Oxygen Reduction by Iron Porphyrins Differently. Inorganic Chemistry 2022, 61 (33) , 12931-12947. https://doi.org/10.1021/acs.inorgchem.2c02170
    16. Sarmistha Bhunia, Arnab Ghatak, Abhishek Dey. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chemical Reviews 2022, 122 (14) , 12370-12426. https://doi.org/10.1021/acs.chemrev.1c01021
    17. Robert E. Warburton, Alexander V. Soudackov, Sharon Hammes-Schiffer. Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Chemical Reviews 2022, 122 (12) , 10599-10650. https://doi.org/10.1021/acs.chemrev.1c00929
    18. Sarnali Sanfui, Mohammad Usman, Sabyasachi Sarkar, Subhadip Pramanik, Eugenio Garribba, Sankar Prasad Rath. Highly Oxidized Cobalt Porphyrin Dimer: Control of Spin Coupling via a Bridge. Inorganic Chemistry 2022, 61 (22) , 8419-8430. https://doi.org/10.1021/acs.inorgchem.1c03807
    19. Qiuqi Cai, Linh K. Tran, Tian Qiu, Jennifer W. Eddy, Trong-Nhan Pham, Glenn P. A. Yap, Joel Rosenthal. An Easily Prepared Monomeric Cobalt(II) Tetrapyrrole Complex That Efficiently Promotes the 4e–/4H+ Peractivation of O2 to Water. Inorganic Chemistry 2022, 61 (14) , 5442-5451. https://doi.org/10.1021/acs.inorgchem.1c03766
    20. Daniel G. Nocera. Proton-Coupled Electron Transfer: The Engine of Energy Conversion and Storage. Journal of the American Chemical Society 2022, 144 (3) , 1069-1081. https://doi.org/10.1021/jacs.1c10444
    21. Jinxiu Han, Ni Wang, Xialiang Li, Wei Zhang, Rui Cao. Improving Electrocatalytic Oxygen Reduction Activity and Selectivity with a Cobalt Corrole Appended with Multiple Positively Charged Proton Relay Sites. The Journal of Physical Chemistry C 2021, 125 (45) , 24805-24813. https://doi.org/10.1021/acs.jpcc.1c07578
    22. Akhil Kumar Singh, Mohammad Usman, Sabyasachi Sarkar, Giuseppe Sciortino, Devesh Kumar, Eugenio Garribba, Sankar Prasad Rath. Ferromagnetic Coupling in Oxidovanadium(IV)–Porphyrin Radical Dimers. Inorganic Chemistry 2021, 60 (21) , 16492-16506. https://doi.org/10.1021/acs.inorgchem.1c02331
    23. Asa W. Nichols, Emma N. Cook, Yunqiao J. Gan, Peter R. Miedaner, Julia M. Dressel, Diane A. Dickie, Hannah S. Shafaat, Charles W. Machan. Pendent Relay Enhances H2O2 Selectivity during Dioxygen Reduction Mediated by Bipyridine-Based Co–N2O2 Complexes. Journal of the American Chemical Society 2021, 143 (33) , 13065-13073. https://doi.org/10.1021/jacs.1c03381
    24. Wanying Wang, Edmund C. M. Tse. Proton Removal Kinetics That Govern the Hydrogen Peroxide Oxidation Activity of Heterogeneous Bioinorganic Platforms. Inorganic Chemistry 2021, 60 (10) , 6900-6910. https://doi.org/10.1021/acs.inorgchem.0c03743
    25. Ashwin Chaturvedi, Caroline K. Williams, Nilakshi Devi, Jianbing “Jimmy” Jiang. Effects of Appended Poly(ethylene glycol) on Electrochemical CO2 Reduction by an Iron Porphyrin Complex. Inorganic Chemistry 2021, 60 (6) , 3843-3850. https://doi.org/10.1021/acs.inorgchem.0c03612
    26. Atanu Rana, Yong-Min Lee, Xialiang Li, Rui Cao, Shunichi Fukuzumi, Wonwoo Nam. Highly Efficient Catalytic Two-Electron Two-Proton Reduction of Dioxygen to Hydrogen Peroxide with a Cobalt Corrole Complex. ACS Catalysis 2021, 11 (5) , 3073-3083. https://doi.org/10.1021/acscatal.0c05003
