ACS Publications. Most Trusted. Most Cited. Most Read
Three-Dimensional Structure and Subunit Topology of the V1 ATPase from Manduca sexta Midgut
My Activity
    Article

    Three-Dimensional Structure and Subunit Topology of the V1 ATPase from Manduca sexta Midgut
    Click to copy article linkArticle link copied!

    View Author Information
    Universität Osnabrück, Fachbereich Biologie/Chemie, D-49069 Osnabrück, Germany, Whitney Laboratory, University of Florida, St. Augustine, Florida 32086, Max-Planck-Institut für Biophysik, Abteilung Strukturbiologie, D-60528 Frankfurt am Main, Germany, and University College London, Centre for Molecular Medicine, London WC1E 6JJ, United Kingdom
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 2000, 39, 29, 8609–8616
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi000103u
    Published July 18, 2000
    Copyright © 2000 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!

    The three-dimensional structure of the Manduca sexta midgut V1 ATPase has been determined at 3.2 nm resolution from electron micrographs of negatively stained specimens. The V1 complex has a barrel-like structure 11 nm in height and 13.5 nm in diameter. It is hexagonal in the top view, whereas in the side view, the six large subunits A and B are interdigitated for most of their length (9 nm). The topology and importance of the individual subunits of the V1 complex have been explored by protease digestion, resistance to chaotropic agents, MALDI-TOF mass spectrometry, and CuCl2-induced disulfide formation. Treatment of V1 with trypsin or chaotropic iodide resulted in a rapid cleavage or release of subunit D from the enzyme, indicating that this subunit is exposed in the complex. Trypsin cleavage of V1 decreased the ATPase activity with a time course that was in line with the cleavage of subunits B, C, G, and F. When CuCl2 was added to V1 in the presence of CaADP, the cross-linked products A−E−F and B−H were generated. In experiments where CuCl2 was added after preincubation of CaATP, the cross-linked products E−F and E−G were formed. These changes in cross-linking of subunit E to near-neighbor subunits support the hypothesis that these are nucleotide-dependent conformational changes of the E subunit.

    Copyright © 2000 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

     This research was supported by the Deutsche Forschungsgemeinschaft (Wi698 and SFB 431), Welcome Trust Grant 054096, Special Trustees of the Middlesex and University College Hospitals G.83, National Institutes of Health Grant A1 22444, and NSF Grant DBI-9515518.

    *

     To whom correspondence should be addressed at Universität Osnabrück, Fachbereich Biologie/Chemie, D-49069 Osnabrück, Germany. Phone:  +49/(0)541 969 3504; Fax:  +49/(0)541 969 3503; E-mail:  [email protected].

     Universität Osnabrück.

    §

     University of Florida.

     Max-Planck-Institut für Biophysik.

     University College London.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 60 publications.

