ACS Publications. Most Trusted. Most Cited. Most Read
Tobacco Mosaic Virus as a New Carrier for Tumor Associated Carbohydrate Antigens
My Activity

Figure 1Loading Img
    Article

    Tobacco Mosaic Virus as a New Carrier for Tumor Associated Carbohydrate Antigens
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, Michigan 48824, United States
    Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
    § Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, 376 Boyles Street, Building 376, Room 208, Frederick, Maryland 21702, United States
    *E-mail addresses: [email protected] (Q.W.); [email protected] (X.H.).
    Other Access OptionsSupporting Information (1)

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2012, 23, 8, 1694–1703
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc300244a
    Published July 19, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Tumor-associated carbohydrate antigens (TACAs) are being actively studied as targets for antitumor vaccine development. One serious challenge was the low immunogenecity of these antigens. Herein, we report the results of using the tobacco mosaic virus (TMV) capsid as a promising carrier of a weakly immunogenic TACA, the monomeric Tn antigen. The copper(I) catalyzed azide–alkyne cycloaddition reaction was highly efficient in covalently linking Tn onto the TMV capsid without resorting to a large excess of the Tn antigen. The location of Tn attachment turned out to be important. Tn introduced at the N terminus of TMV was immunosilent, while that attached to tyrosine 139 elicited strong immune responses. Both Tn specific IgG and IgM antibodies were generated as determined by enzyme-linked immunosorbent assay and a glycan microarray screening study. The production of high titers of IgG antibodies suggested that the TMV platform contained the requisite epitopes for helper T cells and was able to induce antibody isotype switching. The antibodies exhibited strong reactivities toward Tn antigen displayed in its native environment, i.e., cancer cell surface, thus highlighting the potential of TMV as a promising TACA carrier.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Information on purification, characterization, and functionalization TMV, various TMV mutants, and TMV conjugates. Procedures for glycan microarray analysis and fluorescence activated cell sorting. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 80 publications.

    1. Valerie Lensch, Adele Gabba, Robert Hincapie, Sachin H. Bhagchandani, Ankit Basak, Mohammad Murshid Alam, Jeffery Noble, Darrell J. Irvine, Alex K. Shalek, Jeremiah A. Johnson, M. G. Finn, Laura L. Kiessling. Carbohydrate-Lectin Interactions Reprogram Dendritic Cells to Promote Type 1 Anti-Tumor Immunity. ACS Nano 2024, 18 (39) , 26770-26783. https://doi.org/10.1021/acsnano.4c07360
    2. Lintong Yao, Libin Wu, Rujin Wang, Yu Liu, Feifei Luo, Yufei Zhang, Guosong Chen. Liposome-Based Carbohydrate Vaccine for Simultaneously Eliciting Humoral and Cellular Antitumor Immunity. ACS Macro Letters 2022, 11 (8) , 975-981. https://doi.org/10.1021/acsmacrolett.2c00291
    3. Akash J. Vaidya, Kevin V. Solomon. Surface Functionalization of Rod-Shaped Viral Particles for Biomedical Applications. ACS Applied Bio Materials 2022, 5 (5) , 1980-1989. https://doi.org/10.1021/acsabm.1c01204
    4. Lu Su, Yingle Feng, Kongchang Wei, Xuyang Xu, Rongying Liu, Guosong Chen. Carbohydrate-Based Macromolecular Biomaterials. Chemical Reviews 2021, 121 (18) , 10950-11029. https://doi.org/10.1021/acs.chemrev.0c01338
