ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Mechanism of GTP hydrolysis by p21N-ras catalyzed by GAP: Studies with a fluorescent GTP analog

Cite this: Biochemistry 1993, 32, 29, 7451–7459
Publication Date (Print):July 1, 1993
https://doi.org/10.1021/bi00080a016
    ACS Legacy Archive

    Article Views

    348

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 54 publications.

    1. Keith J. M. Moore and Timothy M. Lohman. Kinetic mechanism of adenine nucleotide binding to and hydrolysis by the Escherichia coli Rep monomer. 1. Use of fluorescent nucleotide analogs. Biochemistry 1994, 33 (48) , 14550-14564. https://doi.org/10.1021/bi00252a023
    2. David A. Leonard, Tony Evans, Matthew Hart, Richard A. Cerione, and Danny Manor. Investigation of the GTP-Binding/GTPase Cycle of Cdc42Hs Using Fluorescence Spectroscopy. Biochemistry 1994, 33 (40) , 12323-12328. https://doi.org/10.1021/bi00206a040
    3. Lara A. Patel, Timothy J. Waybright, Andrew G. Stephen, Chris Neale. GAP positions catalytic H-Ras residue Q61 for GTP hydrolysis in molecular dynamics simulations, complicating chemical rescue of Ras deactivation. Computational Biology and Chemistry 2023, 104 , 107835. https://doi.org/10.1016/j.compbiolchem.2023.107835
    4. Daniel Crosby, Melissa R. Mikolaj, Sarah B. Nyenhuis, Samantha Bryce, Jenny E. Hinshaw, Tina H. Lee. Reconstitution of human atlastin fusion activity reveals autoinhibition by the C terminus. Journal of Cell Biology 2022, 221 (2) https://doi.org/10.1083/jcb.202107070
    5. Alyssa M Blaise, Ellen E Corcoran, Eve S Wattenberg, Yan-Ling Zhang, Jeffrey R Cottrell, Anthony J Koleske. In vitro fluorescence assay to measure GDP/GTP exchange of guanine nucleotide exchange factors of Rho family GTPases. Biology Methods and Protocols 2022, 7 (1) https://doi.org/10.1093/biomethods/bpab024
    6. Yumiko Saijo-Hamano, Aalaa Alrahman Sherif, Ariel Pradipta, Miwa Sasai, Naoki Sakai, Yoshiaki Sakihama, Masahiro Yamamoto, Daron M Standley, Ryo Nitta. Structural basis of membrane recognition of Toxoplasma gondii vacuole by Irgb6. Life Science Alliance 2022, 5 (1) , e202101149. https://doi.org/10.26508/lsa.202101149
    7. James Winsor, Ursula Machi, Qixiu Han, David D. Hackney, Tina H. Lee. GTP hydrolysis promotes disassembly of the atlastin crossover dimer during ER fusion. Journal of Cell Biology 2018, 217 (12) , 4184-4198. https://doi.org/10.1083/jcb.201805039
    8. Christian W. Johnson, Derion Reid, Jillian A. Parker, Shores Salter, Ryan Knihtila, Petr Kuzmic, Carla Mattos. The small GTPases K-Ras, N-Ras, and H-Ras have distinct biochemical properties determined by allosteric effects. Journal of Biological Chemistry 2017, 292 (31) , 12981-12993. https://doi.org/10.1074/jbc.M117.778886
    9. Faith E.H. Katz, Xinying Shi, Cedric P. Owens, Simpson Joseph, F. Akif Tezcan. Determination of nucleoside triphosphatase activities from measurement of true inorganic phosphate in the presence of labile phosphate compounds. Analytical Biochemistry 2017, 520 , 62-67. https://doi.org/10.1016/j.ab.2016.12.012
    10. Mohammad T. Mazhab-Jafari, Christopher B. Marshall, Matthew Smith, Geneviève M.C. Gasmi-Seabrook, Vuk Stambolic, Robert Rottapel, Benjamin G. Neel, Mitsuhiko Ikura. Real-time NMR Study of Three Small GTPases Reveals That Fluorescent 2′(3′)-O-(N-Methylanthraniloyl)-tagged Nucleotides Alter Hydrolysis and Exchange Kinetics. Journal of Biological Chemistry 2010, 285 (8) , 5132-5136. https://doi.org/10.1074/jbc.C109.064766
    11. Srividya Suryanarayana, Jenna L. Wang, Mark Richter, Yuequan Shen, Wei-Jen Tang, Gerald H. Lushington, Roland Seifert. Distinct interactions of 2′- and 3′-O-(N-methyl)anthraniloyl-isomers of ATP and GTP with the adenylyl cyclase toxin of Bacillus anthracis, edema factor. Biochemical Pharmacology 2009, 78 (3) , 224-230. https://doi.org/10.1016/j.bcp.2009.04.006
    12. Christian Spangler, Corinna M. Spangler, Michael Spoerner, Michael Schäferling. Kinetic determination of the GTPase activity of Ras proteins by means of a luminescent terbium complex. Analytical and Bioanalytical Chemistry 2009, 394 (4) , 989-996. https://doi.org/10.1007/s00216-008-2517-7
    13. Moon‐Soo Kim, Jiao Song, Chiwook Park. Determining protein stability in cell lysates by pulse proteolysis and Western blotting. Protein Science 2009, 18 (5) , 1051-1059. https://doi.org/10.1002/pro.115
    14. Adriane Leskovar, Jochen Reinstein. Photophysical properties of popular fluorescent adenosine nucleotide analogs used in enzyme mechanism probing. Archives of Biochemistry and Biophysics 2008, 473 (1) , 16-24. https://doi.org/10.1016/j.abb.2008.02.035
    15. Partha P. Chakrabarti, Oliver Daumke, Yan Suveyzdis, Carsten Kötting, Klaus Gerwert, Alfred Wittinghofer. Insight into Catalysis of a Unique GTPase Reaction by a Combined Biochemical and FTIR Approach. Journal of Molecular Biology 2007, 367 (4) , 983-995. https://doi.org/10.1016/j.jmb.2006.11.022
    16. Nancy Fidyk, Jian-Bin Wang, Richard A. Cerione. Influencing Cellular Transformation by Modulating the Rates of GTP Hydrolysis by Cdc42. Biochemistry 2006, 45 (25) , 7750-7762. https://doi.org/10.1021/bi060365h
    17. Avner Schlessinger, Burkhard Rost. Protein flexibility and rigidity predicted from sequence. Proteins: Structure, Function, and Bioinformatics 2005, 61 (1) , 115-126. https://doi.org/10.1002/prot.20587
    18. Emily E. Jameson, Rebecca A. Roof, Matthew R. Whorton, Henry I. Mosberg, Roger K. Sunahara, Richard R. Neubig, Robert T. Kennedy. Real-time Detection of Basal and Stimulated G Protein GTPase Activity Using Fluorescent GTP Analogues. Journal of Biological Chemistry 2005, 280 (9) , 7712-7719. https://doi.org/10.1074/jbc.M413810200
    19. Alexander Eberth, Radovan Dvorsky, Christian F.W. Becker, Andrea Beste, Roger S. Goody, Mohammad Reza Ahmadian. Monitoring the real-time kinetics of the hydrolysis reaction of guanine nucleotide-binding proteins. Biological Chemistry 2005, 386 (11) https://doi.org/10.1515/BC.2005.127
    20. Xinlin Du, Gavin E. Black, Paolo Lecchi, Fred P. Abramson, Stephen R. Sprang. Kinetic isotope effects in Ras-catalyzed GTP hydrolysis: Evidence for a loose transition state. Proceedings of the National Academy of Sciences 2004, 101 (24) , 8858-8863. https://doi.org/10.1073/pnas.0401675101
    21. Jonas Korlach, Daniel W. Baird, Ahmed A. Heikal, Kyle R. Gee, Gregory R. Hoffman, Watt W. Webb. Spontaneous nucleotide exchange in low molecular weight GTPases by fluorescently labeled γ-phosphate-linked GTP analogs. Proceedings of the National Academy of Sciences 2004, 101 (9) , 2800-2805. https://doi.org/10.1073/pnas.0308579100
    22. Mickey Kosloff, Zvi Selinger. GTPase Catalysis by Ras and Other G-proteins: Insights from Substrate Directed SuperImposition. Journal of Molecular Biology 2003, 331 (5) , 1157-1170. https://doi.org/10.1016/S0022-2836(03)00847-7
    23. Mohammad Reza Ahmadian, Christina Kiel, Patricia Stege, Klaus Scheffzek. Structural Fingerprints of the Ras-GTPase Activating Proteins Neurofibromin and p120GAP. Journal of Molecular Biology 2003, 329 (4) , 699-710. https://doi.org/10.1016/S0022-2836(03)00514-X
    24. Christine R. Cremo. [5] Fluorescent nucleotides: Synthesis and characterization. 2003, 128-177. https://doi.org/10.1016/S0076-6879(03)60109-6
    25. Andreas Brockhinke, Regina Plessow, Katharina Kohse-Höinghaus, Christian Herrmann. Structural changes in the Ras protein revealed by fluorescence spectroscopy. Phys. Chem. Chem. Phys. 2003, 5 (16) , 3498-3506. https://doi.org/10.1039/B303262K
    26. Astrid Kraemer, Thilo Brinkmann, Ina Plettner, Roger Goody, Alfred Wittinghofer. Fluorescently Labelled Guanine Nucleotide Binding Proteins to Analyse Elementary Steps of GAP-catalysed Reactions. Journal of Molecular Biology 2002, 324 (4) , 763-774. https://doi.org/10.1016/S0022-2836(02)01136-1
    27. Sudeep Bhattacharyya, Amy Kerzmann, Andrew L. Feig. Fluorescent analogs of UDP‐glucose and their use in characterizing substrate binding by toxin A from Clostridium difficile. European Journal of Biochemistry 2002, 269 (14) , 3425-3432. https://doi.org/10.1046/j.1432-1033.2002.03013.x
    28. T.A. Soares, J.H. Miller, T.P. Straatsma. Revisiting the structural flexibility of the complex p21 ras ‐GTP: The catalytic conformation of the molecular switch II. Proteins: Structure, Function, and Bioinformatics 2001, 45 (4) , 297-312. https://doi.org/10.1002/prot.1150
    29. Mickey Kosloff, Zvi Selinger. Substrate assisted catalysis – application to G proteins. Trends in Biochemical Sciences 2001, 26 (3) , 161-166. https://doi.org/10.1016/S0968-0004(00)01748-5
    30. Hu Cheng, Sean Sukal, Robert Callender, Thomas S. Leyh. γ-Phosphate Protonation and pH-dependent Unfolding of the Ras·GTP·Mg2+ Complex. Journal of Biological Chemistry 2001, 276 (13) , 9931-9935. https://doi.org/10.1074/jbc.M009295200
    31. Michael E. Pacold, Sabine Suire, Olga Perisic, Samuel Lara-Gonzalez, Colin T. Davis, Edward H. Walker, Phillip T. Hawkins, Len Stephens, John F. Eccleston, Roger L. Williams. Crystal Structure and Functional Analysis of Ras Binding to Its Effector Phosphoinositide 3-Kinase γ. Cell 2000, 103 (6) , 931-944. https://doi.org/10.1016/S0092-8674(00)00196-3
    32. Jürgen Kuhlmann, Christian Herrmann. Biophysical Characterization of the Ras Protein. 2000, 61-116. https://doi.org/10.1007/3-540-45035-1_3
    33. Danny Manor. Measurement of GTPase · effector affinities. 2000, 139-149. https://doi.org/10.1016/S0076-6879(00)25438-4
    34. José Fernando Díaz, María Milagrosa Escalona, Steven Kuppens, Yves Engelborghs. Role of the switch II region in the conformational transition of activation of Ha‐ ras ‐p21. Protein Science 2000, 9 (2) , 361-368. https://doi.org/10.1110/ps.9.2.361
    35. Axel J Scheidig, Christoph Burmester, Roger S Goody. The pre-hydrolysis state of p21ras in complex with GTP: new insights into the role of water molecules in the GTP hydrolysis reaction of ras-like proteins. Structure 1999, 7 (11) , 1311-S2. https://doi.org/10.1016/S0969-2126(00)80021-0
    36. Nils Ostermann, Mohammad Reza Ahmadian, Alfred Wittinghofer, Roger S. Goody. New N-2-Labelled Fluorescent Derivatives of Guanosine Nucleotides and Their Interaction with GTP-Binding Proteins. Nucleosides and Nucleotides 1999, 18 (2) , 245-262. https://doi.org/10.1080/15257779908043072
    37. Steven Kuppens, José Fernando Díaz, Yves Engelborghs. Characterization of the hinges of the effector loop in the reaction pathway of the activation of ras ‐proteins. Kinetics of binding of beryllium trifluoride to V29G and I36G mutants of Ha‐ ras ‐p21. Protein Science 1999, 8 (9) , 1860-1866. https://doi.org/10.1110/ps.8.9.1860
    38. Ivo M. Krab, Andrea Parmeggiani. EF-Tu, a GTPase odyssey. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1998, 1443 (1-2) , 1-22. https://doi.org/10.1016/S0167-4781(98)00169-9
    39. Klaus Scheffzek, Mohammad Reza Ahmadian, Alfred Wittinghofer. GTPase-activating proteins: helping hands to complement an active site. Trends in Biochemical Sciences 1998, 23 (7) , 257-262. https://doi.org/10.1016/S0968-0004(98)01224-9
    40. David A. Leonard, Rui Lin, Richard A. Cerione, Danny Manor. Biochemical Studies of the Mechanism of Action of the Cdc42-GTPase-activating Protein. Journal of Biological Chemistry 1998, 273 (26) , 16210-16215. https://doi.org/10.1074/jbc.273.26.16210
    41. Beth A. Sermon, Peter N. Lowe, Molly Strom, John F. Eccleston. The Importance of Two Conserved Arginine Residues for Catalysis by the Ras GTPase-activating Protein, Neurofibromin. Journal of Biological Chemistry 1998, 273 (16) , 9480-9485. https://doi.org/10.1074/jbc.273.16.9480
    42. Michael Haller, Ulrike Hoffmann, Thomas Schanding, Roger S. Goody, Pia D. Vogel. Nucleotide Hydrolysis-dependent Conformational Changes in p21 as Studied Using ESR Spectroscopy. Journal of Biological Chemistry 1997, 272 (48) , 30103-30107. https://doi.org/10.1074/jbc.272.48.30103
    43. Joseph P. Noel. Turning off the Ras switch with the flick of a finger. Nature Structural Biology 1997, 4 (9) , 677-680. https://doi.org/10.1038/nsb0997-677
    44. Mohammad Reza Ahmadian, Patricia Stege, Klaus Scheffzek, Alfred Wittinghofer. Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nature Structural Biology 1997, 4 (9) , 686-689. https://doi.org/10.1038/nsb0997-686
    45. Alfred Wittinghofer, Klaus Scheffzek, Mohammad Reza Ahmadian. The interaction of Ras with GTPase‐activating proteins. FEBS Letters 1997, 410 (1) , 63-67. https://doi.org/10.1016/S0014-5793(97)00321-9
    46. Klaus Scheffzek, Alfred Lautwein, Wolfgang Kabsch, Mohammad Reza Ahmadian, Alfred Wittinghofer. Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras. Nature 1996, 384 (6609) , 591-596. https://doi.org/10.1038/384591a0
    47. Iris Simon, Marino Zerial, Roger S. Goody. Kinetics of Interaction of Rab5 and Rab7 with Nucleotides and Magnesium Ions. Journal of Biological Chemistry 1996, 271 (34) , 20470-20478. https://doi.org/10.1074/jbc.271.34.20470
    48. Rohit Mittal, Mohammad Reza Ahmadian, Roger S. Goody, Alfred Wittinghofer. Formation of a Transition-State Analog of the Ras GTPase Reaction by Ras·GDP, Tetrafluoroaluminate, and GTPase-Activating Proteins. Science 1996, 273 (5271) , 115-117. https://doi.org/10.1126/science.273.5271.115
    49. Evelyn M. Zera, David P. Molloy, Joseph K. Angleson, Jagannath B. Lamture, Theodore G. Wensel, Justine A. Malinski. Low Affinity Interactions of GDPβS and Ribose- or Phosphoryl-substituted GTP Analogues with the Heterotrimeric G Protein, Transducin. Journal of Biological Chemistry 1996, 271 (22) , 12925-12931. https://doi.org/10.1074/jbc.271.22.12925
    50. Tyzoon K. Nomanbhoy, Richard A. Cerione. Characterization of the Interaction between RhoGDI and Cdc42Hs Using Fluorescence Spectroscopy. Journal of Biological Chemistry 1996, 271 (17) , 10004-10009. https://doi.org/10.1074/jbc.271.17.10004
    51. David P. Molloy, Darerca Owen, Roger J.A. Grand. Ras binding to a C‐terminal region of GAP. FEBS Letters 1995, 368 (2) , 297-303. https://doi.org/10.1016/0014-5793(95)00657-U
    52. Charlotte R. Knudsen, Inger V. H. Kjaersgard, Ove Wiborg, Brian F. C. Clark. Mutation of the Conserved Gly94 and Glyl26 in Elongation Factor Tu from Escherichia Coli. Elucidation of their Structural and Functional Roles. European Journal of Biochemistry 1995, 228 (1) , 176-183. https://doi.org/10.1111/j.1432-1033.1995.tb20247.x
    53. Sharon L. Campbell-Burk, John W. Carpenter. [1] Refolding and purification of ras proteins. 1995, 3-13. https://doi.org/10.1016/S0076-6879(95)55003-8
    54. J F Eccleston, K J Moore, L Morgan, R H Skinner, P N Lowe. Kinetics of interaction between normal and proline 12 Ras and the GTPase-activating proteins, p120-GAP and neurofibromin. The significance of the intrinsic GTPase rate in determining the transforming ability of ras.. Journal of Biological Chemistry 1993, 268 (36) , 27012-27019. https://doi.org/10.1016/S0021-9258(19)74211-2

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect