ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Energetic origins of specificity of ligand binding in an interior nonpolar cavity of T4 lysozyme

Cite this: Biochemistry 1995, 34, 27, 8564–8575
Publication Date (Print):July 11, 1995
https://doi.org/10.1021/bi00027a006
    ACS Legacy Archive

    Article Views

    826

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 139 publications.

    1. Louis G. Smith, Borna Novak, Meghan Osato, David L. Mobley, Gregory R. Bowman. PopShift: A Thermodynamically Sound Approach to Estimate Binding Free Energies by Accounting for Ligand-Induced Population Shifts from a Ligand-Free Markov State Model. Journal of Chemical Theory and Computation 2024, 20 (3) , 1036-1050. https://doi.org/10.1021/acs.jctc.3c00870
    2. Navjeet Ahalawat, Mohammad Sahil, Jagannath Mondal. Resolving Protein Conformational Plasticity and Substrate Binding via Machine Learning. Journal of Chemical Theory and Computation 2023, 19 (9) , 2644-2657. https://doi.org/10.1021/acs.jctc.2c00932
    3. Oriol Gracia Carmona, Chris Oostenbrink. Accelerated Enveloping Distribution Sampling (AEDS) Allows for Efficient Sampling of Orthogonal Degrees of Freedom. Journal of Chemical Information and Modeling 2023, 63 (1) , 197-207. https://doi.org/10.1021/acs.jcim.2c01272
    4. Lara A. Patel, Phuong Chau, Serena Debesai, Leah Darwin, Chris Neale. Drug Discovery by Automated Adaptation of Chemical Structure and Identity. Journal of Chemical Theory and Computation 2022, 18 (8) , 5006-5024. https://doi.org/10.1021/acs.jctc.1c01271
    5. Yujin Wu, Charles L. Brooks III. Flexible CDOCKER: Hybrid Searching Algorithm and Scoring Function with Side Chain Conformational Entropy. Journal of Chemical Information and Modeling 2021, 61 (11) , 5535-5549. https://doi.org/10.1021/acs.jcim.1c01078
    6. Vincent D. Ustach, Sirish Kaushik Lakkaraju, Sunhwan Jo, Wenbo Yu, Wenjuan Jiang, Alexander D. MacKerell, Jr.. Optimization and Evaluation of Site-Identification by Ligand Competitive Saturation (SILCS) as a Tool for Target-Based Ligand Optimization. Journal of Chemical Information and Modeling 2019, 59 (6) , 3018-3035. https://doi.org/10.1021/acs.jcim.9b00210
    7. Riccardo Capelli, Paolo Carloni, Michele Parrinello. Exhaustive Search of Ligand Binding Pathways via Volume-Based Metadynamics. The Journal of Physical Chemistry Letters 2019, 10 (12) , 3495-3499. https://doi.org/10.1021/acs.jpclett.9b01183
    8. Kalistyn H. Burley, Samuel C. Gill, Nathan M. Lim, David L. Mobley. Enhancing Side Chain Rotamer Sampling Using Nonequilibrium Candidate Monte Carlo. Journal of Chemical Theory and Computation 2019, 15 (3) , 1848-1862. https://doi.org/10.1021/acs.jctc.8b01018
    9. João Marcelo Lamim Ribeiro, Pratyush Tiwary. Toward Achieving Efficient and Accurate Ligand-Protein Unbinding with Deep Learning and Molecular Dynamics through RAVE. Journal of Chemical Theory and Computation 2019, 15 (1) , 708-719. https://doi.org/10.1021/acs.jctc.8b00869
    10. Junchao Xia, William Flynn, Ronald M. Levy. Improving Prediction Accuracy of Binding Free Energies and Poses of HIV Integrase Complexes Using the Binding Energy Distribution Analysis Method with Flattening Potentials. Journal of Chemical Information and Modeling 2018, 58 (7) , 1356-1371. https://doi.org/10.1021/acs.jcim.8b00194
    11. Israel Cabeza de Vaca, Yue Qian, Jonah Z. Vilseck, Julian Tirado-Rives, William L. Jorgensen. Enhanced Monte Carlo Methods for Modeling Proteins Including Computation of Absolute Free Energies of Binding. Journal of Chemical Theory and Computation 2018, 14 (6) , 3279-3288. https://doi.org/10.1021/acs.jctc.8b00031
    12. Samuel C. Gill, Nathan M. Lim, Patrick B. Grinaway, Ariën S. Rustenburg, Josh Fass, Gregory A. Ross, John D. Chodera, David L. Mobley. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo. The Journal of Physical Chemistry B 2018, 122 (21) , 5579-5598. https://doi.org/10.1021/acs.jpcb.7b11820
    13. Vandana Lamba, Filip Yabukarski, Daniel Herschlag. An Activator–Blocker Pair Provides a Controllable On–Off Switch for a Ketosteroid Isomerase Active Site Mutant. Journal of the American Chemical Society 2017, 139 (32) , 11089-11095. https://doi.org/10.1021/jacs.7b03547
    14. Bing Xie, Trung Hai Nguyen, and David D. L. Minh . Absolute Binding Free Energies between T4 Lysozyme and 141 Small Molecules: Calculations Based on Multiple Rigid Receptor Configurations. Journal of Chemical Theory and Computation 2017, 13 (6) , 2930-2944. https://doi.org/10.1021/acs.jctc.6b01183
    15. Xinqiang Ding, Jonah Z. Vilseck, Ryan L. Hayes, and Charles L. Brooks, III . Gibbs Sampler-Based λ-Dynamics and Rao–Blackwell Estimator for Alchemical Free Energy Calculation. Journal of Chemical Theory and Computation 2017, 13 (6) , 2501-2510. https://doi.org/10.1021/acs.jctc.7b00204
    16. Hyelee Lee, Marcus Fischer, Brian K. Shoichet, and Shih-Yuan Liu . Hydrogen Bonding of 1,2-Azaborines in the Binding Cavity of T4 Lysozyme Mutants: Structures and Thermodynamics. Journal of the American Chemical Society 2016, 138 (37) , 12021-12024. https://doi.org/10.1021/jacs.6b06566
    17. Nathan M. Lim, Lingle Wang, Robert Abel, and David L. Mobley . Sensitivity in Binding Free Energies Due to Protein Reorganization. Journal of Chemical Theory and Computation 2016, 12 (9) , 4620-4631. https://doi.org/10.1021/acs.jctc.6b00532
    18. Daniel J. Cole, Jonah Z. Vilseck, Julian Tirado-Rives, Mike C. Payne, and William L. Jorgensen . Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning. Journal of Chemical Theory and Computation 2016, 12 (5) , 2312-2323. https://doi.org/10.1021/acs.jctc.6b00027
    19. Thomas B. Steinbrecher, Markus Dahlgren, Daniel Cappel, Teng Lin, Lingle Wang, Goran Krilov, Robert Abel, Richard Friesner, and Woody Sherman . Accurate Binding Free Energy Predictions in Fragment Optimization. Journal of Chemical Information and Modeling 2015, 55 (11) , 2411-2420. https://doi.org/10.1021/acs.jcim.5b00538
    20. Williams E. Miranda, Sergei Yu. Noskov, and Pedro A. Valiente . Improving the LIE Method for Binding Free Energy Calculations of Protein–Ligand Complexes. Journal of Chemical Information and Modeling 2015, 55 (9) , 1867-1877. https://doi.org/10.1021/acs.jcim.5b00012
    21. Sirish Kaushik Lakkaraju, E. Prabhu Raman, Wenbo Yu, and Alexander D. MacKerell, Jr. . Sampling of Organic Solutes in Aqueous and Heterogeneous Environments Using Oscillating Excess Chemical Potentials in Grand Canonical-like Monte Carlo-Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2014, 10 (6) , 2281-2290. https://doi.org/10.1021/ct500201y