    5. Daniel López-Puertollano, Consuelo Agulló, Josep V. Mercader, Antonio Abad-Somovilla, Antonio Abad-Fuentes. Click Chemistry-Assisted Bioconjugates for Hapten Immunodiagnostics. Bioconjugate Chemistry 2020, 31 (3) , 956-964. https://doi.org/10.1021/acs.bioconjchem.0c00099
    6. Jeffrey C. Gildersleeve . Insights into Antibody-Carbohydrate Recognition from Neoglycoprotein Microarrays. 2020, 23-37. https://doi.org/10.1021/bk-2020-1346.ch002
    7. Nitasha R. Bennett, Cassie M. Jarvis, Mohammad Murshid Alam, Daniel B. Zwick, Jake M. Olson, Hung V.-T. Nguyen, Jeremiah A. Johnson, Mark E. Cook, Laura L. Kiessling. Modular Polymer Antigens To Optimize Immunity. Biomacromolecules 2019, 20 (12) , 4370-4379. https://doi.org/10.1021/acs.biomac.9b01049
    8. Jiawang Guo, Xia Zhao, Jun Hu, Yuan Lin, Qian Wang. Tobacco Mosaic Virus with Peroxidase-Like Activity for Cancer Cell Detection through Colorimetric Assay. Molecular Pharmaceutics 2018, 15 (8) , 2946-2953. https://doi.org/10.1021/acs.molpharmaceut.7b00921
    9. Jittima Amie Luckanagul, Kamolrat Metavarayuth, Sheng Feng, Phudit Maneesaay, Amy Y. Clark, Xiaoming Yang, Andrés J. García, and Qian Wang . Tobacco Mosaic Virus Functionalized Alginate Hydrogel Scaffolds for Bone Regeneration in Rats with Cranial Defect. ACS Biomaterials Science & Engineering 2016, 2 (4) , 606-615. https://doi.org/10.1021/acsbiomaterials.5b00561
    10. Zhaojun Yin, Sudipa Chowdhury, Craig McKay, Claire Baniel, W. Shea Wright, Philip Bentley, Katarzyna Kaczanowska, Jeffrey C. Gildersleeve, M.G. Finn, Lbachir BenMohamed, and Xuefei Huang . Significant Impact of Immunogen Design on the Diversity of Antibodies Generated by Carbohydrate-Based Anticancer Vaccine. ACS Chemical Biology 2015, 10 (10) , 2364-2372. https://doi.org/10.1021/acschembio.5b00406
    11. Yan-Fang Liu, Zhan-Yi Sun, Pu-Guang Chen, Zhi-Hua Huang, Yue Gao, Lei Shi, Yu-Fen Zhao, Yong-Xiang Chen, and Yan-Mei Li . Glycopeptide Nanoconjugates Based on Multilayer Self-Assembly as an Antitumor Vaccine. Bioconjugate Chemistry 2015, 26 (8) , 1439-1442. https://doi.org/10.1021/acs.bioconjchem.5b00150
    12. Alberto Nilo, Irene Passalacqua, Monica Fabbrini, Martin Allan, Aimee Usera, Filippo Carboni, Barbara Brogioni, Alfredo Pezzicoli, Jennifer Cobb, Maria Rosaria Romano, Immaculada Margarit, Qi-Ying Hu, Francesco Berti, and Roberto Adamo . Exploring the Effect of Conjugation Site and Chemistry on the Immunogenicity of an anti-Group B Streptococcus Glycoconjugate Vaccine Based on GBS67 Pilus Protein and Type V Polysaccharide. Bioconjugate Chemistry 2015, 26 (8) , 1839-1849. https://doi.org/10.1021/acs.bioconjchem.5b00365
    13. Alberto Nilo, Laura Morelli, Irene Passalacqua, Barbara Brogioni, Martin Allan, Filippo Carboni, Alfredo Pezzicoli, Francesca Zerbini, Domenico Maione, Monica Fabbrini, Maria Rosaria Romano, Qi-Ying Hu, Immaculada Margarit, Francesco Berti, and Roberto Adamo . Anti-Group B Streptococcus Glycan-Conjugate Vaccines Using Pilus Protein GBS80 As Carrier and Antigen: Comparing Lysine and Tyrosine-directed Conjugation. ACS Chemical Biology 2015, 10 (7) , 1737-1746. https://doi.org/10.1021/acschembio.5b00247
    14. Sukwon Jung and Hyunmin Yi . An Integrated Approach for Enhanced Protein Conjugation and Capture with Viral Nanotemplates and Hydrogel Microparticle Platforms via Rapid Bioorthogonal Reactions. Langmuir 2014, 30 (26) , 7762-7770. https://doi.org/10.1021/la501772t