    1. Kenneth M. Sterling, William R. Harvey. Inhibition of Sodium–Hydrogen Antiport by Antibodies to NHA1 in Brush Border Membrane Vesicles from Whole Aedes aegypti Larvae. The Journal of Membrane Biology 2019, 252 (1) , 1-16. https://doi.org/10.1007/s00232-018-0053-8
    2. Colleen A. Fordyce, Martha M. Grimes, Yamhilette Licon-Munoz, Chun-Yuan Chan, Karlett J. Parra. Vacuolar ATPase in Physiology and Pathology: Roles in Neurobiology, Infectious Disease, and Cancer. 2016, 337-369. https://doi.org/10.1007/978-3-319-24780-9_17
    3. Asha Manikkoth Balakrishna, Sandip Basak, Malathy Sony Subramanian Manimekalai, Gerhard Grüber. Crystal Structure of Subunits D and F in Complex Gives Insight into Energy Transmission of the Eukaryotic V-ATPase from Saccharomyces cerevisiae. Journal of Biological Chemistry 2015, 290 (6) , 3183-3196. https://doi.org/10.1074/jbc.M114.622688
    4. Vladimir Marshansky, John L. Rubinstein, Gerhard Grüber. Eukaryotic V-ATPase: Novel structural findings and functional insights. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2014, 1837 (6) , 857-879. https://doi.org/10.1016/j.bbabio.2014.01.018
    5. Anne Smardon, Patricia Kane. Vacuolar H+-ATPase Assembly. 2014, 1-30. https://doi.org/10.1201/b14984-2
    6. Sandip Basak, Jackwee Lim, Malathy Sony Subramanian Manimekalai, Asha Manikkoth Balakrishna, Gerhard Grüber. Crystal and NMR Structures Give Insights into the Role and Dynamics of Subunit F of the Eukaryotic V-ATPase from Saccharomyces cerevisiae. Journal of Biological Chemistry 2013, 288 (17) , 11930-11939. https://doi.org/10.1074/jbc.M113.461533
    7. Thorsten Seidel, Michèle Siek, Berenice Marg, Karl-Josef Dietz. Energization of Vacuolar Transport in Plant Cells and Its Significance Under Stress. 2013, 57-131. https://doi.org/10.1016/B978-0-12-407696-9.00002-6
    8. Sandip Basak, Asha Manikkoth Balakrishna, Malathy Sony Subramanian Manimekalai, Gerhard Grüber. Crystallization and preliminary X-ray crystallographic analysis of subunit F (F 1–94 ), an essential coupling subunit of the eukaryotic V 1 V O -ATPase from Saccharomyces cerevisiae. Acta Crystallographica Section F Structural Biology and Crystallization Communications 2012, 68 (9) , 1055-1059. https://doi.org/10.1107/S1744309112032526
    9. Minghui A. Xiang, Paul J. Linser, David A. Price, William R. Harvey. Localization of two Na+- or K+-H+ antiporters, AgNHA1 and AgNHA2, in Anopheles gambiae larval Malpighian tubules and the functional expression of AgNHA2 in yeast. Journal of Insect Physiology 2012, 58 (4) , 570-579. https://doi.org/10.1016/j.jinsphys.2011.12.009
    10. William R. Harvey, Minghui A. Xiang. K+ pump: From caterpillar midgut to human cochlea. Journal of Insect Physiology 2012, 58 (4) , 590-598. https://doi.org/10.1016/j.jinsphys.2012.03.001
    11. Sankaranarayanan Rishikesan, Gerhard Grüber. Structural elements of the C-terminal domain of subunit E (E133-222) from the Saccharomyces cerevisiae V1VO ATPase determined by solution NMR spectroscopy. Journal of Bioenergetics and Biomembranes 2011, 43 (5) , 447-455. https://doi.org/10.1007/s10863-011-9379-y
    12. Stephen P. Muench, John Trinick, Michael A. Harrison. Structural divergence of the rotary ATPases. Quarterly Reviews of Biophysics 2011, 44 (3) , 311-356. https://doi.org/10.1017/S0033583510000338