    27. Hajime Kameo, Shigeyoshi Sakaki, Yasuhiro Ohki, Naoki Uehara, Takuya Kosukegawa, Hiroharu Suzuki, Toshiro Takao. Four-Electron Reduction of Dioxygen on a Metal Surface: Models of Dissociative and Associative Mechanisms in a Homogeneous System. Inorganic Chemistry 2021, 60 (3) , 1550-1560. https://doi.org/10.1021/acs.inorgchem.0c02936
    28. Tyler Sours, Anjli Patel, Jens Nørskov, Samira Siahrostami, Ambarish Kulkarni. Circumventing Scaling Relations in Oxygen Electrochemistry Using Metal–Organic Frameworks. The Journal of Physical Chemistry Letters 2020, 11 (23) , 10029-10036. https://doi.org/10.1021/acs.jpclett.0c02889
    29. Arnab Ghatak, Sarmistha Bhunia, Abhishek Dey. Effect of Pendant Distal Residues on the Rate and Selectivity of Electrochemical Oxygen Reduction Reaction Catalyzed by Iron Porphyrin Complexes. ACS Catalysis 2020, 10 (21) , 13136-13148. https://doi.org/10.1021/acscatal.0c02836
    30. Tian Zeng, Rajendra P. Gautam, Christopher J. Barile, Ying Li, Edmund C. M. Tse. Nitrile-Facilitated Proton Transfer for Enhanced Oxygen Reduction by Hybrid Electrocatalysts. ACS Catalysis 2020, 10 (21) , 13149-13155. https://doi.org/10.1021/acscatal.0c03506
    31. Yu-Heng Wang, Biswajit Mondal, Shannon S. Stahl. Molecular Cobalt Catalysts for O2 Reduction to H2O2: Benchmarking Catalyst Performance via Rate–Overpotential Correlations. ACS Catalysis 2020, 10 (20) , 12031-12039. https://doi.org/10.1021/acscatal.0c02197
    32. Mohammadjavad Karimi, Rosmita Borthakur, Christopher L. Dorsey, Chang-Hong Chen, Sébastien Lajeune, François P. Gabbaï. Bifunctional Carbenium Dications as Metal-Free Catalysts for the Reduction of Oxygen. Journal of the American Chemical Society 2020, 142 (32) , 13651-13656. https://doi.org/10.1021/jacs.0c04841
    33. Rui Zhang, Jeffrey J. Warren. Controlling the Oxygen Reduction Selectivity of Asymmetric Cobalt Porphyrins by Using Local Electrostatic Interactions. Journal of the American Chemical Society 2020, 142 (31) , 13426-13434. https://doi.org/10.1021/jacs.0c03861
    34. Mengran Liu, Dilek K. Dogutan, Daniel G. Nocera. Synthesis of Hangman Chlorins. The Journal of Organic Chemistry 2020, 85 (7) , 5065-5072. https://doi.org/10.1021/acs.joc.9b03465
    35. Charles G. Margarit, Naomi G. Asimow, Miguel I. Gonzalez, Daniel G. Nocera. Double Hangman Iron Porphyrin and the Effect of Electrostatic Nonbonding Interactions on Carbon Dioxide Reduction. The Journal of Physical Chemistry Letters 2020, 11 (5) , 1890-1895. https://doi.org/10.1021/acs.jpclett.9b03897
    36. Anna C. Brezny, Samantha I. Johnson, Simone Raugei, James M. Mayer. Selectivity-Determining Steps in O2 Reduction Catalyzed by Iron(tetramesitylporphyrin). Journal of the American Chemical Society 2020, 142 (9) , 4108-4113. https://doi.org/10.1021/jacs.9b13654
    37. Wen-Fei Huang, Sun-Tang Chang, Hsin-Chih Huang, Chen-Hao Wang, Li-Chyong Chen, Kuei-Hsien Chen, M. C. Lin. On the Reduction of O2 on Cathode Surfaces of Co–Corrin and Co–Porphyrin: A Computational and Experimental Study on Their Relative Efficiencies in H2O/H2O2 Formation. The Journal of Physical Chemistry C 2020, 124 (8) , 4652-4659. https://doi.org/10.1021/acs.jpcc.0c00481
    38. Joscha Nehrkorn, Shannon A. Bonke, Azar Aliabadi, Matthias Schwalbe, Alexander Schnegg. Examination of the Magneto-Structural Effects of Hangman Groups on Ferric Porphyrins by EPR. Inorganic Chemistry 2019, 58 (20) , 14228-14237. https://doi.org/10.1021/acs.inorgchem.9b02348
    39. Megan N. Jackson, Corey J. Kaminsky, Seokjoon Oh, Jonathan F. Melville, Yogesh Surendranath. Graphite Conjugation Eliminates Redox Intermediates in Molecular Electrocatalysis. Journal of the American Chemical Society 2019, 141 (36) , 14160-14167. https://doi.org/10.1021/jacs.9b04981
    40. Yu-Heng Wang, Patrick E. Schneider, Zachary K. Goldsmith, Biswajit Mondal, Sharon Hammes-Schiffer, Shannon S. Stahl. Brønsted Acid Scaling Relationships Enable Control Over Product Selectivity from O2 Reduction with a Mononuclear Cobalt Porphyrin Catalyst. ACS Central Science 2019, 5 (6) , 1024-1034. https://doi.org/10.1021/acscentsci.9b00194
    41. Hongtu Zhang, Gillian P. Hatzis, Curtis E. Moore, Diane A. Dickie, Mark W. Bezpalko, Bruce M. Foxman, Christine M. Thomas. O2 Activation by a Heterobimetallic Zr/Co Complex. Journal of the American Chemical Society 2019, 141 (24) , 9516-9520. https://doi.org/10.1021/jacs.9b04215
    42. Megan N. Jackson, Michael L. Pegis, Yogesh Surendranath. Graphite-Conjugated Acids Reveal a Molecular Framework for Proton-Coupled Electron Transfer at Electrode Surfaces. ACS Central Science 2019, 5 (5) , 831-841. https://doi.org/10.1021/acscentsci.9b00114
    43. Lianke Wang, Marcello Gennari, Fabián G. Cantú Reinhard, Javier Gutiérrez, Adina Morozan, Christian Philouze, Serhiy Demeshko, Vincent Artero, Franc Meyer, Sam P. de Visser, Carole Duboc. A Non-Heme Diiron Complex for (Electro)catalytic Reduction of Dioxygen: Tuning the Selectivity through Electron Delivery. Journal of the American Chemical Society 2019, 141 (20) , 8244-8253. https://doi.org/10.1021/jacs.9b02011
    44. Haitao Lei, Xialiang Li, Jia Meng, Haoquan Zheng, Wei Zhang, Rui Cao. Structure Effects of Metal Corroles on Energy-Related Small Molecule Activation Reactions. ACS Catalysis 2019, 9 (5) , 4320-4344. https://doi.org/10.1021/acscatal.9b00310
    45. Wataru Suzuki, Hiroaki Kotani, Tomoya Ishizuka, Takahiko Kojima. Dioxygen/Hydrogen Peroxide Interconversion Using Redox Couples of Saddle-Distorted Porphyrins and Isophlorins. Journal of the American Chemical Society 2019, 141 (14) , 5987-5994. https://doi.org/10.1021/jacs.9b01038
    46. Megan N. Jackson, Onyu Jung, Hamish C. Lamotte, Yogesh Surendranath. Donor-Dependent Promotion of Interfacial Proton-Coupled Electron Transfer in Aqueous Electrocatalysis. ACS Catalysis 2019, 9 (4) , 3737-3743. https://doi.org/10.1021/acscatal.9b00056
    47. Corey J. Kaminsky, Joshua Wright, Yogesh Surendranath. Graphite-Conjugation Enhances Porphyrin Electrocatalysis. ACS Catalysis 2019, 9 (4) , 3667-3671. https://doi.org/10.1021/acscatal.9b00404
    48. Julie A. Hopkins, Davide Lionetti, Victor W. Day, James D. Blakemore. Chemical and Electrochemical Properties of [Cp*Rh] Complexes Supported by a Hybrid Phosphine-Imine Ligand. Organometallics 2019, 38 (6) , 1300-1310. https://doi.org/10.1021/acs.organomet.8b00551
    49. Hao Wan, Thomas Mandal Østergaard, Logi Arnarson, Jan Rossmeisl. Climbing the 3D Volcano for the Oxygen Reduction Reaction Using Porphyrin Motifs. ACS Sustainable Chemistry & Engineering 2019, 7 (1) , 611-617. https://doi.org/10.1021/acssuschemeng.8b04173
    50. Suzanne M. Adam, Gayan B. Wijeratne, Patrick J. Rogler, Daniel E. Diaz, David A. Quist, Jeffrey J. Liu, Kenneth D. Karlin. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chemical Reviews 2018, 118 (22) , 10840-11022. https://doi.org/10.1021/acs.chemrev.8b00074
    51. Lucie Nurdin, Denis M. Spasyuk, Laura Fairburn, Warren E. Piers, Laurent Maron. Oxygen–Oxygen Bond Cleavage and Formation in Co(II)-Mediated Stoichiometric O2 Reduction via the Potential Intermediacy of a Co(IV) Oxyl Radical. Journal of the American Chemical Society 2018, 140 (47) , 16094-16105. https://doi.org/10.1021/jacs.8b07726
    52. Guillaume Passard, Dilek K. Dogutan, Mengting Qiu, Cyrille Costentin, Daniel G. Nocera. Oxygen Reduction Reaction Promoted by Manganese Porphyrins. ACS Catalysis 2018, 8 (9) , 8671-8679. https://doi.org/10.1021/acscatal.8b01944
    53. Yu-Heng Wang, Zachary K. Goldsmith, Patrick E. Schneider, Colin W. Anson, James B. Gerken, Soumya Ghosh, Sharon Hammes-Schiffer, Shannon S. Stahl. Kinetic and Mechanistic Characterization of Low-Overpotential, H2O2-Selective Reduction of O2 Catalyzed by N2O2-Ligated Cobalt Complexes. Journal of the American Chemical Society 2018, 140 (34) , 10890-10899. https://doi.org/10.1021/jacs.8b06394
    54. Kyle T. Burns, Walker R. Marks, Pui Man Cheung, Takele Seda, Lev N. Zakharov, John D. Gilbertson. Uncoupled Redox-Inactive Lewis Acids in the Secondary Coordination Sphere Entice Ligand-Based Nitrite Reduction. Inorganic Chemistry 2018, 57 (16) , 9601-9610. https://doi.org/10.1021/acs.inorgchem.8b00032
    55. Kyle E. Rosenkoetter, Michael K. Wojnar, Bronte J. Charette, Joseph W. Ziller, Alan F. Heyduk. Hydrogen-Atom Noninnocence of a Tridentate [SNS] Pincer Ligand. Inorganic Chemistry 2018, 57 (16) , 9728-9737. https://doi.org/10.1021/acs.inorgchem.8b00618
    56. Rajib Pramanick, Rameswar Bhattacharjee, Debabrata Sengupta, Ayan Datta, Sreebrata Goswami. An Azoaromatic Ligand as Four Electron Four Proton Reservoir: Catalytic Dehydrogenation of Alcohols by Its Zinc(II) Complex. Inorganic Chemistry 2018, 57 (12) , 6816-6824. https://doi.org/10.1021/acs.inorgchem.8b00034
    57. Michael L. Pegis, Catherine F. Wise, Daniel J. Martin, James M. Mayer. Oxygen Reduction by Homogeneous Molecular Catalysts and Electrocatalysts. Chemical Reviews 2018, 118 (5) , 2340-2391. https://doi.org/10.1021/acs.chemrev.7b00542
    58. Yu-Heng Wang, Michael L. Pegis, James M. Mayer, and Shannon S. Stahl . Molecular Cobalt Catalysts for O2 Reduction: Low-Overpotential Production of H2O2 and Comparison with Iron-Based Catalysts. Journal of the American Chemical Society 2017, 139 (46) , 16458-16461. https://doi.org/10.1021/jacs.7b09089
    59. Inés Monte-Pérez, Subrata Kundu, Anirban Chandra, Kathryn E. Craigo, Petko Chernev, Uwe Kuhlmann, Holger Dau, Peter Hildebrandt, Claudio Greco, Casey Van Stappen, Nicolai Lehnert, and Kallol Ray . Temperature Dependence of the Catalytic Two- versus Four-Electron Reduction of Dioxygen by a Hexanuclear Cobalt Complex. Journal of the American Chemical Society 2017, 139 (42) , 15033-15042. https://doi.org/10.1021/jacs.7b07127
    60. Sudipta Chatterjee, Kushal Sengupta, Biswajit Mondal, Subal Dey, and Abhishek Dey . Factors Determining the Rate and Selectivity of 4e–/4H+ Electrocatalytic Reduction of Dioxygen by Iron Porphyrin Complexes. Accounts of Chemical Research 2017, 50 (7) , 1744-1753. https://doi.org/10.1021/acs.accounts.7b00192
    61. Andrew G. Maher, Guillaume Passard, Dilek K. Dogutan, Robert L. Halbach, Bryce L. Anderson, Christopher J. Gagliardi, Masahiko Taniguchi, Jonathan S. Lindsey, and Daniel G. Nocera . Hydrogen Evolution Catalysis by a Sparsely Substituted Cobalt Chlorin. ACS Catalysis 2017, 7 (5) , 3597-3606. https://doi.org/10.1021/acscatal.7b00969
    62. Wei Zhang, Wenzhen Lai, and Rui Cao . Energy-Related Small Molecule Activation Reactions: Oxygen Reduction and Hydrogen and Oxygen Evolution Reactions Catalyzed by Porphyrin- and Corrole-Based Systems. Chemical Reviews 2017, 117 (4) , 3717-3797. https://doi.org/10.1021/acs.chemrev.6b00299
    63. Amanda N. Oldacre, Alan E. Friedman, and Timothy R. Cook . A Self-Assembled Cofacial Cobalt Porphyrin Prism for Oxygen Reduction Catalysis. Journal of the American Chemical Society 2017, 139 (4) , 1424-1427. https://doi.org/10.1021/jacs.6b12404
    64. Alon Chapovetsky, Thomas H. Do, Ralf Haiges, Michael K. Takase, and Smaranda C. Marinescu . Proton-Assisted Reduction of CO2 by Cobalt Aminopyridine Macrocycles. Journal of the American Chemical Society 2016, 138 (18) , 5765-5768. https://doi.org/10.1021/jacs.6b01980
    65. Soumyajit Dey, Debangsu Sil, Younis Ahmad Pandit, and Sankar Prasad Rath . Effect of Two Interacting Rings in Metalloporphyrin Dimers upon Stepwise Oxidations. Inorganic Chemistry 2016, 55 (7) , 3229-3238. https://doi.org/10.1021/acs.inorgchem.5b02065
    66. Mirco Natali and Franco Scandola . Photoinduced Charge Separation in Porphyrin Ion Pairs. The Journal of Physical Chemistry A 2016, 120 (9) , 1588-1600. https://doi.org/10.1021/acs.jpca.6b00960
    67. Mohammad Mahdi Najafpour, Gernot Renger, Małgorzata Hołyńska, Atefeh Nemati Moghaddam, Eva-Mari Aro, Robert Carpentier, Hiroshi Nishihara, Julian J. Eaton-Rye, Jian-Ren Shen, and Suleyman I. Allakhverdiev . Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chemical Reviews 2016, 116 (5) , 2886-2936. https://doi.org/10.1021/acs.chemrev.5b00340
    68. Guillaume Passard, Andrew M. Ullman, Casey N. Brodsky, and Daniel G. Nocera . Oxygen Reduction Catalysis at a Dicobalt Center: The Relationship of Faradaic Efficiency to Overpotential. Journal of the American Chemical Society 2016, 138 (9) , 2925-2928. https://doi.org/10.1021/jacs.5b12828
    69. Megan N. Jackson and Yogesh Surendranath . Donor-Dependent Kinetics of Interfacial Proton-Coupled Electron Transfer. Journal of the American Chemical Society 2016, 138 (9) , 3228-3234. https://doi.org/10.1021/jacs.6b00167
    70. Igor D. Petrik, Roman Davydov, Matthew Ross, Xuan Zhao, Brian Hoffman, and Yi Lu . Spectroscopic and Crystallographic Evidence for the Role of a Water-Containing H-Bond Network in Oxidase Activity of an Engineered Myoglobin. Journal of the American Chemical Society 2016, 138 (4) , 1134-1137. https://doi.org/10.1021/jacs.5b12004
    71. Ryan M. Clarke, Khatera Hazin, John R. Thompson, Didier Savard, Kathleen E. Prosser, and Tim Storr . Electronic Structure Description of a Doubly Oxidized Bimetallic Cobalt Complex with Proradical Ligands. Inorganic Chemistry 2016, 55 (2) , 762-774. https://doi.org/10.1021/acs.inorgchem.5b02231
    72. Seung Jun Hwang, Bryce L. Anderson, David C. Powers, Andrew G. Maher, Ryan G. Hadt, and Daniel G. Nocera . Halogen Photoelimination from Monomeric Nickel(III) Complexes Enabled by the Secondary Coordination Sphere. Organometallics 2015, 34 (19) , 4766-4774. https://doi.org/10.1021/acs.organomet.5b00568
    73. James B. Gerken and Shannon S. Stahl . High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis. ACS Central Science 2015, 1 (5) , 234-243. https://doi.org/10.1021/acscentsci.5b00163
    74. Shrabani Dinda, Alexander Genest, and Notker Rösch . O2 Activation and Catalytic Alcohol Oxidation by Re Complexes with Redox-Active Ligands: A DFT Study of Mechanism. ACS Catalysis 2015, 5 (8) , 4869-4880. https://doi.org/10.1021/acscatal.5b00509
    75. Mayra Delgado, Samantha K. Sommer, Seth P. Swanson, Robert F. Berger, Takele Seda, Lev N. Zakharov, and John D. Gilbertson . Probing the Protonation State and the Redox-Active Sites of Pendant Base Iron(II) and Zinc(II) Pyridinediimine Complexes. Inorganic Chemistry 2015, 54 (15) , 7239-7248. https://doi.org/10.1021/acs.inorgchem.5b00633
    76. Marcello Gennari, Deborah Brazzolotto, Jacques Pécaut, Mickael V. Cherrier, Christopher J. Pollock, Serena DeBeer, Marius Retegan, Dimitrios A. Pantazis, Frank Neese, Mathieu Rouzières, Rodolphe Clérac, and Carole Duboc . Dioxygen Activation and Catalytic Reduction to Hydrogen Peroxide by a Thiolate-Bridged Dimanganese(II) Complex with a Pendant Thiol. Journal of the American Chemical Society 2015, 137 (26) , 8644-8653. https://doi.org/10.1021/jacs.5b04917
    77. Joseph M. Falkowski, Nolan M. Concannon, Bing Yan, and Yogesh Surendranath . Heazlewoodite, Ni3S2: A Potent Catalyst for Oxygen Reduction to Water under Benign Conditions. Journal of the American Chemical Society 2015, 137 (25) , 7978-7981. https://doi.org/10.1021/jacs.5b03426
    78. Saya Kakuda, Clarence J. Rolle, Kei Ohkubo, Maxime A. Siegler, Kenneth D. Karlin, and Shunichi Fukuzumi . Lewis Acid-Induced Change from Four- to Two-Electron Reduction of Dioxygen Catalyzed by Copper Complexes Using Scandium Triflate. Journal of the American Chemical Society 2015, 137 (9) , 3330-3337. https://doi.org/10.1021/ja512584r
    79. Sudipta Chatterjee, Kushal Sengupta, Subhra Samanta, Pradip Kumar Das, and Abhishek Dey . Concerted Proton–Electron Transfer in Electrocatalytic O2 Reduction by Iron Porphyrin Complexes: Axial Ligands Tuning H/D Isotope Effect. Inorganic Chemistry 2015, 54 (5) , 2383-2392. https://doi.org/10.1021/ic5029959
    80. Kentaro Mase, Kei Ohkubo, and Shunichi Fukuzumi . Much Enhanced Catalytic Reactivity of Cobalt Chlorin Derivatives on Two-Electron Reduction of Dioxygen to Produce Hydrogen Peroxide. Inorganic Chemistry 2015, 54 (4) , 1808-1815. https://doi.org/10.1021/ic502678k
    81. Stéphane Le Gac, Eric Furet, Thierry Roisnel, Ismail Hijazi, Jean-François Halet, and Bernard Boitrel . A Pentanuclear Lead(II) Complex Based on a Strapped Porphyrin with Three Different Coordination Modes. Inorganic Chemistry 2014, 53 (19) , 10660-10666. https://doi.org/10.1021/ic5017824
    82. Daniel J. Graham and Daniel G. Nocera . Electrocatalytic H2 Evolution by Proton-Gated Hangman Iron Porphyrins. Organometallics 2014, 33 (18) , 4994-5001. https://doi.org/10.1021/om500300e
    83. Charles J. Weiss, Parthapratim Das, Deanna L. Miller, Monte L. Helm, and Aaron M. Appel . Catalytic Oxidation of Alcohol via Nickel Phosphine Complexes with Pendant Amines. ACS Catalysis 2014, 4 (9) , 2951-2958. https://doi.org/10.1021/cs500853f
    84. Johanna M. Blacquiere, Michael L. Pegis, Simone Raugei, Werner Kaminsky, Amélie Forget, Sarah A. Cook, Taketo Taguchi, and James M. Mayer . Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases. Inorganic Chemistry 2014, 53 (17) , 9242-9253. https://doi.org/10.1021/ic5013389
    85. Edmund C. M. Tse, David Schilter, Danielle L. Gray, Thomas B. Rauchfuss, and Andrew A. Gewirth . Multicopper Models for the Laccase Active Site: Effect of Nuclearity on Electrocatalytic Oxygen Reduction. Inorganic Chemistry 2014, 53 (16) , 8505-8516. https://doi.org/10.1021/ic501080c
    86. Shuo Liu, Kentaro Mase, Curt Bougher, Scott D. Hicks, Mahdi M. Abu-Omar, and Shunichi Fukuzumi . High-Valent Chromium–Oxo Complex Acting as an Efficient Catalyst Precursor for Selective Two-Electron Reduction of Dioxygen by a Ferrocene Derivative. Inorganic Chemistry 2014, 53 (14) , 7780-7788. https://doi.org/10.1021/ic5013457
    87. Ismail Hijazi, Tiphaine Bourgeteau, Renaud Cornut, Adina Morozan, Arianna Filoramo, Jocelyne Leroy, Vincent Derycke, Bruno Jousselme, and Stéphane Campidelli . Carbon Nanotube-Templated Synthesis of Covalent Porphyrin Network for Oxygen Reduction Reaction. Journal of the American Chemical Society 2014, 136 (17) , 6348-6354. https://doi.org/10.1021/ja500984k
    88. Cameron M. Moore, David A. Quist, Jeff W. Kampf, and Nathaniel K. Szymczak . A 3-Fold-Symmetric Ligand Based on 2-Hydroxypyridine: Regulation of Ligand Binding by Hydrogen Bonding. Inorganic Chemistry 2014, 53 (7) , 3278-3280. https://doi.org/10.1021/ic5003594
    89. Antonín Trojánek, Jan Langmaier, Hana Kvapilová, Stanislav Záliš, and Zdeněk Samec . Inhibitory Effect of Water on the Oxygen Reduction Catalyzed by Cobalt(II) Tetraphenylporphyrin. The Journal of Physical Chemistry A 2014, 118 (11) , 2018-2028. https://doi.org/10.1021/jp500057x
    90. Sanfaori Brahma, Sk Asif Ikbal, Avinash Dhamija, and Sankar Prasad Rath . Highly Enhanced Bisignate Circular Dichroism of Ferrocene-Bridged Zn(II) Bisporphyrin Tweezer with Extended Chiral Substrates due to Well-Matched Host–Guest System. Inorganic Chemistry 2014, 53 (5) , 2381-2395. https://doi.org/10.1021/ic401395d
    91. Richard J. Burford, Warren E. Piers, Daniel H. Ess, and Masood Parvez . Reversible Interconversion Between a Monomeric Iridium Hydroxo and a Dinuclear Iridium μ-Oxo Complex. Journal of the American Chemical Society 2014, 136 (8) , 3256-3263. https://doi.org/10.1021/ja412650s
    92. Kaustuv Mittra, Sudipta Chatterjee, Subhra Samanta, and Abhishek Dey . Selective 4e–/4H+ O2 Reduction by an Iron(tetraferrocenyl)Porphyrin Complex: From Proton Transfer Followed by Electron Transfer in Organic Solvent to Proton Coupled Electron Transfer in Aqueous Medium. Inorganic Chemistry 2013, 52 (24) , 14317-14325. https://doi.org/10.1021/ic402297f
    93. Saya Kakuda, Ryan L. Peterson, Kei Ohkubo, Kenneth D. Karlin, and Shunichi Fukuzumi . Enhanced Catalytic Four-Electron Dioxygen (O2) and Two-Electron Hydrogen Peroxide (H2O2) Reduction with a Copper(II) Complex Possessing a Pendant Ligand Pivalamido Group. Journal of the American Chemical Society 2013, 135 (17) , 6513-6522. https://doi.org/10.1021/ja3125977
    94. Dipanwita Das, Yong-Min Lee, Kei Ohkubo, Wonwoo Nam, Kenneth D. Karlin, and Shunichi Fukuzumi . Acid-Induced Mechanism Change and Overpotential Decrease in Dioxygen Reduction Catalysis with a Dinuclear Copper Complex. Journal of the American Chemical Society 2013, 135 (10) , 4018-4026. https://doi.org/10.1021/ja312256u
    95. Junyong Jo, András Olasz, Chun-Hsing Chen, and Dongwhan Lee . Interdigitated Hydrogen Bonds: Electrophile Activation for Covalent Capture and Fluorescence Turn-On Detection of Cyanide. Journal of the American Chemical Society 2013, 135 (9) , 3620-3632. https://doi.org/10.1021/ja312313f
    96. Kentaro Mase, Kei Ohkubo, and Shunichi Fukuzumi . Efficient Two-Electron Reduction of Dioxygen to Hydrogen Peroxide with One-Electron Reductants with a Small Overpotential Catalyzed by a Cobalt Chlorin Complex. Journal of the American Chemical Society 2013, 135 (7) , 2800-2808. https://doi.org/10.1021/ja312199h
    97. Dipanwita Das, Yong-Min Lee, Kei Ohkubo, Wonwoo Nam, Kenneth D. Karlin, and Shunichi Fukuzumi . Temperature-Independent Catalytic Two-Electron Reduction of Dioxygen by Ferrocenes with a Copper(II) Tris[2-(2-pyridyl)ethyl]amine Catalyst in the Presence of Perchloric Acid. Journal of the American Chemical Society 2013, 135 (7) , 2825-2834. https://doi.org/10.1021/ja312523u
    98. Subhra Samanta, Kaustuv Mittra, Kushal Sengupta, Sudipta Chatterjee, and Abhishek Dey . Second Sphere Control of Redox Catalysis: Selective Reduction of O2 to O2– or H2O by an Iron Porphyrin Catalyst. Inorganic Chemistry 2013, 52 (3) , 1443-1453. https://doi.org/10.1021/ic3021782
    99. Jason M. Keith, Thomas S. Teets, and Daniel G. Nocera . O2 Insertion into Group 9 Metal–Hydride Bonds: Evidence for Oxygen Activation through the Hydrogen-Atom-Abstraction Mechanism. Inorganic Chemistry 2012, 51 (17) , 9499-9507. https://doi.org/10.1021/ic301303n
    100. David R. Weinberg, Christopher J. Gagliardi, Jonathan F. Hull, Christine Fecenko Murphy, Caleb A. Kent, Brittany C. Westlake, Amit Paul, Daniel H. Ess, Dewey Granville McCafferty, and Thomas J. Meyer . Proton-Coupled Electron Transfer. Chemical Reviews 2012, 112 (7) , 4016-4093. https://doi.org/10.1021/cr200177j
    Load more citations

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2007, 40, 7, 543–553
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ar7000638
    Published June 27, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    6760

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.