    15. Rebecca M. Wilson and Samuel J. Danishefsky . A Vision for Vaccines Built from Fully Synthetic Tumor-Associated Antigens: From the Laboratory to the Clinic. Journal of the American Chemical Society 2013, 135 (39) , 14462-14472. https://doi.org/10.1021/ja405932r
    16. Zhaojun Yin, Marta Comellas-Aragones, Sudipa Chowdhury, Philip Bentley, Katarzyna Kaczanowska, Lbachir BenMohamed, Jeffrey C. Gildersleeve, M. G. Finn, and Xuefei Huang . Boosting Immunity to Small Tumor-Associated Carbohydrates with Bacteriophage Qβ Capsids. ACS Chemical Biology 2013, 8 (6) , 1253-1262. https://doi.org/10.1021/cb400060x
    17. Sandip Debnath, Sourish Pramanik, Dibyendu Seth, Nobendu Mukerjee, Jyi Cheng Ng, Wireko Andrew Awuah, Toufik Abdul-Rahman, Edouard Lansiaux, Abubakar Nazir, Pearl Ohenewaa Tenkorang, Mubarak Jolayemi Mustapha, Jacob Kalmanovich, Kateryna Sikora, Flora Narli, Rohit Sharma, Arabinda Ghosh, Ghulam Md Ashraf, Athanasios Alexiou. Emerging nanotechnologies in drug delivery: Insights and regulatory challenges. 2025, 377-395. https://doi.org/10.1016/B978-0-443-15702-8.00024-5
    18. Ivonne González-Gamboa, Adam A. Caparco, Justin McCaskill, Paulina Fuenlabrada-Velázquez, Samuel S. Hays, Zhicheng Jin, Jesse V. Jokerst, Jonathan K. Pokorski, Nicole F. Steinmetz. Inter-coat protein loading of active ingredients into Tobacco mild green mosaic virus through partial dissociation and reassembly of the virion. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-57200-0
    19. Valerie Lensch, Jeremiah A Johnson, Laura L Kiessling. Glycoconjugate vaccines: platforms and adjuvants for directed immunity. Glycobiology 2024, 34 (11) https://doi.org/10.1093/glycob/cwae092
    20. Zirong Huang, Sheng Chen, Xuechen Li, Han Liu. Conjugation Methods in Synthetic Glycoconjugate Vaccines. Chemistry–Methods 2024, 4 (7-8) https://doi.org/10.1002/cmtd.202300054
    21. Miaomiao Xu, Siyuan Wei, Lifan Duan, Yifan Ji, Xiaofan Han, Qipeng Sun, Lixing Weng. The recent advancements in protein nanoparticles for immunotherapy. Nanoscale 2024, 16 (25) , 11825-11848. https://doi.org/10.1039/D4NR00537F
    22. Ashish Pandey, Ines Karmous. Exploring the Potential of Plant-Based Nanotechnology in Cancer Immunotherapy: Benefits, Limitations, and Future Perspectives. Biological Trace Element Research 2024, 29 https://doi.org/10.1007/s12011-024-04266-6
    23. Samantha Marglous, Claire E. Brown, Vered Padler-Karavani, Richard D. Cummings, Jeffrey C. Gildersleeve. Serum antibody screening using glycan arrays. Chemical Society Reviews 2024, 53 (5) , 2603-2642. https://doi.org/10.1039/D3CS00693J
    24. Daria Anna Rutkowska. Medical Applications of Plant Virus Nanoparticles. 2024, 397-414. https://doi.org/10.1007/978-981-97-0176-6_15
    25. Aditya Kulshreshtha, Kranthi K. Mandadi. Plant Viral Vectors: Important Tools for Biologics Production. 2024, 1-24. https://doi.org/10.1007/978-981-97-0176-6_1
    26. Saba Zanganeh, Mohammad Doroudian, Zohreh R. Nowzari, Pourya Nasirmoghadas, Javid Sadri Nahand, Shima Sepehrpour, Mohsen Moghoofei. Viral Nanoparticles‐Mediated Delivery of Therapeutic Cargo. Advanced Therapeutics 2023, 6 (10) https://doi.org/10.1002/adtp.202300082
    27. Mehdi Shahgolzari, Srividhya Venkataraman, Anne Osano, Paul Achile Akpa, Kathleen Hefferon. Plant Virus Nanoparticles Combat Cancer. Vaccines 2023, 11 (8) , 1278. https://doi.org/10.3390/vaccines11081278
    28. Rui Freitas, Andreia Peixoto, Eduardo Ferreira, Andreia Miranda, Lúcio Lara Santos, José Alexandre Ferreira. Immunomodulatory glycomedicine: Introducing next generation cancer glycovaccines. Biotechnology Advances 2023, 65 , 108144. https://doi.org/10.1016/j.biotechadv.2023.108144
    29. René Roy, Leila Mousavifar. Carrier diversity and chemical ligations in the toolbox for designing tumor-associated carbohydrate antigens (TACAs) as synthetic vaccine candidates. Chemical Society Reviews 2023, 52 (10) , 3353-3396. https://doi.org/10.1039/D2CS01032A
    30. Typhaine Violo, Annie Lambert, Aline Pillot, Mathieu Fanuel, Jessica Mac‐Béar, Cédric Broussard, Cyrille Grandjean, Emilie Camberlein. Site‐Selective Unnatural Amino Acid Incorporation at Single or Multiple Positions to Control Sugar‐Protein Connectivity in Glycoconjugate Vaccine Candidates. Chemistry – A European Journal 2023, 29 (15) https://doi.org/10.1002/chem.202203497
    31. Srividhya Venkataraman, Kathleen Hefferon. Genetically engineered plant products for health. 2023, 43-72. https://doi.org/10.1016/B978-0-323-88476-1.00009-6
    32. Gergana Zahmanova, Alaa A. Aljabali, Katerina Takova, Valentina Toneva, Murtaza M. Tambuwala, Anton P. Andonov, Georgi L. Lukov, Ivan Minkov. The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health?. International Journal of Molecular Sciences 2023, 24 (2) , 1533. https://doi.org/10.3390/ijms24021533
    33. Xinyan Qiu, Xueying Kang, Jiqin Zhu, Long Yi. Chemical labeling and crosslinking of tobacco mosaic virus via multi-diazonium reagents: examples, applications, and prospects. Materials Advances 2022, 3 (13) , 5248-5259. https://doi.org/10.1039/D2MA00311B
    34. Charlotte Sorieul, Francesco Papi, Filippo Carboni, Simone Pecetta, Sanjay Phogat, Roberto Adamo. Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. Pharmacology & Therapeutics 2022, 235 , 108158. https://doi.org/10.1016/j.pharmthera.2022.108158
    35. Srividhya Venkataraman, Paul Apka, Erum Shoeb, Uzma Badar, Kathleen Hefferon. Plant Virus Nanoparticles for Anti-cancer Therapy. Frontiers in Bioengineering and Biotechnology 2021, 9 https://doi.org/10.3389/fbioe.2021.642794
    36. Srividhya Venkataraman, Kathleen Hefferon. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021, 13 (9) , 1697. https://doi.org/10.3390/v13091697
    37. Erum Shoeb, Uzma Badar, Srividhya Venkataraman, Kathleen Hefferon. Frontiers in Bioengineering and Biotechnology: Plant Nanoparticles for Anti-Cancer Therapy. Vaccines 2021, 9 (8) , 830. https://doi.org/10.3390/vaccines9080830
    38. Yonghui Liu, Mingjing Li, Haomiao Zhu, Zhe Jing, Xiaona Yin, Kun Wang, Zhangyong Hong, Wei Zhao. Alum colloid encapsulated inside β-glucan particles enhance humoral and CTL immune responses of MUC1 vaccine. Chinese Chemical Letters 2021, 32 (6) , 1963-1966. https://doi.org/10.1016/j.cclet.2021.01.035
    39. Que Dan Nguyen, Kosuke Kikuchi, Basudev Maity, Takafumi Ueno. The Versatile Manipulations of Self-Assembled Proteins in Vaccine Design. International Journal of Molecular Sciences 2021, 22 (4) , 1934. https://doi.org/10.3390/ijms22041934
    40. Barbara Richichi, Giuseppe Stefanetti, Giacomo Biagiotti, Luigi Lay. Conjugation Techniques and Linker Strategies for Carbohydrate-Based Vaccines. 2021, 676-705. https://doi.org/10.1016/B978-0-12-819475-1.00089-4
    41. Minfeng Huo, Liying Wang, Yu Chen, Jianlin Shi. Nanomaterials/microorganism-integrated microbiotic nanomedicine. Nano Today 2020, 32 , 100854. https://doi.org/10.1016/j.nantod.2020.100854
    42. Sangita Venkataraman, Vijay S. Reddy, S. M. Paul Khurana. Biomedical Applications of Viral Nanoparticles in Vaccine Therapy. 2020, 213-236. https://doi.org/10.1007/978-981-32-9898-9_9
    43. Candace Benjamin, Olivia Brohlin, Arezoo Shahrivarkevishahi, Jeremiah J. Gassensmith. Virus like particles: fundamental concepts, biological interactions, and clinical applications. 2020, 153-174. https://doi.org/10.1016/B978-0-12-816662-8.00011-4
    44. Young Hun Chung, Hui Cai, Nicole F. Steinmetz. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Advanced Drug Delivery Reviews 2020, 156 , 214-235. https://doi.org/10.1016/j.addr.2020.06.024
    45. Si-Xian Liu, Yun-Tzu Tsai, Yu-Tung Lin, Jia-Yue Li, Che-Chien Chang. Design and synthesis of trivalent Tn glycoconjugate polymers by nitroxide-mediated polymerization. Tetrahedron 2019, 75 (52) , 130776. https://doi.org/10.1016/j.tet.2019.130776
    46. M. Hema, G.P. Vishnu Vardhan, H.S. Savithri, M.R.N. Murthy. Emerging Trends in the Development of Plant Virus-Based Nanoparticles and Their Biomedical Applications. 2019, 61-82. https://doi.org/10.1016/B978-0-12-816328-3.00006-4
    47. Medea Neek, Tae Il Kim, Szu-Wen Wang. Protein-based nanoparticles in cancer vaccine development. Nanomedicine: Nanotechnology, Biology and Medicine 2019, 15 (1) , 164-174. https://doi.org/10.1016/j.nano.2018.09.004
    48. Hanxuan Wang, Bing Yang, Yinglu Wang, Fen Liu, Alberto Fernández-Tejada, Suwei Dong. β-Glucan as an immune activator and a carrier in the construction of a synthetic MUC1 vaccine. Chemical Communications 2019, 55 (2) , 253-256. https://doi.org/10.1039/C8CC07691J
    49. Kannan Badri Narayanan, Sung Soo Han. Recombinant helical plant virus-based nanoparticles for vaccination and immunotherapy. Virus Genes 2018, 54 (5) , 623-637. https://doi.org/10.1007/s11262-018-1583-y
    50. Meng‐Man Wei, Yong‐Shi Wang, Xin‐Shan Ye. Carbohydrate‐based vaccines for oncotherapy. Medicinal Research Reviews 2018, 38 (3) , 1003-1026. https://doi.org/10.1002/med.21493
    51. Nana L. Wenz, Sylwia Piasecka, Matthäus Kalinowski, Angela Schneider, Clemens Richert, Christina Wege. Building expanded structures from tetrahedral DNA branching elements, RNA and TMV protein. Nanoscale 2018, 10 (14) , 6496-6510. https://doi.org/10.1039/C7NR07743B
    52. Michael D. Glidden, John F. Edelbrock, Amy M. Wen, Sourabh Shukla, Yingfang Ma, Roger H. French, Jonathan K. Pokorski, Nicole F. Steinmetz. Application of Engineered Viral Nanoparticles in Materials and Medicine. 2017, 631-710. https://doi.org/10.1002/9783527683451.ch18
    53. David J. Harvey. Analysis of carbohydrates and glycoconjugates by matrix‐assisted laser desorption/ionization mass spectrometry: An update for 2011–2012. Mass Spectrometry Reviews 2017, 36 (3) , 255-422. https://doi.org/10.1002/mas.21471
    54. Suttipun Sungsuwan, Xuanjun Wu, Xuefei Huang. Evaluation of Virus-Like Particle-Based Tumor-Associated Carbohydrate Immunogen in a Mouse Tumor Model. 2017, 359-376. https://doi.org/10.1016/bs.mie.2017.06.030
    55. Yu Zhang, Maziar S. Ardejani, Brendan P. Orner. Design and Applications of Protein‐Cage‐Based Nanomaterials. Chemistry – An Asian Journal 2016, 11 (20) , 2814-2828. https://doi.org/10.1002/asia.201600769
    56. Qian Qin, Zhaojun Yin, Xuanjun Wu, Karen M. Haas, Xuefei Huang. Valency and density matter: Deciphering impacts of immunogen structures on immune responses against a tumor associated carbohydrate antigen using synthetic glycopolymers. Biomaterials 2016, 101 , 189-198. https://doi.org/10.1016/j.biomaterials.2016.05.050
    57. N. A. Nikitin, E. A. Trifonova, O. V. Karpova, J. G. Atabekov. Biosafety of plant viruses for human and animals. Moscow University Biological Sciences Bulletin 2016, 71 (3) , 128-134. https://doi.org/10.3103/S0096392516030081
    58. Karin L. Lee, Richard M. Twyman, Steven Fiering, Nicole F. Steinmetz. Virus‐based nanoparticles as platform technologies for modern vaccines. WIREs Nanomedicine and Nanobiotechnology 2016, 8 (4) , 554-578. https://doi.org/10.1002/wnan.1383
    59. Zhuo Chen, Na Li, Shaobo Li, Madushani Dharmarwardana, Anna Schlimme, Jeremiah J Gassensmith. Viral chemistry: the chemical functionalization of viral architectures to create new technology. WIREs Nanomedicine and Nanobiotechnology 2016, 8 (4) , 512-534. https://doi.org/10.1002/wnan.1379
    60. Amy M. Wen, Nicole F. Steinmetz. Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chemical Society Reviews 2016, 45 (15) , 4074-4126. https://doi.org/10.1039/C5CS00287G
    61. Antonietta Restuccia, Margaret M. Fettis, Gregory A. Hudalla. Glycomaterials for immunomodulation, immunotherapy, and infection prophylaxis. Journal of Materials Chemistry B 2016, 4 (9) , 1569-1585. https://doi.org/10.1039/C5TB01780G
    62. Yonghui Liu, Wenpeng Zhang, Qianqian He, Fan Yu, Tianbang Song, Tingting Liu, Zhenqing Zhang, Jun Zhou, Peng George Wang, Wei Zhao. Fully synthetic self-adjuvanting MUC1-fibroblast stimulating lipopeptide 1 conjugates as potential cancer vaccines. Chemical Communications 2016, 52 (72) , 10886-10889. https://doi.org/10.1039/C6CC04623A
    63. Zhaojun Yin, Steven Dulaney, Craig S. McKay, Claire Baniel, Katarzyna Kaczanowska, Sherif Ramadan, M. G. Finn, Xuefei Huang. Chemical Synthesis of GM2 Glycans, Bioconjugation with Bacteriophage Qβ, and the Induction of Anticancer Antibodies. ChemBioChem 2016, 17 (2) , 174-180. https://doi.org/10.1002/cbic.201500499
    64. Kristopher J. Koudelka, Andrzej S. Pitek, Marianne Manchester, Nicole F. Steinmetz. Virus-Based Nanoparticles as Versatile Nanomachines. Annual Review of Virology 2015, 2 (1) , 379-401. https://doi.org/10.1146/annurev-virology-100114-055141
    65. Marie-Ève Lebel, Karine Chartrand, Denis Leclerc, Alain Lamarre. Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants. Vaccines 2015, 3 (3) , 620-637. https://doi.org/10.3390/vaccines3030620
    66. Xia Zhao, Limin Chen, Jittima Amie Luckanagul, Xiaolei Zhang, Yuan Lin, Qian Wang. Enhancing Antibody Response against Small Molecular Hapten with Tobacco Mosaic Virus as a Polyvalent Carrier. ChemBioChem 2015, 16 (9) , 1279-1283. https://doi.org/10.1002/cbic.201500028
    67. Zhaojun Yin, Xuefei Huang. Boosting Humoral Immune Responses to Tumor-associated Carbohydrate Antigens with Virus-like Particles. 2015, 132-150. https://doi.org/10.1039/9781849739993-00132
    68. Yiyang Zhou, Payal D. Maharaj, Jyothi K. Mallajosyula, Alison A. McCormick, Christopher M. Kearney. In planta Production of Flock House Virus Transencapsidated RNA and Its Potential Use as a Vaccine. Molecular Biotechnology 2015, 57 (4) , 325-336. https://doi.org/10.1007/s12033-014-9826-1
    69. Fabian J. Eber, Sabine Eiben, Holger Jeske, Christina Wege. RNA-controlled assembly of tobacco mosaic virus-derived complex structures: from nanoboomerangs to tetrapods. Nanoscale 2015, 7 (1) , 344-355. https://doi.org/10.1039/C4NR05434B
    70. Xiu-Jing Zheng, Fan Yang, Mingwei Zheng, Chang-Xin Huo, Ye Zhang, Xin-Shan Ye. Improvement of the immune efficacy of carbohydrate vaccines by chemical modification on the GM3 antigen. Organic & Biomolecular Chemistry 2015, 13 (22) , 6399-6406. https://doi.org/10.1039/C5OB00405E
    71. Qian Qin, Zhaojun Yin, Philip Bentley, Xuefei Huang. Carbohydrate antigen delivery by water soluble copolymers as potential anti-cancer vaccines. MedChemComm 2014, 5 (8) , 1126-1129. https://doi.org/10.1039/C4MD00103F
    72. Stefano Crotti, Huili Zhai, Jing Zhou, Martin Allan, Daniela Proietti, Werner Pansegrau, Qi‐Ying Hu, Francesco Berti, Roberto Adamo. Defined Conjugation of Glycans to the Lysines of CRM 197 Guided by their Reactivity Mapping. ChemBioChem 2014, 15 (6) , 836-843. https://doi.org/10.1002/cbic.201300785
    73. F. C. Wu, H. Zhang, Q. Zhou, M. Wu, Z. Ballard, Y. Tian, J. Y. Wang, Z. W. Niu, Y. Huang. Expanding the genetic code for site-specific labelling of tobacco mosaic virus coat protein and building biotin-functionalized virus-like particles. Chem. Commun. 2014, 50 (30) , 4007-4009. https://doi.org/10.1039/C3CC49137D
    74. C. A. Hommersom, B. Matt, A. van der Ham, J. J. L. M. Cornelissen, N. Katsonis. Versatile post-functionalization of the external shell of cowpea chlorotic mottle virus by using click chemistry. Org. Biomol. Chem. 2014, 12 (24) , 4065-4069. https://doi.org/10.1039/C4OB00505H
    75. Deqiang Wei, Xia Zhao, Limin Chen, Xingguo Lan, Yuhua Li, Yuan Lin, Qian Wang. Viral nanoparticles as antigen carriers: influence of shape on humoral immune responses in vivo. RSC Adv. 2014, 4 (44) , 23017-23021. https://doi.org/10.1039/C4RA01821D
    76. Roberto Adamo, Qi-Ying Hu, Antonella Torosantucci, Stefano Crotti, Giulia Brogioni, Martin Allan, Paola Chiani, Carla Bromuro, Douglas Quinn, Marta Tontini, Francesco Berti. Deciphering the structure–immunogenicity relationship of anti- Candida glycoconjugate vaccines. Chem. Sci. 2014, 5 (11) , 4302-4311. https://doi.org/10.1039/C4SC01361A
    77. Luca Vannucci, Elisabetta Falvo, Pierpaolo Ceci. Multifunctional Protein-Based Nanoparticles for Cancer Theranosis. 2014, 231-253. https://doi.org/10.1007/978-94-017-8896-0_12
    78. Limin Chen, Xia Zhao, Yuan Lin, Yubin Huang, Qian Wang. A supramolecular strategy to assemble multifunctional viral nanoparticles. Chemical Communications 2013, 49 (83) , 9678. https://doi.org/10.1039/c3cc45559a
    79. Qi-Ying Hu, Martin Allan, Roberto Adamo, Doug Quinn, Huili Zhai, Guangxiang Wu, Kirk Clark, Jing Zhou, Sonia Ortiz, Bing Wang, Elisa Danieli, Stefano Crotti, Marta Tontini, Giulia Brogioni, Francesco Berti. Synthesis of a well-defined glycoconjugate vaccine by a tyrosine-selective conjugation strategy. Chemical Science 2013, 4 (10) , 3827. https://doi.org/10.1039/c3sc51694f
    80. Jeffrey C. Gildersleeve, Baomei Wang, Samuel Achilefu, Zhude Tu, Mai Xu. Glycan array analysis of the antigen repertoire targeted by tumor-binding antibodies. Bioorganic & Medicinal Chemistry Letters 2012, 22 (22) , 6839-6843. https://doi.org/10.1016/j.bmcl.2012.09.055

    Bioconjugate Chemistry

    Cite this: Bioconjugate Chem. 2012, 23, 8, 1694–1703
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bc300244a
    Published July 19, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    1741

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.