    13. Sankaranarayanan Rishikesan, Youg R. Thaker, Gerhard Grüber. NMR solution structure of subunit E (fragment E1–69) of the Saccharomyces cerevisiae V1VO ATPase. Journal of Bioenergetics and Biomembranes 2011, 43 (2) , 187-193. https://doi.org/10.1007/s10863-011-9342-y
    14. Sandip Basak, Shovanlal Gayen, Youg R. Thaker, Malathy S.S. Manimekalai, Manfred Roessle, Cornelia Hunke, Gerhard Grüber. Solution structure of subunit F (Vma7p) of the eukaryotic V1VO ATPase from Saccharomyces cerevisiae derived from SAXS and NMR spectroscopy. Biochimica et Biophysica Acta (BBA) - Biomembranes 2011, 1808 (1) , 360-368. https://doi.org/10.1016/j.bbamem.2010.09.003
    15. William R. Harvey, Bernard A. Okech, Paul J. Linser, James J. Becnel, Gregory A. Ahearn, Kenneth M. Sterling. H+ V-ATPase-Energized Transporters in Brush Border Membrane Vesicles from Whole Larvae of Aedes aegypti. Journal of Insect Physiology 2010, 56 (10) , 1377-1389. https://doi.org/10.1016/j.jinsphys.2010.04.017
    16. William R. Harvey, Bernard A. Okech. H+, Na+, K+, and Amino Acid Transport in Caterpillar and Larval Mosquito Alimentary Canal. 2010, 113-148. https://doi.org/10.1007/978-1-60327-229-2_6
    17. William R. Harvey. Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters. Journal of Experimental Biology 2009, 212 (11) , 1620-1629. https://doi.org/10.1242/jeb.031534
    18. Zhenyu Zhang, Yesha Zheng, Hortense Mazon, Elena Milgrom, Norton Kitagawa, Erik Kish-Trier, Albert J.R. Heck, Patricia M. Kane, Stephan Wilkens. Structure of the Yeast Vacuolar ATPase. Journal of Biological Chemistry 2008, 283 (51) , 35983-35995. https://doi.org/10.1074/jbc.M805345200
    19. Gerhard Grüber, Vladimir Marshansky. New insights into structure‐function relationships between archeal ATP synthase (A 1 A 0 ) and vacuolar type ATPase (V 1 V 0 ). BioEssays 2008, 30 (11-12) , 1096-1109. https://doi.org/10.1002/bies.20827
    20. Bernard A. Okech, Dmitri Y. Boudko, Paul J. Linser, William R. Harvey. Cationic pathway of pH regulation in larvae of Anopheles gambiae. Journal of Experimental Biology 2008, 211 (6) , 957-968. https://doi.org/10.1242/jeb.012021
    21. Sankaranarayanan Rishikesan, Youg R. Thaker, Ragunathan Priya, Shovanlal Gayen, Malathy S. S. Manimekalai, Cornelia Hunke, Gerhard Grüber. Spectroscopical identification of residues of subunit G of the yeast V-ATPase in its connection with subunit E. Molecular Membrane Biology 2008, 25 (5) , 400-410. https://doi.org/10.1080/09687680802183434
    22. Mark R. Rheault, Bernard A. Okech, Stephen B. W. Keen, Melissa M. Miller, Ella A. Meleshkevitch, Paul J. Linser, Dmitri Y. Boudko, William R. Harvey. Molecular cloning, phylogeny and localization of AgNHA1: the first Na+/H+ antiporter (NHA) from a metazoan, Anopheles gambiae. Journal of Experimental Biology 2007, 210 (21) , 3848-3861. https://doi.org/10.1242/jeb.007872
    23. Marco Gregorini, Jin Wang, Xiao-Song Xie, Ronald A. Milligan, Andreas Engel. Three-dimensional reconstruction of bovine brain V-ATPase by cryo-electron microscopy and single particle analysis. Journal of Structural Biology 2007, 158 (3) , 445-454. https://doi.org/10.1016/j.jsb.2007.01.002
    24. Omri Drory, Nathan Nelson. The Emerging Structure of Vacuolar ATPases. Physiology 2006, 21 (5) , 317-325. https://doi.org/10.1152/physiol.00017.2006
    25. Patricia M. Kane. The Where, When, and How of Organelle Acidification by the Yeast Vacuolar H+-ATPase. Microbiology and Molecular Biology Reviews 2006, 70 (1) , 177-191. https://doi.org/10.1128/MMBR.70.1.177-191.2006
    26. Mali Liu, Maureen Tarsio, Colleen M.H. Charsky, Patricia M. Kane. Structural and Functional Separation of the N- and C-terminal Domains of the Yeast V-ATPase Subunit H. Journal of Biological Chemistry 2005, 280 (44) , 36978-36985. https://doi.org/10.1074/jbc.M505296200
    27. Jonas Borch, Thomas JD Jørgensen, Peter Roepstorff. Mass spectrometric analysis of protein interactions. Current Opinion in Chemical Biology 2005, 9 (5) , 509-516. https://doi.org/10.1016/j.cbpa.2005.08.013
    28. Thorsten Seidel, Dortje Golldack, Karl-Josef Dietz. Mapping of C‐termini of V‐ATPase subunits by in vivo‐FRET measurements. FEBS Letters 2005, 579 (20) , 4374-4382. https://doi.org/10.1016/j.febslet.2005.06.077
    29. Stephan Wilkens, Zhenyu Zhang, Yesha Zheng. A structural model of the vacuolar ATPase from transmission electron microscopy. Micron 2005, 36 (2) , 109-126. https://doi.org/10.1016/j.micron.2004.10.002
    30. Stephan Wilkens. Rotary Molecular Motors. 2005, 345-382. https://doi.org/10.1016/S0065-3233(04)71009-8
    31. Yuriy L. Chaban, Ünal Coskun, Wilko Keegstra, Gert T. Oostergetel, Egbert J. Boekema, Gerhard Grüber. Structural Characterization of an ATPase Active F1-/V1 -ATPase (α3β3EG) Hybrid Complex. Journal of Biological Chemistry 2004, 279 (46) , 47866-47870. https://doi.org/10.1074/jbc.M408460200
    32. Zhuo Li, Xujia Zhang. Electron-microscopic structure of the V-ATPase from mung bean. Planta 2004, 219 (6) , 948-954. https://doi.org/10.1007/s00425-004-1298-2
    33. Yanru Wang, Takao Inoue, Michael Forgac. TM2 but Not TM4 of Subunit c″ Interacts with TM7 of Subunit a of the Yeast V-ATPase as Defined by Disulfide-mediated Cross-linking. Journal of Biological Chemistry 2004, 279 (43) , 44628-44638. https://doi.org/10.1074/jbc.M407345200
    34. Stephan Wilkens, Takao Inoue, Michael Forgac. Three-Dimensional Structure of the Vacuolar ATPase. Journal of Biological Chemistry 2004, 279 (40) , 41942-41949. https://doi.org/10.1074/jbc.M407821200
    35. Ünal Coskun, Yuriy L. Chaban, Astrid Lingl, Volker Müller, Wilko Keegstra, Egbert J. Boekema, Gerhard Grüber. Structure and Subunit Arrangement of the A-type ATP Synthase Complex from the Archaeon Methanococcus jannaschii Visualized by Electron Microscopy. Journal of Biological Chemistry 2004, 279 (37) , 38644-38648. https://doi.org/10.1074/jbc.M406196200
    36. James Féthière, David Venzke, Meikel Diepholz, Anja Seybert, Arie Geerlof, Marc Gentzel, Matthias Wilm, Bettina Böttcher. Building the Stator of the Yeast Vacuolar-ATPase. Journal of Biological Chemistry 2004, 279 (39) , 40670-40676. https://doi.org/10.1074/jbc.M407086200
    37. Thorsten Seidel, Christoph Kluge, Miriam Hanitzsch, Joachim Roß, Markus Sauer, Karl-Josef Dietz, Dortje Golldack. Colocalization and FRET-analysis of subunits c and a of the vacuolar H+-ATPase in living plant cells. Journal of Biotechnology 2004, 112 (1-2) , 165-175. https://doi.org/10.1016/j.jbiotec.2004.04.027
    38. Ünal Coskun, Michael Radermacher, Volker Müller, Teresa Ruiz, Gerhard Grüber. Three-dimensional Organization of the Archaeal A1-ATPase from Methanosarcina mazei Gö1. Journal of Biological Chemistry 2004, 279 (21) , 22759-22764. https://doi.org/10.1074/jbc.M313741200
    39. Senthilkumar Padmanaban, Xiaoying Lin, Imara Perera, Yukio Kawamura, Heven Sze. Differential Expression of Vacuolar H+-ATPase Subunit c Genes in Tissues Active in Membrane Trafficking and Their Roles in Plant Growth as Revealed by RNAi. Plant Physiology 2004, 134 (4) , 1514-1526. https://doi.org/10.1104/pp.103.034025
    40. Zhenyu Zhang, Colleen Charsky, Patricia M. Kane, Stephan Wilkens. Yeast V1-ATPase. Journal of Biological Chemistry 2003, 278 (47) , 47299-47306. https://doi.org/10.1074/jbc.M309445200
    41. Ken Yokoyama, Koji Nagata, Hiromi Imamura, Shoji Ohkuma, Masasuke Yoshida, Masatada Tamakoshi. Subunit Arrangement in V-ATPase from Thermus thermophilus. Journal of Biological Chemistry 2003, 278 (43) , 42686-42691. https://doi.org/10.1074/jbc.M305853200
    42. Keren Aviezer-Hagai, Vered Padler-Karavani, Nathan Nelson. Biochemical support for the V-ATPase rotary mechanism: antibody against HA-tagged Vma7p or Vma16p but not Vma10p inhibits activity. Journal of Experimental Biology 2003, 206 (18) , 3227-3237. https://doi.org/10.1242/jeb.00543
    43. Andrea Armbrüster, Susanne M Bailer, Michel H.J Koch, Jasminka Godovac-Zimmermann, Gerhard Grüber. Dimer formation of subunit G of the yeast V‐ATPase. FEBS Letters 2003, 546 (2-3) , 395-400. https://doi.org/10.1016/S0014-5793(03)00643-4
    44. Shoko Kawasaki-Nishi, Tsuyoshi Nishi, Michael Forgac. Proton translocation driven by ATP hydrolysis in V‐ATPases. FEBS Letters 2003, 545 (1) , 76-85. https://doi.org/10.1016/S0014-5793(03)00396-X
    45. Vincenzo F. Rizzo, Ünal Coskun, Michael Radermacher, Teresa Ruiz, Andrea Armbrüster, Gerhard Grüber. Resolution of the V1 ATPase from Manduca sexta into Subcomplexes and Visualization of an ATPase-active A3B3EG Complex by Electron Microscopy. Journal of Biological Chemistry 2003, 278 (1) , 270-275. https://doi.org/10.1074/jbc.M208623200
    46. Gerhard Grüber, Jasminka Godovac-Zimmermann, Thomas A Link, Ünal Coskun, Vincenzo F Rizzo, Christian Betz, Susanne M Bailer. Expression, purification, and characterization of subunit E, an essential subunit of the vacuolar ATPase. Biochemical and Biophysical Research Communications 2002, 298 (3) , 383-391. https://doi.org/10.1016/S0006-291X(02)02468-3
    47. Ünal Coskun, Gerhard Grüber, Michel H.J. Koch, Jasminka Godovac-Zimmermann, Thorsten Lemker, Volker Müller. Cross-talk in the A1-ATPase from Methanosarcina mazei Gö1 Due to Nucleotide Binding. Journal of Biological Chemistry 2002, 277 (19) , 17327-17333. https://doi.org/10.1074/jbc.M110407200
    48. Stephan Reineke, Helmut Wieczorek, Hans Merzendorfer. Expression of Manduca sexta V-ATPase genes mvB, mvG and mvd is regulated by ecdysteroids. Journal of Experimental Biology 2002, 205 (8) , 1059-1067. https://doi.org/10.1242/jeb.205.8.1059
    49. Heven Sze, Karin Schumacher, Mathias L Müller, Senthilkumar Padmanaban, Lincoln Taiz. A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends in Plant Science 2002, 7 (4) , 157-161. https://doi.org/10.1016/S1360-1385(02)02240-9
    50. Ines Domgall, David Venzke, Ulrich Lüttge, Rafael Ratajczak, Bettina Böttcher. Three-dimensional Map of a Plant V-ATPase Based on Electron Microscopy. Journal of Biological Chemistry 2002, 277 (15) , 13115-13121. https://doi.org/10.1074/jbc.M112011200
    51. Tsuyoshi Nishi, Michael Forgac. The vacuolar (H+)-ATPases — nature's most versatile proton pumps. Nature Reviews Molecular Cell Biology 2002, 3 (2) , 94-103. https://doi.org/10.1038/nrm729
    52. Yoichiro Arata, James D. Baleja, Michael Forgac. Cysteine-directed Cross-linking to Subunit B Suggests That Subunit E Forms Part of the Peripheral Stalk of the Vacuolar H+-ATPase. Journal of Biological Chemistry 2002, 277 (5) , 3357-3363. https://doi.org/10.1074/jbc.M109967200
    53. K.J. Dietz, N. Tavakoli, C. Kluge, T. Mimura, S.S. Sharma, G.C. Harris, A.N. Chardonnens, D. Golldack. Significance of the V‐type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. Journal of Experimental Botany 2001, 52 (363) , 1969-1980. https://doi.org/10.1093/jexbot/52.363.1969
    54. Nastaran Tavakoli, Christoph Kluge, Dortje Golldack, Tetsuro Mimura, Karl‐Josef Dietz. Reversible redox control of plant vacuolar H + –ATPase activity is related to disulfide bridge formation in subunit E as well as subunit A. The Plant Journal 2001, 28 (1) , 51-59. https://doi.org/10.1046/j.1365-313X.2001.01130.x
    55. Hans-Jochen Schäfer, Ünal Coskun, Olaf Eger, Jasminka Godovac-Zimmermann, Helmut Wieczorek, Yasuo Kagawa, Gerhard Grüber. 8-N3-3′-Biotinyl-ATP, a Novel Monofunctional Reagent: Differences in the F1- and V1-ATPases by Means of the ATP Analogue. Biochemical and Biophysical Research Communications 2001, 286 (5) , 1218-1227. https://doi.org/10.1006/bbrc.2001.5502
    56. Gerhard Grüber, Helmut Wieczorek, William R. Harvey, Volker Müller. Structure–function relationships of A-, F- and V-ATPases. Journal of Experimental Biology 2001, 204 (15) , 2597-2605. https://doi.org/10.1242/jeb.204.15.2597
    57. Michael Radermacher, Teresa Ruiz, Helmut Wieczorek, Gerhard Grüber. The Structure of the V1-ATPase Determined by Three-Dimensional Electron Microscopy of Single Particles. Journal of Structural Biology 2001, 135 (1) , 26-37. https://doi.org/10.1006/jsbi.2001.4395
    58. Yukio Kawamura, Keita Arakawa, Masayoshi Maeshima, Shizuo Yoshida. ATP analogue binding to the A subunit induces conformational changes in the E subunit that involves a disulfide bond formation in plant V‐ATPase. European Journal of Biochemistry 2001, 268 (10) , 2801-2809. https://doi.org/10.1046/j.1432-1327.2001.02139.x
    59. Gerhard Grüber, Dmitri I. Svergun, Jasminka Godovac-Zimmermann, William R. Harvey, Helmut Wieczorek, Michel H.J. Koch. Evidence for Major Structural Changes in the Manduca sexta Midgut V1 ATPase Due to Redox Modulation. Journal of Biological Chemistry 2000, 275 (39) , 30082-30087. https://doi.org/10.1074/jbc.M002976200
    60. T. Seidel. Structure and Regulation of Plant Vacuolar H+-ATPase. , 93-126. https://doi.org/10.1007/978-3-540-68421-3_5

    Biochemistry

    Cite this: Biochemistry 2000, 39, 29, 8609–8616
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi000103u
    Published July 18, 2000
    Copyright © 2000 American Chemical Society

    Article Views

    193

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.