    22. Melek N. Ucisik, Zheng Zheng, John C. Faver, and Kenneth M. Merz . Bringing Clarity to the Prediction of Protein–Ligand Binding Free Energies via “Blurring”. Journal of Chemical Theory and Computation 2014, 10 (3) , 1314-1325. https://doi.org/10.1021/ct400995c
    23. Robert D. Malmstrom and Stanley J. Watowich . Using Free Energy of Binding Calculations To Improve the Accuracy of Virtual Screening Predictions. Journal of Chemical Information and Modeling 2011, 51 (7) , 1648-1655. https://doi.org/10.1021/ci200126v
    24. Samuel Genheden, Jacob Kongsted, Pär Söderhjelm, and Ulf Ryde . Nonpolar Solvation Free Energies of Protein−Ligand Complexes. Journal of Chemical Theory and Computation 2010, 6 (11) , 3558-3568. https://doi.org/10.1021/ct100272s
    25. Michael M. Mysinger and Brian K. Shoichet . Rapid Context-Dependent Ligand Desolvation in Molecular Docking. Journal of Chemical Information and Modeling 2010, 50 (9) , 1561-1573. https://doi.org/10.1021/ci100214a
    26. Emilio Gallicchio, Mauro Lapelosa, and Ronald M. Levy. Binding Energy Distribution Analysis Method (BEDAM) for Estimation of Protein−Ligand Binding Affinities. Journal of Chemical Theory and Computation 2010, 6 (9) , 2961-2977. https://doi.org/10.1021/ct1002913
    27. Lijun Liu, Walter A. Baase, Miya M. Michael and Brian W. Matthews. Use of Stabilizing Mutations To Engineer a Charged Group within a Ligand-Binding Hydrophobic Cavity in T4 Lysozyme. Biochemistry 2009, 48 (37) , 8842-8851. https://doi.org/10.1021/bi900685j
    28. Matthew Clark, Siavash Meshkat, George T. Talbot, Paolo Carnevali and Jeffrey S. Wiseman. Fragment-Based Computation of Binding Free Energies by Systematic Sampling. Journal of Chemical Information and Modeling 2009, 49 (8) , 1901-1913. https://doi.org/10.1021/ci900132r
    29. Matthew Clark, Sia Meshkat and Jeffrey S. Wiseman. Grand Canonical Free-Energy Calculations of Protein−Ligand Binding. Journal of Chemical Information and Modeling 2009, 49 (4) , 934-943. https://doi.org/10.1021/ci8004397
    30. Yuqing Deng and Benoît Roux. Computations of Standard Binding Free Energies with Molecular Dynamics Simulations. The Journal of Physical Chemistry B 2009, 113 (8) , 2234-2246. https://doi.org/10.1021/jp807701h
    31. Wei Deng and Christophe L. M. J. Verlinde. Evaluation of Different Virtual Screening Programs for Docking in a Charged Binding Pocket. Journal of Chemical Information and Modeling 2008, 48 (10) , 2010-2020. https://doi.org/10.1021/ci800154w
    32. Yuqing Deng and, Benoît Roux. Calculation of Standard Binding Free Energies:  Aromatic Molecules in the T4 Lysozyme L99A Mutant. Journal of Chemical Theory and Computation 2006, 2 (5) , 1255-1273. https://doi.org/10.1021/ct060037v
    33. Justin M. Notestein,, Alexander Katz, and, Enrique Iglesia. Energetics of Small Molecule and Water Complexation in Hydrophobic Calixarene Cavities. Langmuir 2006, 22 (9) , 4004-4014. https://doi.org/10.1021/la053093c
    34. Jens Carlsson and, Johan Åqvist. Absolute and Relative Entropies from Computer Simulation with Applications to Ligand Binding. The Journal of Physical Chemistry B 2005, 109 (13) , 6448-6456. https://doi.org/10.1021/jp046022f
    35. Lewis E. Kay,, D. R. Muhandiram,, Neil A. Farrow,, Yves Aubin, and, Julie D. Forman-Kay. Correlation between Dynamics and High Affinity Binding in an SH2 Domain Interaction. Biochemistry 1996, 35 (2) , 361-368. https://doi.org/10.1021/bi9522312
    36. Andrew Morton and Brian W. Matthews. Specificity of ligand binding in a buried nonpolar cavity of T4 lysozyme: Linkage of dynamics and structural plasticity. Biochemistry 1995, 34 (27) , 8576-8588. https://doi.org/10.1021/bi00027a007
    37. Satyabrata Bandyopadhyay, Jagannath Mondal. A deep encoder–decoder framework for identifying distinct ligand binding pathways. The Journal of Chemical Physics 2023, 158 (19) https://doi.org/10.1063/5.0145197
    38. Joao Victor de Souza, Victor H.R. Nogueira, Alessandro S. Nascimento. Ligand binding free energy evaluation by Monte Carlo Recursion. Computational Biology and Chemistry 2023, 103 , 107830. https://doi.org/10.1016/j.compbiolchem.2023.107830
    39. Vytautas Gapsys, Ahmet Yildirim, Matteo Aldeghi, Yuriy Khalak, David van der Spoel, Bert L. de Groot. Accurate absolute free energies for ligand–protein binding based on non-equilibrium approaches. Communications Chemistry 2021, 4 (1) https://doi.org/10.1038/s42004-021-00498-y
    40. Anna S. Kamenik, Isha Singh, Parnian Lak, Trent E. Balius, Klaus R. Liedl, Brian K. Shoichet. Energy penalties enhance flexible receptor docking in a model cavity. Proceedings of the National Academy of Sciences 2021, 118 (36) https://doi.org/10.1073/pnas.2106195118
    41. Paulo C. T. Souza, Sebastian Thallmair, Paolo Conflitti, Carlos Ramírez-Palacios, Riccardo Alessandri, Stefano Raniolo, Vittorio Limongelli, Siewert J. Marrink. Protein–ligand binding with the coarse-grained Martini model. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17437-5
    42. Trung Hai Nguyen, David D L Minh. Implicit ligand theory for relative binding free energies: II. An estimator based on control variates. Journal of Physics Communications 2020, 4 (11) , 115010. https://doi.org/10.1088/2399-6528/abcbac
    43. Yoshitake Sakae, Bin W. Zhang, Ronald M. Levy, Nanjie Deng. Absolute Protein Binding Free Energy Simulations for Ligands with Multiple Poses, a Thermodynamic Path That Avoids Exhaustive Enumeration of the Poses. Journal of Computational Chemistry 2020, 41 (1) , 56-68. https://doi.org/10.1002/jcc.26078
    44. Tharindu Senapathi, Christopher Barnett, Kevin Naidoo. BRIDGE: An Open Platform for Reproducible Protein-Ligand Simulations and Free Energy of Binding Calculations. BIO-PROTOCOL 2020, 10 (17) https://doi.org/10.21769/BioProtoc.3731
    45. Yao Liu, Shih-Yuan Liu. Exploring the strength of a hydrogen bond as a function of steric environment using 1,2-azaborine ligands and engineered T4 lysozyme receptors. Organic & Biomolecular Chemistry 2019, 17 (29) , 7002-7006. https://doi.org/10.1039/C9OB01008D
    46. Daniel J. Cole, Israel Cabeza de Vaca, William L. Jorgensen. Computation of protein–ligand binding free energies using quantum mechanical bespoke force fields. MedChemComm 2019, 10 (7) , 1116-1120. https://doi.org/10.1039/C9MD00017H
    47. Victoria A. Feher, Jamie M. Schiffer, Daniel J. Mermelstein, Nathan Mih, Levi C.T. Pierce, J. Andrew McCammon, Rommie E. Amaro. Mechanisms for Benzene Dissociation through the Excited State of T4 Lysozyme L99A Mutant. Biophysical Journal 2019, 116 (2) , 205-214. https://doi.org/10.1016/j.bpj.2018.09.035
    48. Krystel El Hage, Padmabati Mondal, Markus Meuwly. Free energy simulations for protein ligand binding and stability. Molecular Simulation 2018, 44 (13-14) , 1044-1061. https://doi.org/10.1080/08927022.2017.1416115
    49. Yong Wang, Omar Valsson, Pratyush Tiwary, Michele Parrinello, Kresten Lindorff-Larsen. Frequency adaptive metadynamics for the calculation of rare-event kinetics. The Journal of Chemical Physics 2018, 149 (7) https://doi.org/10.1063/1.5024679
    50. Jagannath Mondal, Navjeet Ahalawat, Subhendu Pandit, Lewis E. Kay, Pramodh Vallurupalli, . Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme. PLOS Computational Biology 2018, 14 (5) , e1006180. https://doi.org/10.1371/journal.pcbi.1006180
    51. Trung Hai Nguyen, Huan‐Xiang Zhou, David D. L. Minh. Using the fast fourier transform in binding free energy calculations. Journal of Computational Chemistry 2018, 39 (11) , 621-636. https://doi.org/10.1002/jcc.25139
    52. Ariane Nunes-Alves, Daniel M. Zuckerman, Guilherme Menegon Arantes. Escape of a Small Molecule from Inside T4 Lysozyme by Multiple Pathways. Biophysical Journal 2018, 114 (5) , 1058-1066. https://doi.org/10.1016/j.bpj.2018.01.014
    53. Ryo Kitahara, Shun Sakuraba, Tomoshi Kameda, Sanshiro Okuda, Mengjun Xue, Frans A.A. Mulder. Nuclear magnetic resonance‐based determination of dioxygen binding sites in protein cavities. Protein Science 2018, 27 (3) , 769-779. https://doi.org/10.1002/pro.3371
    54. Peng-fei Li, Xiang-yu Jia, Mei-ting Wang, Ye Mei. Comparison of Accuracy and Convergence Rate between Equilibrium and Nonequilibrium Alchemical Transformations for Calculation of Relative Binding Free Energy. Chinese Journal of Chemical Physics 2017, 30 (6) , 789-799. https://doi.org/10.1063/1674-0068/30/cjcp1711204
    55. Diego B. Diaz, Andrei K. Yudin. The versatility of boron in biological target engagement. Nature Chemistry 2017, 9 (8) , 731-742. https://doi.org/10.1038/nchem.2814
    56. David L. Mobley, Michael K. Gilson. Predicting Binding Free Energies: Frontiers and Benchmarks. Annual Review of Biophysics 2017, 46 (1) , 531-558. https://doi.org/10.1146/annurev-biophys-070816-033654
    57. Padmabati Mondal, Markus Meuwly. Vibrational Stark spectroscopy for assessing ligand-binding strengths in a protein. Physical Chemistry Chemical Physics 2017, 19 (24) , 16131-16143. https://doi.org/10.1039/C7CP01892D
    58. Yong Wang, João Miguel Martins, Kresten Lindorff-Larsen. Biomolecular conformational changes and ligand binding: from kinetics to thermodynamics. Chemical Science 2017, 8 (9) , 6466-6473. https://doi.org/10.1039/C7SC01627A
    59. Daniel J Cole, Nicholas D M Hine. Applications of large-scale density functional theory in biology. Journal of Physics: Condensed Matter 2016, 28 (39) , 393001. https://doi.org/10.1088/0953-8984/28/39/393001
    60. Jamie M. Schiffer, Victoria A. Feher, Robert D. Malmstrom, Roxana Sida, Rommie E. Amaro. Capturing Invisible Motions in the Transition from Ground to Rare Excited States of T4 Lysozyme L99A. Biophysical Journal 2016, 111 (8) , 1631-1640. https://doi.org/10.1016/j.bpj.2016.08.041
    61. Ying‐Chih Chiang, Yi Wang. Virtual substitution scan via single‐step free energy perturbation. Biopolymers 2016, 105 (6) , 324-336. https://doi.org/10.1002/bip.22820
    62. Michael T. Lerch, Carlos J. López, Zhongyu Yang, Margaux J. Kreitman, Joseph Horwitz, Wayne L. Hubbell. Structure-relaxation mechanism for the response of T4 lysozyme cavity mutants to hydrostatic pressure. Proceedings of the National Academy of Sciences 2015, 112 (19) https://doi.org/10.1073/pnas.1506505112
    63. Matthew Merski, Marcus Fischer, Trent E. Balius, Oliv Eidam, Brian K. Shoichet. Homologous ligands accommodated by discrete conformations of a buried cavity. Proceedings of the National Academy of Sciences 2015, 112 (16) , 5039-5044. https://doi.org/10.1073/pnas.1500806112
    64. Stephen J. Fox, Jacek Dziedzic, Thomas Fox, Christofer S. Tautermann, Chris‐Kriton Skylaris. Density functional theory calculations on entire proteins for free energies of binding: Application to a model polar binding site. Proteins: Structure, Function, and Bioinformatics 2014, 82 (12) , 3335-3346. https://doi.org/10.1002/prot.24686
    65. Nathaniel V. Nucci, Brian Fuglestad, Evangelia A. Athanasoula, A. Joshua Wand. Role of cavities and hydration in the pressure unfolding of T 4 lysozyme. Proceedings of the National Academy of Sciences 2014, 111 (38) , 13846-13851. https://doi.org/10.1073/pnas.1410655111
    66. Yvonne Westermaier, Roderick E. Hubbard. Free Energy Methods in Ligand Design. 2013, 373-415. https://doi.org/10.1002/9783527677016.ch16
    67. Carlos J. López, Zhongyu Yang, Christian Altenbach, Wayne L. Hubbell. Conformational selection and adaptation to ligand binding in T4 lysozyme cavity mutants. Proceedings of the National Academy of Sciences 2013, 110 (46) https://doi.org/10.1073/pnas.1318754110
    68. Jacek Dziedzic, Stephen J. Fox, Thomas Fox, Christofer S. Tautermann, Chris‐Kriton Skylaris. Large‐scale DFT calculations in implicit solvent—A case study on the T4 lysozyme L99A/M102Q protein. International Journal of Quantum Chemistry 2013, 113 (6) , 771-785. https://doi.org/10.1002/qua.24075
    69. David L. Mobley, Pavel V. Klimovich. Perspective: Alchemical free energy calculations for drug discovery. The Journal of Chemical Physics 2012, 137 (23) https://doi.org/10.1063/1.4769292
    70. Nozomi Ando, Buz Barstow. High hydrostatic pressure effect on proteins: Fluorescence studies. 2012https://doi.org/10.1002/9780470027318.a9246
    71. Lingle Wang, B. J. Berne, Richard A. Friesner. On achieving high accuracy and reliability in the calculation of relative protein–ligand binding affinities. Proceedings of the National Academy of Sciences 2012, 109 (6) , 1937-1942. https://doi.org/10.1073/pnas.1114017109
    72. Jeff Wereszczynski, J. Andrew McCammon. Statistical mechanics and molecular dynamics in evaluating thermodynamic properties of biomolecular recognition. Quarterly Reviews of Biophysics 2012, 45 (1) , 1-25. https://doi.org/10.1017/S0033583511000096
    73. T. Christensen, W. Hassouneh, D.J. Callahan, A. Chilkoti. 3.11 Protein Switches. 2012, 238-266. https://doi.org/10.1016/B978-0-12-374920-8.00316-7
    74. Guillaume Poncet-Montange, Susan J. St. Martin, Olga V. Bogatova, Stanley B. Prusiner, Brian K. Shoichet, Sina Ghaemmaghami. A Survey of Antiprion Compounds Reveals the Prevalence of Non-PrP Molecular Targets. Journal of Biological Chemistry 2011, 286 (31) , 27718-27728. https://doi.org/10.1074/jbc.M111.234393
    75. Anthony E. Klon, Zenon Konteatis, Siavash N. Meshkat, Jinming Zou, Charles H. Reynolds. Fragment and protein simulation methods in fragment based drug design. Drug Development Research 2011, 72 (2) , 130-137. https://doi.org/10.1002/ddr.20409
    76. Samuel Genheden, Ulf Ryde. A comparison of different initialization protocols to obtain statistically independent molecular dynamics simulations. Journal of Computational Chemistry 2011, 32 (2) , 187-195. https://doi.org/10.1002/jcc.21546
    77. Emilio Gallicchio, Ronald M. Levy. Recent theoretical and computational advances for modeling protein–ligand binding affinities. 2011, 27-80. https://doi.org/10.1016/B978-0-12-386485-7.00002-8
    78. L. Y. Chen. Exploring the free-energy landscapes of biological systems with steered molecular dynamics. Physical Chemistry Chemical Physics 2011, 13 (13) , 6176. https://doi.org/10.1039/c0cp02799e
    79. Carlotta Granchi, Sarabindu Roy, Claudia Del Fiandra, Tiziano Tuccinardi, Mario Lanza, Laura Betti, Gino Giannaccini, Antonio Lucacchini, Adriano Martinelli, Marco Macchia, Filippo Minutolo. Triazole-substituted N-hydroxyindol-2-carboxylates as inhibitors of isoform 5 of human lactate dehydrogenase (hLDH5). MedChemComm 2011, 2 (7) , 638. https://doi.org/10.1039/c1md00071c
    80. Michael R. Shirts, David L. Mobley, Scott P. Brown. Free-energy calculations in structure-based drug design. 2010, 61-86. https://doi.org/10.1017/CBO9780511730412.007
    81. Nidhi Singh, Arieh Warshel. A comprehensive examination of the contributions to the binding entropy of protein–ligand complexes. Proteins: Structure, Function, and Bioinformatics 2010, 78 (7) , 1724-1735. https://doi.org/10.1002/prot.22689
    82. Walter A. Baase, Lijun Liu, Dale E. Tronrud, Brian W. Matthews. Lessons from the lysozyme of phage T4. Protein Science 2010, 19 (4) , 631-641. https://doi.org/10.1002/pro.344
    83. Lijun Liu, Adam J. V. Marwitz, Brian W. Matthews, Shih‐Yuan Liu. Boron Mimetics: 1,2‐Dihydro‐1,2‐azaborines Bind inside a Nonpolar Cavity of T4 Lysozyme. Angewandte Chemie International Edition 2009, 48 (37) , 6817-6819. https://doi.org/10.1002/anie.200903390
    84. Lijun Liu, Adam J. V. Marwitz, Brian W. Matthews, Shih‐Yuan Liu. Boron Mimetics: 1,2‐Dihydro‐1,2‐azaborines Bind inside a Nonpolar Cavity of T4 Lysozyme. Angewandte Chemie 2009, 121 (37) , 6949-6951. https://doi.org/10.1002/ange.200903390
    85. David J. Huggins, Michael D. Altman, Bruce Tidor. Evaluation of an inverse molecular design algorithm in a model binding site. Proteins: Structure, Function, and Bioinformatics 2009, 75 (1) , 168-186. https://doi.org/10.1002/prot.22226
    86. Lijun Liu, Walter A. Baase, Brian W. Matthews. Halogenated Benzenes Bound within a Non-polar Cavity in T4 Lysozyme Provide Examples of I⋯S and I⋯Se Halogen-bonding. Journal of Molecular Biology 2009, 385 (2) , 595-605. https://doi.org/10.1016/j.jmb.2008.10.086
    87. Tomas Rodinger, P. Lynne Howell, Régis Pomès. Calculation of absolute protein-ligand binding free energy using distributed replica sampling. The Journal of Chemical Physics 2008, 129 (15) https://doi.org/10.1063/1.2989800
    88. Lijun Liu, Michael L. Quillin, Brian W. Matthews. Use of experimental crystallographic phases to examine the hydration of polar and nonpolar cavities in T4 lysozyme. Proceedings of the National Academy of Sciences 2008, 105 (38) , 14406-14411. https://doi.org/10.1073/pnas.0806307105
    89. Israel Silman, Joel L. Sussman. Acetylcholinesterase: How is structure related to function?. Chemico-Biological Interactions 2008, 175 (1-3) , 3-10. https://doi.org/10.1016/j.cbi.2008.05.035
    90. Alan P. Graves, Devleena M. Shivakumar, Sarah E. Boyce, Matthew P. Jacobson, David A. Case, Brian K. Shoichet. Rescoring Docking Hit Lists for Model Cavity Sites: Predictions and Experimental Testing. Journal of Molecular Biology 2008, 377 (3) , 914-934. https://doi.org/10.1016/j.jmb.2008.01.049
    91. . Binding equilibria. 2008, 250-280. https://doi.org/10.1017/CBO9780511802690.008
    92. David L. Mobley, Alan P. Graves, John D. Chodera, Andrea C. McReynolds, Brian K. Shoichet, Ken A. Dill. Predicting Absolute Ligand Binding Free Energies to a Simple Model Site. Journal of Molecular Biology 2007, 371 (4) , 1118-1134. https://doi.org/10.1016/j.jmb.2007.06.002
    93. Marcus D. Collins, Michael L. Quillin, Gerhard Hummer, Brian W. Matthews, Sol M. Gruner. Structural Rigidity of a Large Cavity-containing Protein Revealed by High-pressure Crystallography. Journal of Molecular Biology 2007, 367 (3) , 752-763. https://doi.org/10.1016/j.jmb.2006.12.021
    94. Michael R. Shirts, David L. Mobley, John D. Chodera. Chapter 4 Alchemical Free Energy Calculations: Ready for Prime Time?. 2007, 41-59. https://doi.org/10.1016/S1574-1400(07)03004-6
    95. Ruth Brenk, Stefan W. Vetter, Sarah E. Boyce, David B. Goodin, Brian K. Shoichet. Probing Molecular Docking in a Charged Model Binding Site. Journal of Molecular Biology 2006, 357 (5) , 1449-1470. https://doi.org/10.1016/j.jmb.2006.01.034
    96. Jens Carlsson, Johan Åqvist. Calculations of solute and solvent entropies from molecular dynamics simulations. Phys. Chem. Chem. Phys. 2006, 8 (46) , 5385-5395. https://doi.org/10.1039/B608486A
    97. Marcus D. Collins, Gerhard Hummer, Michael L. Quillin, Brian W. Matthews, Sol M. Gruner. Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation. Proceedings of the National Academy of Sciences 2005, 102 (46) , 16668-16671. https://doi.org/10.1073/pnas.0508224102
    98. Vincent Setola, Malgorzata Dukat, Richard A. Glennon, Bryan L. Roth. Molecular Determinants for the Interaction of the Valvulopathic Anorexigen Norfenfluramine with the 5-HT 2B Receptor. Molecular Pharmacology 2005, 68 (1) , 20-33. https://doi.org/10.1124/mol.104.009266
    99. Claudia Machicado, Jon López-Llano, Santiago Cuesta-López, Marta Bueno, Javier Sancho. Design of Ligand Binding to an Engineered Protein Cavity Using Virtual Screening and Thermal Up-shift Evaluation. Journal of Computer-Aided Molecular Design 2005, 19 (6) , 421-443. https://doi.org/10.1007/s10822-005-7969-7
    100. Tao Zhang, Jonas S. Johansson. A calorimetric study on the binding of six general anesthetics to the hydrophobic core of a model protein. Biophysical Chemistry 2005, 113 (2) , 169-174. https://doi.org/10.1016/j.bpc.2004.08.009
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect