ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Secondary structure and side-chain proton and carbon-13 resonance assignments of calmodulin in solution by heteronuclear multidimensional NMR spectroscopy

Cite this: Biochemistry 1991, 30, 38, 9216–9228
Publication Date (Print):September 1, 1991
https://doi.org/10.1021/bi00102a013
    ACS Legacy Archive

    Article Views

    405

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information


    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 130 publications.

    1. Lixin Liang, Yi Ji, Kuizhi Chen, Pan Gao, Zhenchao Zhao, Guangjin Hou. Solid-State NMR Dipolar and Chemical Shift Anisotropy Recoupling Techniques for Structural and Dynamical Studies in Biological Systems. Chemical Reviews 2022, 122 (10) , 9880-9942. https://doi.org/10.1021/acs.chemrev.1c00779
    2. Lucy Minnes, Gregory M. Greetham, Daniel J. Shaw, Ian P. Clark, Robby Fritzsch, Michael Towrie, Anthony W. Parker, Alistair J. Henry, Richard J. Taylor, Neil T. Hunt. Uncovering the Early Stages of Domain Melting in Calmodulin with Ultrafast Temperature-Jump Infrared Spectroscopy. The Journal of Physical Chemistry B 2019, 123 (41) , 8733-8739. https://doi.org/10.1021/acs.jpcb.9b08870
    3. Lucy Minnes, Daniel J. Shaw, Benjamin P. Cossins, Paul M. Donaldson, Gregory M. Greetham, Michael Towrie, Anthony W. Parker, Matthew J. Baker, Alistair J. Henry, Richard J. Taylor, and Neil T. Hunt . Quantifying Secondary Structure Changes in Calmodulin Using 2D-IR Spectroscopy. Analytical Chemistry 2017, 89 (20) , 10898-10906. https://doi.org/10.1021/acs.analchem.7b02610
    4. Nathan C. Rockwell, Shelley S. Martin, Sunghyuk Lim, J. Clark Lagarias, and James B. Ames . Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Hydrophobic Pocket for the C15-E,anti Chromophore in the Photoproduct. Biochemistry 2015, 54 (24) , 3772-3783. https://doi.org/10.1021/acs.biochem.5b00438
    5. Antonio N. Calabrese, John H. Bowie, and Tara L. Pukala . Structural Analysis of Calmodulin Binding by nNOS Inhibitory Amphibian Peptides. Biochemistry 2015, 54 (2) , 567-576. https://doi.org/10.1021/bi5004124
    6. Thomas Wyttenbach, Megan Grabenauer, Konstantinos Thalassinos, James H. Scrivens and Michael T. Bowers . The Effect of Calcium Ions and Peptide Ligands on the Relative Stabilities of the Calmodulin Dumbbell and Compact Structures. The Journal of Physical Chemistry B 2010, 114 (1) , 437-447. https://doi.org/10.1021/jp906242m
    7. Jason W. H. Wong, Simin D. Maleknia, Kevin M. Downard. Hydroxyl radical probe of the calmodulin-melittin complex interface by electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry 2005, 16 (2) , 225-233. https://doi.org/10.1016/j.jasms.2004.11.009
    8. Olga Nemirovskiy, Daryl E. Giblin, Michael L. Gross. Electrospray ionization mass spectrometry and hydrogen/deuterium exchange for probing the interaction of calmodulin with calcium. Journal of the American Society for Mass Spectrometry 1999, 10 (8) , 711-718. https://doi.org/10.1016/S1044-0305(99)00036-7
    9. Detlef Bentrop,, Ivano Bertini,, Mauro A. Cremonini,, Sture Forsén,, Claudio Luchinat, and, Anders Malmendal. Solution Structure of the Paramagnetic Complex of the N-Terminal Domain of Calmodulin with Two Ce3+ Ions by 1H NMR,. Biochemistry 1997, 36 (39) , 11605-11618. https://doi.org/10.1021/bi971022+
    10. Xiaochun Wu and, Ronald E. Reid. Conservative D133E Mutation of Calmodulin Site IV Drastically Alters Calcium Binding and Phosphodiesterase Regulation. Biochemistry 1997, 36 (12) , 3608-3616. https://doi.org/10.1021/bi962149m
    11. Hongbiao Le and, Eric Oldfield. Ab Initio Studies of Amide-15N Chemical Shifts in Dipeptides:  Applications to Protein NMR Spectroscopy. The Journal of Physical Chemistry 1996, 100 (40) , 16423-16428. https://doi.org/10.1021/jp9606164
    12. Diana Cudia, Effibe O. Ahoulou, James B. Ames. Chemical shift assignments of retinal guanylyl cyclase activating protein 5 (GCAP5) with a mutation (R22A) that abolishes dimerization and enhances cyclase activation. Biomolecular NMR Assignments 2023, 17 (1) , 115-119. https://doi.org/10.1007/s12104-023-10129-3
    13. Aritra Bej, James B. Ames. Chemical shift assignments of calmodulin bound to the GluN1 C0 domain (residues 841–865) of the NMDA receptor. Biomolecular NMR Assignments 2023, 15 https://doi.org/10.1007/s12104-023-10121-x
    14. Aritra Bej, James B. Ames. Chemical shift assignments of calmodulin under standard conditions at neutral pH. Biomolecular NMR Assignments 2022, 16 (2) , 213-218. https://doi.org/10.1007/s12104-022-10082-7
    15. Aritra Bej, James B. Ames. Chemical shift assignments of calmodulin bound to a C-terminal site (residues 1120–1147) in the β-subunit of a retinal cyclic nucleotide-gated channel (CNGB1). Biomolecular NMR Assignments 2022, 16 (2) , 337-341. https://doi.org/10.1007/s12104-022-10101-7
    16. Ian Salveson, James B. Ames. Chemical shift assignments of the C-terminal domain of CaBP1 bound to the IQ-motif of voltage-gated Ca2+ channel (CaV1.2). Biomolecular NMR Assignments 2022, 16 (2) , 385-390. https://doi.org/10.1007/s12104-022-10108-0
    17. Nicholas J. Fowler, Mike P. Williamson. The accuracy of protein structures in solution determined by AlphaFold and NMR. Structure 2022, 30 (7) , 925-933.e2. https://doi.org/10.1016/j.str.2022.04.005
    18. Aritra Bej, James B. Ames. Chemical shift assignments of calmodulin bound to the β-subunit of a retinal cyclic nucleotide-gated channel (CNGB1). Biomolecular NMR Assignments 2022, 16 (1) , 147-151. https://doi.org/10.1007/s12104-022-10072-9
    19. Arina Dalaloyan, Andrea Martorana, Yoav Barak, Diana Gataulin, Eitan Reuveny, Andrew Howe, Michael Elbaum, Shira Albeck, Tamar Unger, Veronica Frydman, Elwy H. Abdelkader, Gottfried Otting, Daniella Goldfarb. Tracking Conformational Changes in Calmodulin in vitro, in Cell Extract, and in Cells by Electron Paramagnetic Resonance Distance Measurements. ChemPhysChem 2019, 20 (14) , 1860-1868. https://doi.org/10.1002/cphc.201900341
    20. Diana Cudia, James B. Ames. Chemical shift assignments of retinal guanylyl cyclase activating protein 5 (GCAP5). Biomolecular NMR Assignments 2019, 13 (1) , 201-205. https://doi.org/10.1007/s12104-019-09877-y
    21. Ian Salveson, David E. Anderson, Johannes W. Hell, James B. Ames. Chemical shift assignments of a calmodulin intermediate with two Ca2+ bound in complex with the IQ-motif of voltage-gated Ca2+ channels (CaV1.2). Biomolecular NMR Assignments 2019, 13 (1) , 233-237. https://doi.org/10.1007/s12104-019-09883-0
    22. Benjamin M. M. Grant, Christopher B. Marshall, Mitsuhiko Ikura. Expression and Purification of Calmodulin for NMR and Other Biophysical Applications. 2019, 207-221. https://doi.org/10.1007/978-1-4939-9030-6_13
    23. Rongqing Zhang, Liping Xie, Zhenguang Yan. Identification and Characterization of Biomineralization-Related Genes. 2019, 23-248. https://doi.org/10.1007/978-981-13-1459-9_2
    24. Teerapong Buaboocha, Raymond E. Zielinski. Calmodulin. 2018, 299-328. https://doi.org/10.1002/9781119312994.apr0066
    25. Lily T.-Y. Cho, Aristos J. Alexandrou, Rubben Torella, John Knafels, Jake Hobbs, Toni Taylor, Alex Loucif, Agnieszka Konopacka, Sigourney Bell, Edward B. Stevens, Jay Pandit, Reto Horst, Jane M. Withka, David C. Pryde, Shenping Liu, Gareth T. Young. An Intracellular Allosteric Modulator Binding Pocket in SK2 Ion Channels Is Shared by Multiple Chemotypes. Structure 2018, 26 (4) , 533-544.e3. https://doi.org/10.1016/j.str.2018.02.017
    26. Antonio Villalobo, Hiroaki Ishida, Hans J. Vogel, Martin W. Berchtold. Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2018, 1865 (3) , 507-521. https://doi.org/10.1016/j.bbamcr.2017.12.004
    27. María Carolina Pérez-Gordones, José Rubén Ramírez-Iglesias, Vincenza Cervino, Graciela L. Uzcanga, Gustavo Benaim, Marta Mendoza. Evidence of the presence of a calmodulin-sensitive plasma membrane Ca 2+ -ATPase in Trypanosoma equiperdum. Molecular and Biochemical Parasitology 2017, 213 , 1-11. https://doi.org/10.1016/j.molbiopara.2017.02.001
    28. Joachim Krebs. The Plasma Membrane Calcium Pump (PMCA): Regulation of Cytosolic Ca2+, Genetic Diversities and Its Role in Sub-plasma Membrane Microdomains. 2017, 3-21. https://doi.org/10.1007/978-3-319-55858-5_1
    29. Mayuko Hara, Engin Özkan, Hongbin Sun, Hongtao Yu, Xuelian Luo. Structure of an intermediate conformer of the spindle checkpoint protein Mad2. Proceedings of the National Academy of Sciences 2015, 112 (36) , 11252-11257. https://doi.org/10.1073/pnas.1512197112
    30. Alessandro Piai, Tomáš Hošek, Leonardo Gonnelli, Anna Zawadzka-Kazimierczuk, Wiktor Koźmiński, Bernhard Brutscher, Wolfgang Bermel, Roberta Pierattelli, Isabella C. Felli. “CON-CON” assignment strategy for highly flexible intrinsically disordered proteins. Journal of Biomolecular NMR 2014, 60 (4) , 209-218. https://doi.org/10.1007/s10858-014-9867-6
    31. Petri Kursula. The many structural faces of calmodulin: a multitasking molecular jackknife. Amino Acids 2014, 46 (10) , 2295-2304. https://doi.org/10.1007/s00726-014-1795-y
    32. Karen Mruk, Brian M. Farley, Alan W. Ritacco, William R. Kobertz. Calmodulation meta-analysis: Predicting calmodulin binding via canonical motif clustering. Journal of General Physiology 2014, 144 (1) , 105-114. https://doi.org/10.1085/jgp.201311140
    33. Predrag Kukic, Carlo Camilloni, Andrea Cavalli, Michele Vendruscolo. Determination of the Individual Roles of the Linker Residues in the Interdomain Motions of Calmodulin Using NMR Chemical Shifts. Journal of Molecular Biology 2014, 426 (8) , 1826-1838. https://doi.org/10.1016/j.jmb.2014.02.002
    34. Petri Kursula. Crystallographic snapshots of initial steps in the collapse of the calmodulin central helix. Acta Crystallographica Section D Biological Crystallography 2014, 70 (1) , 24-30. https://doi.org/10.1107/S1399004713024437
    35. Jessica L. Gifford, Hiroaki Ishida, Hans J. Vogel, . Structural Characterization of the Interaction of Human Lactoferrin with Calmodulin. PLoS ONE 2012, 7 (12) , e51026. https://doi.org/10.1371/journal.pone.0051026
    36. Kelly Stauch, Fabien Kieken, Paul Sorgen. Characterization of the Structure and Intermolecular Interactions between the Connexin 32 Carboxyl-terminal Domain and the Protein Partners Synapse-associated Protein 97 and Calmodulin. Journal of Biological Chemistry 2012, 287 (33) , 27771-27788. https://doi.org/10.1074/jbc.M112.382572
    37. Ali Rana Atilgan, Ayse Ozlem Aykut, Canan Atilgan. Subtle p H differences trigger single residue motions for moderating conformations of calmodulin. The Journal of Chemical Physics 2011, 135 (15) https://doi.org/10.1063/1.3651807
    38. Kristian Schweimer, Stefan Prasch, Pagadala Santhanam Sujatha, Mikhail Bubunenko, Max E. Gottesman, Paul Rösch. NusA Interaction with the α Subunit of E. coli RNA Polymerase Is via the UP Element Site and Releases Autoinhibition. Structure 2011, 19 (7) , 945-954. https://doi.org/10.1016/j.str.2011.03.024
    39. Alexander Lemak, Aleksandras Gutmanas, Seth Chitayat, Murthy Karra, Christophe Farès, Maria Sunnerhagen, Cheryl H. Arrowsmith. A novel strategy for NMR resonance assignment and protein structure determination. Journal of Biomolecular NMR 2011, 49 (1) , 27-38. https://doi.org/10.1007/s10858-010-9458-0
    40. Joséphine Abi-Ghanem, Brahim Heddi, Nicolas Foloppe, Brigitte Hartmann. DNA structures from phosphate chemical shifts. Nucleic Acids Research 2010, 38 (3) , e18-e18. https://doi.org/10.1093/nar/gkp1061
    41. Masatsune Kainosho, Peter Güntert. SAIL – stereo-array isotope labeling. Quarterly Reviews of Biophysics 2009, 42 (4) , 247-300. https://doi.org/10.1017/S0033583510000016
    42. Yubin Zhou, Wei Yang, Monica M. Lurtz, Yanyi Chen, Jie Jiang, Yun Huang, Charles F. Louis, Jenny J. Yang. Calmodulin Mediates the Ca2+-Dependent Regulation of Cx44 Gap Junctions. Biophysical Journal 2009, 96 (7) , 2832-2848. https://doi.org/10.1016/j.bpj.2008.12.3941
    43. Pedro V. Peña, Catherine A. Musselman, Alex J. Kuo, Or Gozani, Tatiana G. Kutateladze. NMR assignments and histone specificity of the ING2 PHD finger. Magnetic Resonance in Chemistry 2009, 47 (4) , 352-358. https://doi.org/10.1002/mrc.2390
    44. Zi Fang, Weizhong Cao, Shuo Li, Qin Wang, Changzhong Li, Liping Xie, Rongqing Zhang. Significance of the C‐terminal globular domain and the extra tail of the calmodulin‐like protein ( Pinctada fucata ) in subcellular localization and protein—protein interaction. Cell Biology International 2008, 32 (8) , 920-927. https://doi.org/10.1016/j.cellbi.2008.04.007
    45. David S. Libich, George Harauz. Solution NMR and CD spectroscopy of an intrinsically disordered, peripheral membrane protein: evaluation of aqueous and membrane-mimetic solvent conditions for studying the conformational adaptability of the 18.5 kDa isoform of myelin basic protein (MBP). European Biophysics Journal 2008, 37 (6) , 1015-1029. https://doi.org/10.1007/s00249-008-0334-8
    46. David S. Libich, George Harauz. Backbone Dynamics of the 18.5kDa Isoform of Myelin Basic Protein Reveals Transient α-Helices and a Calmodulin-Binding Site. Biophysical Journal 2008, 94 (12) , 4847-4866. https://doi.org/10.1529/biophysj.107.125823
    47. Yubin Zhou, Wei Yang, Monica M. Lurtz, Yiming Ye, Yun Huang, Hsiau-Wei Lee, Yanyi Chen, Charles F. Louis, Jenny J. Yang. Identification of the Calmodulin Binding Domain of Connexin 43. Journal of Biological Chemistry 2007, 282 (48) , 35005-35017. https://doi.org/10.1074/jbc.M707728200
    48. Petr Novak, Vladimir Havlicek, Peter J. Derrick, Kyle A. Beran, Sajid Bashir, Anastassios E. Giannakopulos. Monitoring Conformational Changes in Protein Complexes Using Chemical Cross-Linking and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: The Effect of Calcium Binding on the Calmodulin—Melittin Complex. European Journal of Mass Spectrometry 2007, 13 (4) , 281-290. https://doi.org/10.1255/ejms.882
    49. Mitsuhiko Ikura. Calmodulin. 2007https://doi.org/10.1002/9780470034590.emrstm0050
    50. Josep Rizo, Lila M. Gierasch. Peptide and Protein Secondary Structural Elements. 2007https://doi.org/10.1002/9780470034590.emrstm0381
    51. Mario Rainaldi, Aaron P. Yamniuk, Tomohiko Murase, Hans J. Vogel. Calcium-dependent and -independent Binding of Soybean Calmodulin Isoforms to the Calmodulin Binding Domain of Tobacco MAPK Phosphatase-1. Journal of Biological Chemistry 2007, 282 (9) , 6031-6042. https://doi.org/10.1074/jbc.M608970200
    52. Luca Settimo, Serena Donnini, André H. Juffer, Robert W. Woody, Oriano Marin. Conformational changes upon calcium binding and phosphorylation in a synthetic fragment of calmodulin. Peptide Science 2007, 88 (3) , 373-385. https://doi.org/10.1002/bip.20657
    53. Masatsune Kainosho, Takuya Torizawa, Yuki Iwashita, Tsutomu Terauchi, Akira Mei Ono, Peter Güntert. Optimal isotope labelling for NMR protein structure determinations. Nature 2006, 440 (7080) , 52-57. https://doi.org/10.1038/nature04525
    54. G. Fiorin, R. R. Biekofsky, A. Pastore, P. Carloni. Unwinding the helical linker of calcium‐loaded calmodulin: A molecular dynamics study. Proteins: Structure, Function, and Bioinformatics 2005, 61 (4) , 829-839. https://doi.org/10.1002/prot.20597
    55. Göran Larsson, Jürgen Schleucher, Jacqueline Onions, Stefan Hermann, Thomas Grundström, Sybren S. Wijmenga. Backbone Dynamics of a Symmetric Calmodulin Dimer in Complex with the Calmodulin-Binding Domain of the Basic-Helix-Loop-Helix Transcription Factor SEF2-1/E2-2: A Highly Dynamic Complex. Biophysical Journal 2005, 89 (2) , 1214-1226. https://doi.org/10.1529/biophysj.104.055780
    56. Kenosha F. Hobson, Nicole A. Housley, Susan Pedigo. Ligand-linked stability of mutants of the C-domain of calmodulin. Biophysical Chemistry 2005, 114 (1) , 43-52. https://doi.org/10.1016/j.bpc.2004.11.002
    57. Liangwen Xiong, Quinn K. Kleerekoper, Rong He, John A. Putkey, Susan L. Hamilton. Sites on Calmodulin That Interact with the C-terminal Tail of Cav1.2 Channel. Journal of Biological Chemistry 2005, 280 (8) , 7070-7079. https://doi.org/10.1074/jbc.M410558200
    58. Richard D. Brokx, Ruud M. Scheek, Aalim M. Weljie, Hans J. Vogel. Backbone dynamic properties of the central linker region of calcium-calmodulin in 35% trifluoroethanol. Journal of Structural Biology 2004, 146 (3) , 272-280. https://doi.org/10.1016/j.jsb.2003.12.007
    59. Asma Rashid, Rukhshan Khurshid, Mumtaz Begum, Gul-e-Raana, Mohd Latif, Asmat Salim. Modeling the mutational effects on calmodulin structure: prediction of alteration in the amino acid interactions. Biochemical and Biophysical Research Communications 2004, 317 (2) , 363-369. https://doi.org/10.1016/j.bbrc.2004.03.051
    60. Kyoko L Yap, Mitsuhiko Ikura. Calmodulin. 2004https://doi.org/10.1002/9781119951438.eibc0504
    61. Kyoko L Yap, Mitsuhiko Ikura. Calmodulin. 2004https://doi.org/10.1002/0470028637.met039
    62. Cheng Yang, Gouri S. Jas, Krzysztof Kuczera. Structure, dynamics and interaction with kinase targets: computer simulations of calmodulin. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2004, 1697 (1-2) , 289-300. https://doi.org/10.1016/j.bbapap.2003.11.032
    63. Geoffrey A. Mueller, Thomas W. Kirby, Eugene F. DeRose, Robert E. London. NMR assignment of protein side chains using residue-correlated labeling and NOE spectra. Journal of Magnetic Resonance 2003, 165 (2) , 237-247. https://doi.org/10.1016/j.jmr.2003.08.006
    64. Steven N. Reuland, Alexander P. Vlasov, Sergey A. Krupenko. Disruption of a Calmodulin Central Helix-like Region of 10-Formyltetrahydrofolate Dehydrogenase Impairs Its Dehydrogenase Activity by Uncoupling the Functional Domains. Journal of Biological Chemistry 2003, 278 (25) , 22894-22900. https://doi.org/10.1074/jbc.M302948200
    65. Qian Yi, Ponni Rajagopal, Rachel E. Klevit, David Baker. Structural and kinetic characterization of the simplified SH3 domain FP1. Protein Science 2003, 12 (4) , 776-783. https://doi.org/10.1110/ps.0238603
    66. Laurel A. Faga, Brenda R. Sorensen, Wendy S. VanScyoc, Madeline A. Shea. Basic interdomain boundary residues in calmodulin decrease calcium affinity of sites I and II by stabilizing helix–helix interactions. Proteins: Structure, Function, and Bioinformatics 2003, 50 (3) , 381-391. https://doi.org/10.1002/prot.10281
    67. Yuto Komeiji, Yutaka Ueno, Masami Uebayasi. Molecular dynamics simulations revealed Ca 2+ -dependent conformational change of Calmodulin. FEBS Letters 2002, 521 (1-3) , 133-139. https://doi.org/10.1016/S0014-5793(02)02853-3
    68. Elizabeth F. da Silva, Vanessa H. Oliveira, Martha M. Sorenson, Hector Barrabin, Helena M. Scofano. Converting troponin C into calmodulin: effects of mutations in the central helix and of changes in temperature. The International Journal of Biochemistry & Cell Biology 2002, 34 (6) , 657-667. https://doi.org/10.1016/S1357-2725(01)00170-4
    69. James K. Kranz, Eun K. Lee, Angus C. Nairn, A. Joshua Wand. A Direct Test of the Reductionist Approach to Structural Studies of Calmodulin Activity. Journal of Biological Chemistry 2002, 277 (19) , 16351-16354. https://doi.org/10.1074/jbc.C200139200
    70. Zhihai Qin, Thomas C. Squier. Calcium-Dependent Stabilization of the Central Sequence Between Met76 and Ser81 in Vertebrate Calmodulin. Biophysical Journal 2001, 81 (5) , 2908-2918. https://doi.org/10.1016/S0006-3495(01)75931-0
    71. Cheng Yang, Gouri S. Jas, Krzysztof Kuczera. Structure and Dynamics of Calcium-activated Calmodulin in Solution. Journal of Biomolecular Structure and Dynamics 2001, 19 (2) , 247-271. https://doi.org/10.1080/07391102.2001.10506736
    72. Abdessamad Ababou, John R. Desjarlais. Solvation energetics and conformational change in EF‐hand proteins. Protein Science 2001, 10 (2) , 301-312. https://doi.org/10.1110/ps.33601
    73. Göran Larsson, Jürgen Schleucher, Jacqueline Onions, Stefan Hermann, Thoman Grundström, Sybren S. Wijmenga. A novel target recognition revealed by calmodulin in complex with the basic helix–loop–helix transcription factor SEF2‐1/E2‐2. Protein Science 2001, 10 (1) , 169-186. https://doi.org/10.1110/ps.28401
    74. Sunghyouk Park, Michael E. Johnson, L.W.-M. Fung. NMR analysis of secondary structure and dynamics of a recombinant peptide from the N‐terminal region of human erythroid α‐spectrin. FEBS Letters 2000, 485 (1) , 81-86. https://doi.org/10.1016/S0014-5793(00)02186-4
    75. Tao Yuan, Kyoko L. Yap, Mitsuhiko Ikura. Calmodulin Target Recognition: Common Mechanism and Structural Diversity. 2000, 59-81. https://doi.org/10.1007/978-3-642-58306-3_3
    76. Richard D. Brokx, Hans J. Vogel. Peptide and metal ion‐dependent association of isolated helix‐loop‐helix calcium binding domains: Studies of thrombic fragments of calmodulin. Protein Science 2000, 9 (5) , 964-975. https://doi.org/10.1110/ps.9.5.964
    77. Rodolfo R. Biekofsky, Frederick W. Muskett, Jürgen M. Schmidt, Stephen R. Martin, J.Peter Browne, Peter M. Bayley, James Feeney. NMR approaches for monitoring domain orientations in calcium‐binding proteins in solution using partial replacement of Ca 2+ by Tb 3+. FEBS Letters 1999, 460 (3) , 519-526. https://doi.org/10.1016/S0014-5793(99)01410-6
    78. Sarata C. Sahu, A. Bhattacharya, Kandala V.R. Chary, Girjesh Govil. Secondary structure of a calcium binding protein (CaBP) from Entamoeba histolytica. FEBS Letters 1999, 459 (1) , 51-56. https://doi.org/10.1016/S0014-5793(99)01204-1
    79. Chantal Corti, Estelle LeClerc L’Hostis, Manfredo Quadroni, Holger Schmid, Isabelle Durussel, Jos Cox, Paola Dainese Hatt, Peter James, Ernesto Carafoli. Tyrosine phosphorylation modulates the interaction of calmodulin with its target proteins. European Journal of Biochemistry 1999, 262 (3) , 790-802. https://doi.org/10.1046/j.1432-1327.1999.00441.x
    80. Daniel Lafitte, Albert J. R. Heck, Tessa J. Hill, Kornelia Jumel, Stephen E. Harding, Peter J. Derrick. Evidence of noncovalent dimerization of calmodulin. European Journal of Biochemistry 1999, 261 (1) , 337-344. https://doi.org/10.1046/j.1432-1327.1999.00284.x
    81. Tao Yuan, Hans J. Vogel. Substitution of the methionine residues of calmodulin with the unnatural amino acid analogs ethionine and norleucine: Biochemical and spectroscopic studies. Protein Science 1999, 8 (1) , 113-121. https://doi.org/10.1110/ps.8.1.113
    82. Helena Aitio, Sami Heikkinen, Ilkka Kilpel Äinen, Arto Annila, Eva Thulin, Torbjörn Drakenberg. NMR assignments, secondary structure, and global fold of calerythrin, an EF‐hand calcium‐binding protein from Saccharopolyspora erythraea. Protein Science 1999, 8 (12) , 2580-2588. https://doi.org/10.1110/ps.8.12.2580
    83. Kalle Gehring, Irena Ekiel. H(C)CH-COSY and (H)CCH-COSY Experiments for13C-Labeled Proteins in H2O Solution. Journal of Magnetic Resonance 1998, 135 (1) , 185-193. https://doi.org/10.1006/jmre.1998.1543
    84. Hong Qian, Michael S. Rogers, Jürgen Schleucher, Ulf Edlund, Emanuel E. Strehler, Ingmar Sethson. Sequential assignment of 1 H, 15 N, 13 C resonances and secondary structure of human calmodulin‐like protein determined by NMR spectroscopy. Protein Science 1998, 7 (11) , 2421-2430. https://doi.org/10.1002/pro.5560071120
    85. Mariko Sekiya-Kawasaki, David Botstein, Yoshikazu Ohya. Identification of Functional Connections Between Calmodulin and the Yeast Actin Cytoskeleton. Genetics 1998, 150 (1) , 43-58. https://doi.org/10.1093/genetics/150.1.43
    86. Andrea Scaloni, Nadia Miraglia, Stefania Orrù, Pietro Amodeo, Andrea Motta, Gennaro Marino, Piero Pucci. Topology of the calmodulin-melittin complex 1 1Edited by P.E. Wright. Journal of Molecular Biology 1998, 277 (4) , 945-958. https://doi.org/10.1006/jmbi.1998.1629
    87. Nobuhiro Hayashi, Mamoru Matsubara, Akihiko Takasaki, Koiti Titani, Hisaaki Taniguchi. An Expression System of Rat Calmodulin Using T7 Phage Promoter inEscherichia coli. Protein Expression and Purification 1998, 12 (1) , 25-28. https://doi.org/10.1006/prep.1997.0807
    88. MELANIE R. NELSON, WALTER J. CHAZIN. Calmodulin as a Calcium Sensor. 1998, 17-64. https://doi.org/10.1016/B978-0-08-092636-0.50006-2
    89. Bryan E. Finn, Torbjörn Drakenberg. Calcium-Binding Proteins. 1998, 441-494. https://doi.org/10.1016/S0898-8838(08)60153-1
    90. B.L. de Groot, D.M.F. van Aalten, R.M. Scheek, A. Amadei, G. Vriend, H.J.C. Berendsen. Prediction of protein conformational freedom from distance constraints. Proteins: Structure, Function, and Genetics 1997, 29 (2) , 240-251. https://doi.org/10.1002/(SICI)1097-0134(199710)29:2<240::AID-PROT11>3.0.CO;2-O
    91. Amitabha Lala, Hakimuddin T. Sojar, Ernesto De Nardin. Expression and purification of recombinant human N-formyl-1-leucyl-1-phenylalanine (FMLP) receptor. Biochemical Pharmacology 1997, 54 (3) , 381-390. https://doi.org/10.1016/S0006-2952(97)00191-3
    92. Lydia Tabernero, Denise A Taylor, Ronald J Chandross, Mark FA VanBerkum, Anthony R Means, Florante A Quiocho, John S Sack. The structure of a calmodulin mutant with a deletion in the central helix: implications for molecular recognition and protein binding. Structure 1997, 5 (5) , 613-622. https://doi.org/10.1016/S0969-2126(97)00217-7
    93. Patrick L. Wintrode, Peter L. Privalov. Energetics of target peptide recognition by calmodulin: A calorimetric study. Journal of Molecular Biology 1997, 266 (5) , 1050-1062. https://doi.org/10.1006/jmbi.1996.0785
    94. Angel C. de Dios. Ab initio calculations of the NMR chemical shift. Progress in Nuclear Magnetic Resonance Spectroscopy 1996, 29 (3-4) , 229-278. https://doi.org/10.1016/S0079-6565(96)01029-1
    95. David Van Der Spoel, Bert L. De Groot, Steven Hayward, Herman J. C. Berendsen, Hans J. Vogel. Bending of the calmodulin central helix: A theoretical study. Protein Science 1996, 5 (10) , 2044-2053. https://doi.org/10.1002/pro.5560051011
    96. Poushali Mukherjea, John F. Maune, Kathy Beckingham. Interlobe communication in multiple calcium‐binding site mutants of Drosophila calmodulin. Protein Science 1996, 5 (3) , 468-477. https://doi.org/10.1002/pro.5560050308
    97. Andrew J. Edwards, Patricia J. Sweeney, David G. Reid, John M. Walker, Nabil Elshourbagy, Charles E. Egwuagu, James F. Young, Curtis L. Patton. Synthesis and analysis of the enantiomers of calmidazolium, and a1H NMR demonstration of a chiral interaction with calmodulin. Chirality 1996, 8 (8) , 545-550. https://doi.org/10.1002/(SICI)1520-636X(1996)8:8<545::AID-CHIR2>3.0.CO;2-8
    98. Wendy A. Findlay, Michael J. Gradwell, Peter M. Bayley. Role of the N‐terminal region of the skeletal muscle myosin light chain kinase target sequence in its interaction with calmodulin. Protein Science 1995, 4 (11) , 2375-2382. https://doi.org/10.1002/pro.5560041116
    99. Mingjie Zhang, Tao Yuan, James M. Aramini, Hans J. Vogel. Interaction of Calmodulin with Its Binding Domain of Rat Cerebellar Nitric Oxide Synthase. Journal of Biological Chemistry 1995, 270 (36) , 20901-20907. https://doi.org/10.1074/jbc.270.36.20901
    100. Michael J. Moser, Sandra Y. Lee, Rachel E. Klevit, Trisha N. Davis. Ca2+ Binding to Calmodulin and Its Role in Schizosaccharomyces pombe as Revealed by Mutagenesis and NMR Spectroscopy. Journal of Biological Chemistry 1995, 270 (35) , 20643-20652. https://doi.org/10.1074/jbc.270.35.20643
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect