ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Steady-state kinetic mechanism of ras farnesyl:protein transferase

Cite this: Biochemistry 1992, 31, 15, 3800–3807
Publication Date (Print):April 21, 1992
https://doi.org/10.1021/bi00130a010
    ACS Legacy Archive

    Article Views

    512

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 217 publications.

    1. Johannes Morstein, Taysir Bader, Ariana L. Cardillo, Julian Schackmann, Sudhat Ashok, James L. Hougland, Christine A. Hrycyna, Dirk H. Trauner, Mark D. Distefano. Photoswitchable Isoprenoid Lipids Enable Optical Control of Peptide Lipidation. ACS Chemical Biology 2022, 17 (10) , 2945-2953. https://doi.org/10.1021/acschembio.2c00645
    2. Hong Jiang, Xiaoyu Zhang, Xiao Chen, Pornpun Aramsangtienchai, Zhen Tong, and Hening Lin . Protein Lipidation: Occurrence, Mechanisms, Biological Functions, and Enabling Technologies. Chemical Reviews 2018, 118 (3) , 919-988. https://doi.org/10.1021/acs.chemrev.6b00750
    3. Thangaiah Subramanian, June E. Pais, Suxia Liu, Jerry M. Troutman, Yuta Suzuki, Karunai Leela Subramanian, Carol A. Fierke, Douglas A. Andres, and H. Peter Spielmann . Farnesyl Diphosphate Analogues with Aryl Moieties Are Efficient Alternate Substrates for Protein Farnesyltransferase. Biochemistry 2012, 51 (41) , 8307-8319. https://doi.org/10.1021/bi3011362
    4. Wendy A. Loughlin, Joel D. A. Tyndall, Matthew P. Glenn, Timothy A. Hill, and David P. Fairlie. Update 1 of: Beta-Strand Mimetics. Chemical Reviews 2010, 110 (6) , PR32-PR69. https://doi.org/10.1021/cr900395y
    5. Saibal Bandyopadhyay, Supratik Dutta, Christopher D. Spilling, Cynthia M. Dupureur and Nigam P. Rath . Synthesis and Biological Evaluation of a Phosphonate Analog of the Natural Acetyl Cholinesterase Inhibitor Cyclophostin. The Journal of Organic Chemistry 2008, 73 (21) , 8386-8391. https://doi.org/10.1021/jo801453v
    6. Jerry M. Troutman,, Douglas A. Andres, and, H. Peter Spielmann. Protein Farnesyl Transferase Target Selectivity Is Dependent upon Peptide Stimulated Product Release. Biochemistry 2007, 46 (40) , 11299-11309. https://doi.org/10.1021/bi700513n
    7. Jerry M. Troutman,, Thangaiah Subramanian,, Douglas A. Andres, and, H. Peter Spielmann. Selective Modification of CaaX Peptides with ortho-Substituted Anilinogeranyl Lipids by Protein Farnesyl Transferase:  Competitive Substrates and Potent Inhibitors from a Library of Farnesyl Diphosphate Analogues. Biochemistry 2007, 46 (40) , 11310-11321. https://doi.org/10.1021/bi700516m
    8. June E. Pais,, Katherine E. Bowers, and, Carol A. Fierke. Measurement of the α-Secondary Kinetic Isotope Effect for the Reaction Catalyzed by Mammalian Protein Farnesyltransferase. Journal of the American Chemical Society 2006, 128 (47) , 15086-15087. https://doi.org/10.1021/ja065838m
    9. Beatrice Dursina,, Reinhard Reents,, Christine Delon,, Yaowen Wu,, Mahesh Kulharia,, Michael Thutewohl,, Alexei Veligodsky,, Alexandr Kalinin,, Vladimir Evstifeev,, Doina Ciobanu,, Stefan E. Szedlacsek,, Herbert Waldmann,, Roger S. Goody, and, Kirill Alexandrov. Identification and Specificity Profiling of Protein Prenyltransferase Inhibitors Using New Fluorescent Phosphoisoprenoids. Journal of the American Chemical Society 2006, 128 (9) , 2822-2835. https://doi.org/10.1021/ja052196e
    10. Sarah A. Reigard,, Todd J. Zahn,, Kellie B. Haworth,, Katherine A. Hicks,, Carol A. Fierke, and, Richard A. Gibbs. Interplay of Isoprenoid and Peptide Substrate Specificity in Protein Farnesyltransferase. Biochemistry 2005, 44 (33) , 11214-11223. https://doi.org/10.1021/bi050725l
    11. Wendy A. Loughlin,, Joel D. A. Tyndall,, Matthew P. Glenn, and, David P. Fairlie. Beta-Strand Mimetics. Chemical Reviews 2004, 104 (12) , 6085-6118. https://doi.org/10.1021/cr040648k
    12. MeeKyoung Kim,, Troy S. Kleckley,, Andrew J. Wiemer,, Sarah A. Holstein,, Raymond J. Hohl, and, David F. Wiemer. Synthesis and Activity of Fluorescent Isoprenoid Pyrophosphate Analogues. The Journal of Organic Chemistry 2004, 69 (24) , 8186-8193. https://doi.org/10.1021/jo049101w
    13. Sarah A. Holstein,, Christine L. Wohlford-Lenane,, David F. Wiemer, and, Raymond J. Hohl. Isoprenoid Pyrophosphate Analogues Regulate Expression of Ras-Related Proteins. Biochemistry 2003, 42 (15) , 4384-4391. https://doi.org/10.1021/bi027227m
    14. Ian M. Bell,, Steven N. Gallicchio,, Marc Abrams,, Douglas C. Beshore,, Carolyn A. Buser,, J. Christopher Culberson,, Joseph Davide,, Michelle Ellis-Hutchings,, Christine Fernandes,, Jackson B. Gibbs,, Samuel L. Graham,, George D. Hartman,, David C. Heimbrook,, Carl F. Homnick,, Joel R. Huff,, Kelem Kassahun,, Kenneth S. Koblan,, Nancy E. Kohl,, Robert B. Lobell,, Joseph J. Lynch, Jr,, Patricia A. Miller,, Charles A. Omer,, A. David Rodrigues,, Eileen S. Walsh, and, Theresa M. Williams. Design and Biological Activity of (S)-4-(5-{[1-(3-Chlorobenzyl)-2- oxopyrrolidin-3-ylamino]methyl}imidazol-1-ylmethyl)benzonitrile, a 3-Aminopyrrolidinone Farnesyltransferase Inhibitor with Excellent Cell Potency. Journal of Medicinal Chemistry 2001, 44 (18) , 2933-2949. https://doi.org/10.1021/jm010156p
    15. Kareem A. H. Chehade,, Douglas A. Andres,, Hiromi Morimoto, and, H. Peter Spielmann. Design and Synthesis of a Transferable Farnesyl Pyrophosphate Analogue to Ras by Protein Farnesyltransferase. The Journal of Organic Chemistry 2000, 65 (10) , 3027-3033. https://doi.org/10.1021/jo991735t
    16. David S. Lawrence,, Jack T. Zilfou, and, Charles D. Smith. Structure−Activity Studies of Cerulenin Analogues as Protein Palmitoylation Inhibitors. Journal of Medicinal Chemistry 1999, 42 (24) , 4932-4941. https://doi.org/10.1021/jm980591s
    17. Neville J. Anthony,, Robert P. Gomez,, Micheal D. Schaber,, Scott D. Mosser,, Kelly A. Hamilton,, Timothy J. O'Neil,, Kenneth S. Koblan,, Samuel L. Graham,, George D. Hartman,, Daksha Shah,, Elaine Rands,, Nancy E. Kohl,, Jackson B. Gibbs, and, Allen I. Oliff. Design and in Vivo Analysis of Potent Non-Thiol Inhibitors of Farnesyl Protein Transferase. Journal of Medicinal Chemistry 1999, 42 (17) , 3356-3368. https://doi.org/10.1021/jm990080l
    18. Ying Shao,, Jeffrey T. Eummer, and, Richard A. Gibbs. Stereospecific Synthesis and Biological Evaluation of Farnesyl Diphosphate Isomers. Organic Letters 1999, 1 (4) , 627-630. https://doi.org/10.1021/ol990714i
    19. LoriAnn M. Lentsch and, David F. Wiemer. Addition of Organometallic Nucleophiles to β-Keto Phosphonates. The Journal of Organic Chemistry 1999, 64 (14) , 5205-5212. https://doi.org/10.1021/jo990388k
    20. Mark F. Mechelke and, David F. Wiemer. Synthesis of Farnesol Analogues through Cu(I)-Mediated Displacements of Allylic THP Ethers by Grignard Reagents. The Journal of Organic Chemistry 1999, 64 (13) , 4821-4829. https://doi.org/10.1021/jo990161p
    21. Diana M. Cermak,, Yanming Du, and, David F. Wiemer. Synthesis of Nonracemic Dimethyl α-(Hydroxyfarnesyl)phosphonates via Oxidation of Dimethyl Farnesylphosphonate with (Camphorsulfonyl)oxaziridines. The Journal of Organic Chemistry 1999, 64 (2) , 388-393. https://doi.org/10.1021/jo980984z
    22. S. Jane deSolms,, Elizabeth A. Giuliani,, Samuel L. Graham,, Kenneth S. Koblan,, Nancy E. Kohl,, Scott D. Mosser,, Allen I. Oliff,, David L. Pompliano,, Elaine Rands,, Thomas H. Scholz,, Catherine M. Wiscount,, Jackson B. Gibbs, and, Robert L. Smith. N-Arylalkyl Pseudopeptide Inhibitors of Farnesyltransferase. Journal of Medicinal Chemistry 1998, 41 (14) , 2651-2656. https://doi.org/10.1021/jm9800907
    23. Hua-Wen Fu,, Lorena S. Beese, and, Patrick J. Casey. Kinetic Analysis of Zinc Ligand Mutants of Mammalian Protein Farnesyltransferase. Biochemistry 1998, 37 (13) , 4465-4472. https://doi.org/10.1021/bi972511c
    24. Daniele M. Leonard. Ras Farnesyltransferase:  A New Therapeutic Target. Journal of Medicinal Chemistry 1997, 40 (19) , 2971-2990. https://doi.org/10.1021/jm970226l
    25. Jeffery R. Mathis and, C. Dale Poulter. Yeast Protein Farnesyltransferase:  A Pre-Steady-State Kinetic Analysis. Biochemistry 1997, 36 (21) , 6367-6376. https://doi.org/10.1021/bi9629182
    26. YongQi Mu,, Charles A. Omer, and, Richard A. Gibbs. On the Stereochemical Course of Human Protein-Farnesyl Transferase. Journal of the American Chemical Society 1996, 118 (8) , 1817-1823. https://doi.org/10.1021/ja953005i
    27. Pamela B. Cassidy and, C. Dale Poulter. Transition State Analogs for Protein Farnesyltransferase. Journal of the American Chemical Society 1996, 118 (36) , 8761-8762. https://doi.org/10.1021/ja961214c
    28. Dinesh V. Patel,, Marian G. Young,, Simon P. Robinson,, Lisa Hunihan,, Brenda J. Dean, and, Eric M. Gordon. Hydroxamic Acid-Based Bisubstrate Analog Inhibitors of Ras Farnesyl Protein Transferase. Journal of Medicinal Chemistry 1996, 39 (21) , 4197-4210. https://doi.org/10.1021/jm960190h
    29. Pierrick Dufrénoy, Marie Hechelski, Adam Daïch, Amaury Farce, Emmanuelle Lipka, Joëlle Dubois, Christophe Waterlot, Alina Ghinet. Green synthesis of a new series of pyroglutamides targeting human farnesyltransferase. Sustainable Chemistry and Pharmacy 2022, 30 , 100894. https://doi.org/10.1016/j.scp.2022.100894
    30. Jakub Modranka, Joanna Drogosz-Stachowicz, Anna Pietrzak, Anna Janecka, Tomasz Janecki. Synthesis and structure–activity relationship study of novel 3-diethoxyphosphorylfuroquinoline-4,9-diones with potent antitumor efficacy. European Journal of Medicinal Chemistry 2021, 219 , 113429. https://doi.org/10.1016/j.ejmech.2021.113429
    31. , O.O. Kolodiazhna, E.V. Gryshkun, , A. O. Kolodiazhna, , S.Yu. Sheiko, , O.I. Kolodiazhnyi, . Catalytic phosphonylation of C=X electrophiles. Reports of the National Academy of Sciences of Ukraine 2020, 75 (12) , 75-84. https://doi.org/10.15407/dopovidi2020.12.075
    32. Melanie J. Blanden, Sudhat Ashok, James L. Hougland. Mechanisms of CaaX Protein Processing: Protein Prenylation by FTase and GGTase-I. 2020, 497-527. https://doi.org/10.1016/B978-0-12-409547-2.14837-1
    33. Zita Rádai, Tímea Windt, Veronika Nagy, András Füredi, Nóra Zsuzsa Kiss, Ivan Ranđelović, József Tóvári, György Keglevich, Gergely Szakács, Szilárd Tóth. Synthesis and anticancer cytotoxicity with structural context of an α-hydroxyphosphonate based compound library derived from substituted benzaldehydes. New Journal of Chemistry 2019, 43 (35) , 14028-14035. https://doi.org/10.1039/C9NJ02144B
    34. Tahar Ayad, Aurélie Gernet, Jean-Luc Pirat, David Virieux. Enantioselective reactions catalyzed by phosphine oxides. Tetrahedron 2019, 75 (33) , 4385-4418. https://doi.org/10.1016/j.tet.2019.06.042
    35. Angela Jeong, Kiall Francis Suazo, W. Gibson Wood, Mark D. Distefano, Ling Li. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer’s disease. Critical Reviews in Biochemistry and Molecular Biology 2018, 53 (3) , 279-310. https://doi.org/10.1080/10409238.2018.1458070
    36. Walid Fathalla, Pavel Pazdera, Samir El-Rayes, Ibrahim.A.I. Ali. Efficient synthesis of α-substituted-α-arylmethyl phosphonates using trichloroacetimidate C C coupling method. Tetrahedron 2018, 74 (14) , 1681-1691. https://doi.org/10.1016/j.tet.2018.02.033
    37. Reddi Mohan Naidu Kalla, Yu Zhang, Il Kim. Highly efficient green synthesis of α-hydroxyphosphonates using a recyclable choline hydroxide catalyst. New Journal of Chemistry 2017, 41 (13) , 5373-5379. https://doi.org/10.1039/C6NJ03948K
    38. Nicolas Sevrain, Jean-Noël Volle, Jean-Luc Pirat, Tahar Ayad, David Virieux. 1,1′-Dibenzyl-bis-(triazolyl)diphenylphosphine dioxide: a new efficient organocatalyst for silicon tetrachloride-mediated enantioselective Abramov-type phosphonylation of aldehydes with trialkyl phosphites. RSC Advances 2017, 7 (82) , 52101-52104. https://doi.org/10.1039/C7RA10919A
    39. Lyudmila K. Kibardina, Alexey V. Trifonov, Alexey B. Dobrynin, Michael A. Pudovik, Alexander R. Burilov, Oleg G. Sinyashin. Reaction of Pyridoxal with Hydrophosphoryl Compounds. Heteroatom Chemistry 2016, 27 (4) , 221-227. https://doi.org/10.1002/hc.21319
    40. C. Sampath, C. Naga Raju, C. Venkata Rao. An efficient synthesis, spectral characterization, antimicrobial, and antioxidant activities of novel α -hydroxyphosphonates and α -hydroxyphosphinates. Phosphorus, Sulfur, and Silicon and the Related Elements 2016, 191 (1) , 95-99. https://doi.org/10.1080/10426507.2015.1032412
    41. Marina V. Yakovenko, Natalia Yu. Udilova, Tatyana A. Glukhova, Anton V. Cherkasov, Georgy K. Fukin, Alexander A. Trifonov. Amido rare-earth complexes supported by an ansa bis(amidinate) ligand with a rigid 1,8-naphthalene linker: synthesis, structures and catalytic activity in rac-lactide polymerization and hydrophosphonylation of carbonyl compounds. New Journal of Chemistry 2015, 39 (2) , 1083-1093. https://doi.org/10.1039/C4NJ01698J
    42. Reddi Mohan Naidu Kalla, Hye Ri Lee, Jiafu Cao, Jin-Wook Yoo, Il Kim. Phospho sulfonic acid: an efficient and recyclable solid acid catalyst for the solvent-free synthesis of α-hydroxyphosphonates and their anticancer properties. New Journal of Chemistry 2015, 39 (5) , 3916-3922. https://doi.org/10.1039/C5NJ00312A
    43. Grigor B. Bantchev, Steven C. Cermak, Girma Biresaw, Michael Appell, James A. Kenar, Rex E. Murray. Thiol-ene and H-Phosphonate-ene Reactions for Lipid Modification. 2014, 59-92. https://doi.org/10.1039/9781782621850-00059
    44. V. K. Brel. Stereoselective synthesis of Z-4-diethoxyphosphoryl-2-hydroxymethyltetrahydrofuran. Russian Chemical Bulletin 2014, 63 (5) , 1178-1180. https://doi.org/10.1007/s11172-014-0568-9
    45. Jacek Kwiatkowski, Yixin Lu. Highly Enantioselective Preparation of Fluorinated Phosphonates by Michael Addition of α‐Fluoro‐β‐ketophosphonates to Nitroalkenes. Asian Journal of Organic Chemistry 2014, 3 (4) , 458-461. https://doi.org/10.1002/ajoc.201300211
    46. O. O. Kolodyazhnaya, O. I. Kolodyazhnyi, R. A. Cherkasov, A. R. Garifzyanov, N. V. Davletshina, S. A. Koshkin. Synthesis of α-hydroxy(polyprenyl) bisphosphonates. Russian Journal of General Chemistry 2014, 84 (4) , 647-653. https://doi.org/10.1134/S1070363214040082
    47. Marcus Frings, Isabelle Thomé, Ingo Schiffers, Fangfang Pan, Carsten Bolm. Catalytic, Asymmetric Synthesis of Phosphonic γ‐(Hydroxyalkyl)butenolides with Contiguous Quaternary and Tertiary Stereogenic Centers. Chemistry – A European Journal 2014, 20 (6) , 1691-1700. https://doi.org/10.1002/chem.201304331
    48. John S.P. Cusimano, Margaret M. Hart, Diana M. Cermak, Steven C. Cermak, Amber L. Durham. Synthesis of lesquerella α-hydroxy phosphonates. Industrial Crops and Products 2014, 53 , 236-243. https://doi.org/10.1016/j.indcrop.2013.12.031
    49. Juan V. Alegre-Requena, Eugenia Marqués-López, Pablo J. Sanz Miguel, Raquel P. Herrera. Organocatalytic enantioselective hydrophosphonylation of aldehydes. Org. Biomol. Chem. 2014, 12 (8) , 1258-1264. https://doi.org/10.1039/C3OB42403K
    50. Kunda Uma Maheswara Rao, Guda Dinneswara Reddy, Chan-Moon Chung. Amberlyst-15 Catalyzed Synthesis of α′-Oxindole-α-Hydroxyphosphonates under Ultrasonic Irradiation. Phosphorus, Sulfur, and Silicon and the Related Elements 2013, 188 (8) , 1104-1109. https://doi.org/10.1080/10426507.2012.736099
    51. Kalla Reddi Mohan Naidu, Krishnammagari Suresh Kumar, Palanisamy Arulselvan, Chinnappareddy Bhupendra Reddy, Ola Lasekan. Synthesis of α‐Hydroxyphosphonates and Their Antioxidant Properties. Archiv der Pharmazie 2012, 345 (12) , 957-963. https://doi.org/10.1002/ardp.201200192
    52. Diana M. Cermak, Steven C. Cermak, Amy B. Deppe, Amber L. Durham. Novel α-hydroxy phosphonic acids via castor oil. Industrial Crops and Products 2012, 37 (1) , 394-400. https://doi.org/10.1016/j.indcrop.2011.12.018
    53. N. S. Hari Narayana Moorthy, Sergio F. Sousa, Maria J. Ramos, Pedro A. Fernandes. Structural feature study of benzofuran derivatives as farnesyltransferase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 2011, 26 (6) , 777-791. https://doi.org/10.3109/14756366.2011.552885
    54. Chiara Riganti, Hedwige Pinto, Elisabetta Bolli, Dimas C. Belisario, Raffaele A. Calogero, Amalia Bosia, Federica Cavallo. Atorvastatin modulates anti-proliferative and pro-proliferative signals in Her2/neu-positive mammary cancer. Biochemical Pharmacology 2011, 82 (9) , 1079-1089. https://doi.org/10.1016/j.bcp.2011.07.079
    55. K. Uma Maheswara Rao, Ch. Syama Sundar, S. Siva Prasad, C. Radha Rani, C. Suresh Reddy. Neat Synthesis and Anti-oxidant Activity of α-Hydroxyphosphonates. Bulletin of the Korean Chemical Society 2011, 32 (9) , 3343-3347. https://doi.org/10.5012/bkcs.2011.32.9.3343
    56. R. Kruszynski, E. Czubacka, A. Trzesowska-Kruszynska, T. J. Bartczak, K. S. Bruzik, P. Knopik, Z. Kudzin, W. J. Stec, W. M. Wolf. Conformation of Sterically Hindered 4-Methyl-2-oxo-2-trityl-1,3,2-dioxaphosphorinane in the Solid State and the Solution. Journal of Chemical Crystallography 2011, 41 (6) , 908-918. https://doi.org/10.1007/s10870-011-0102-y
    57. Robin S. Bon, Zhong Guo, E. Anouk Stigter, Stefan Wetzel, Sascha Menninger, Alexander Wolf, Axel Choidas, Kirill Alexandrov, Wulf Blankenfeldt, Roger S. Goody, Herbert Waldmann. Structure‐Guided Development of Selective RabGGTase Inhibitors. Angewandte Chemie International Edition 2011, 50 (21) , 4957-4961. https://doi.org/10.1002/anie.201101210
    58. Robin S. Bon, Zhong Guo, E. Anouk Stigter, Stefan Wetzel, Sascha Menninger, Alexander Wolf, Axel Choidas, Kirill Alexandrov, Wulf Blankenfeldt, Roger S. Goody, Herbert Waldmann. Structure‐Guided Development of Selective RabGGTase Inhibitors. Angewandte Chemie 2011, 123 (21) , 5059-5063. https://doi.org/10.1002/ange.201101210
    59. Ozlem Seven, Sidika Polat-Cakir, Md. Shakhawoat Hossain, Mustafa Emrullahoglu, Ayhan S. Demir. Reactions of acyl phosphonates with organoaluminum reagents: a new method for the synthesis of secondary and tertiary α-hydroxy phosphonates. Tetrahedron 2011, 67 (19) , 3464-3469. https://doi.org/10.1016/j.tet.2011.03.036
    60. Hyun-Joo Lee, Ji-Hyeon Kim, Dae-Young Kim. Organocatalytic Enantioselective Synthesis of Tertiary α-Hydroxy Phosphonates. Bulletin of the Korean Chemical Society 2011, 32 (3) , 785-786. https://doi.org/10.5012/bkcs.2011.32.3.785
    61. Corissa L. Lamphear, Elaina A. Zverina, James L. Hougland, Carol A. Fierke. Global Identification of Protein Prenyltransferase Substrates. 2011, 207-234. https://doi.org/10.1016/B978-0-12-381339-8.00012-3
    62. Michael A. Hast, Lorena S. Beese. Structural Biochemistry of CaaX Protein Prenyltransferases. 2011, 235-257. https://doi.org/10.1016/B978-0-12-381339-8.00013-5
    63. Kendra E. Hightower, Patrick J. Casey. The Enzymology of CAAX Protein Prenylation. 2011, 1-11. https://doi.org/10.1016/B978-0-12-415922-8.00001-X
    64. Kunda Uma Maheswara Rao, Soora Harinath Jayaprakash, Sandip Kumar Nayak, Cirandur Suresh Reddy. Polyethylene glycol in water: a simple and environment friendly medium for C–P bond formation. Catalysis Science & Technology 2011, 1 (9) , 1665. https://doi.org/10.1039/c1cy00295c
    65. Hua Fang, Weizhu Chen, Bihong Hong, Yufen Zhao, Meijuan Fang. Synthesis, Characterizations, and Crystal Structures of α-Hydroxyphosphonic Acid Esters. Phosphorus, Sulfur, and Silicon and the Related Elements 2010, 185 (11) , 2182-2193. https://doi.org/10.1080/10426500903299935
    66. Sérgio F. Sousa, Pedro A. Fernandes, Maria João Ramos. Molecular Dynamics Simulations: Difficulties, Solutions and Strategies for Treating Metalloenzymes. 2010, 299-330. https://doi.org/10.1007/978-90-481-3034-4_11
    67. Rebecca L. Fagan, Bruce A. Palfey. Flavin-Dependent Enzymes. 2010, 37-113. https://doi.org/10.1016/B978-008045382-8.00135-0
    68. James L. Hougland, Katherine A. Hicks, Heather L. Hartman, Rebekah A. Kelly, Terry J. Watt, Carol A. Fierke. Identification of Novel Peptide Substrates for Protein Farnesyltransferase Reveals Two Substrate Classes with Distinct Sequence Selectivities. Journal of Molecular Biology 2010, 395 (1) , 176-190. https://doi.org/10.1016/j.jmb.2009.10.038
    69. Ewa Rudzińska, Gabriela Dziȩdzioła, Łukasz Berlicki, Paweł Kafarski. Enantiodifferentiation of α‐hydroxyalkanephosphonic acids in 31 P NMR with application of α‐cyclodextrin as chiral discriminating agent. Chirality 2010, 22 (1) , 63-68. https://doi.org/10.1002/chir.20707
    70. Geum-Soog Kim, Tae-Sook Jeong, Byoung-Mok Kwon, Young-Ok Kim, Seon-Woo Cha, Kyung-Sik Song, Nam-In Bek. Inhibitory Effect of Acetylshikonin from Roots of Lithospermum erythrorhizon on LDL Oxidation and FPTase Activity. Journal of Applied Biological Chemistry 2009, 52 (4) , 221-225. https://doi.org/10.3839/jabc.2009.038
    71. P. B. Le Calvez, C. J. Scott, M.E. Migaud. Multisubstrate adduct inhibitors: Drug design and biological tools. Journal of Enzyme Inhibition and Medicinal Chemistry 2009, 24 (6) , 1291-1318. https://doi.org/10.3109/14756360902843809
    72. Jeremiah M. Draper, Charles D. Smith. Palmitoyl acyltransferase assays and inhibitors (Review). Molecular Membrane Biology 2009, 26 (1-2) , 5-13. https://doi.org/10.1080/09687680802683839
    73. Thangaiah Subramanian, Suxia Liu, Jerry M. Troutman, Douglas A. Andres, H. Peter Spielmann. Protein Farnesyltransferase‐Catalyzed Isoprenoid Transfer to Peptide Depends on Lipid Size and Shape, not Hydrophobicity. ChemBioChem 2008, 9 (17) , 2872-2882. https://doi.org/10.1002/cbic.200800248
    74. Hua Fang, Mei Juan Fang, Rui Zao Yi, Yu Fen Zhao. Synthesis and Crystal Structure of Diisopropyl Hydroxy(4-methoxyphenyl)methylphosphonate. Journal of Chemical Crystallography 2008, 38 (10) , 761-764. https://doi.org/10.1007/s10870-008-9386-y
    75. Urooj A. Mirza, Guodong Chen, Yan‐Hui Liu, Ronald J. Doll, Viyyoor M. Girijavallabhan, Ashit K. Ganguly, Birendra N. Pramanik. Mass spectrometric studies of potent inhibitors of farnesyl protein transferase—detection of pentameric noncovalent complexes. Journal of Mass Spectrometry 2008, 43 (10) , 1393-1401. https://doi.org/10.1002/jms.1417
    76. Jeremiah M. Draper, Zuping Xia, Charles D. Smith. Cellular palmitoylation and trafficking of lipidated peptides. Journal of Lipid Research 2007, 48 (8) , 1873-1884. https://doi.org/10.1194/jlr.M700179-JLR200
    77. Uyen T. T. Nguyen, Janina Cramer, Joaquin Gomis, Reinhard Reents, Marta Gutierrez‐Rodriguez, Roger S. Goody, Kirill Alexandrov, Herbert Waldmann. Exploiting the Substrate Tolerance of Farnesyltransferase for Site‐Selective Protein Derivatization. ChemBioChem 2007, 8 (4) , 408-423. https://doi.org/10.1002/cbic.200600440
    78. Stefan Jankowski, Justyna Marczak, Andrzej Olczak, Marek L. Główka. Stereochemistry of 1-hydroxyphosphonate–phosphate rearrangement. Retention of configuration at the phosphorus atom. Tetrahedron Letters 2006, 47 (20) , 3341-3344. https://doi.org/10.1016/j.tetlet.2006.03.103
    79. Kimberly T. Lane, Lorena S. Beese. Thematic review series: Lipid Posttranslational Modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. Journal of Lipid Research 2006, 47 (4) , 681-699. https://doi.org/10.1194/jlr.R600002-JLR200
    80. Asao Makioka, Masahiro Kumagai, Tsutomu Takeuchi, Tomoyoshi Nozaki. Characterization of protein geranylgeranyltransferase I from the enteric protist Entamoeba histolytica. Molecular and Biochemical Parasitology 2006, 145 (2) , 216-225. https://doi.org/10.1016/j.molbiopara.2005.10.005
    81. Natalie M. G. M. Appels, Kien‐On Tung, Hilde Rosing, Jan H. M. Schellens, Jos H. Beijnen. A rapid and simple HPLC‐UV method for the determination of inhibition characteristics of farnesyl transferase inhibitors. Biomedical Chromatography 2006, 20 (2) , 161-165. https://doi.org/10.1002/bmc.545
    82. June E. Pais, Katherine E. Bowers, Andrea K. Stoddard, Carol A. Fierke. A continuous fluorescent assay for protein prenyltransferases measuring diphosphate release. Analytical Biochemistry 2005, 345 (2) , 302-311. https://doi.org/10.1016/j.ab.2005.07.040
    83. Dora Carrico, Junko Ohkanda, Howard Kendrick, Kohei Yokoyama, Michelle A. Blaskovich, Cynthia J. Bucher, Frederick S. Buckner, Wesley C. Van Voorhis, Debopam Chakrabarti, Simon L. Croft, Michael H. Gelb, Saïd M. Sebti, Andrew D. Hamilton. In vitro and in vivo antimalarial activity of peptidomimetic protein farnesyltransferase inhibitors with improved membrane permeability. Bioorganic & Medicinal Chemistry 2004, 12 (24) , 6517-6526. https://doi.org/10.1016/j.bmc.2004.09.020
    84. Xiao-hui Liu, Glenn D. Prestwich. Didehydrofarnesyl diphosphate: an intrinsically fluorescent inhibitor of protein farnesyltransferase. Bioorganic & Medicinal Chemistry Letters 2004, 14 (9) , 2137-2140. https://doi.org/10.1016/j.bmcl.2004.02.077
    85. Hong Zhang. Protein Prenyltransferases. 2004https://doi.org/10.1002/0470028637.met002
    86. Hong Zhang. Protein Prenyltransferases. 2004https://doi.org/10.1002/9781119951438.eibc0471
    87. Said M Sebti, Alex A Adjei. Farnesyltransferase inhibitors. Seminars in Oncology 2004, 31 , 28-39. https://doi.org/10.1053/j.seminoncol.2003.12.012
    88. Nancy E. Kohl. ras Oncogene Inhibitors. 2004, 303-316. https://doi.org/10.1007/978-1-59259-767-3_20
    89. Masahiro Kumagai, Asao Makioka, Tsutomu Takeuchi, Tomoyoshi Nozaki. Molecular Cloning and Characterization of a Protein Farnesyltransferase from the Enteric Protozoan Parasite Entamoeba histolytica. Journal of Biological Chemistry 2004, 279 (3) , 2316-2323. https://doi.org/10.1074/jbc.M311478200
    90. Christopher J. D. Mau, Sylvie Garneau, Andrew A. Scholte, Jennifer E. Van Fleet, John C. Vederas, Katrina Cornish. Protein farnesyltransferase inhibitors interfere with farnesyl diphosphate binding by rubber transferase. European Journal of Biochemistry 2003, 270 (19) , 3939-3945. https://doi.org/10.1046/j.1432-1033.2003.03775.x
    91. Michael Thutewohl, Lars Kissau, Boriana Popkirova, Ionna-Maria Karaguni, Thorsten Nowak, Michael Bate, Jürgen Kuhlmann, Oliver Müller, Herbert Waldmann. Identification of mono- and bisubstrate inhibitors of protein farnesyltransferase and inducers of apoptosis from a pepticinnamin E library. Bioorganic & Medicinal Chemistry 2003, 11 (12) , 2617-2626. https://doi.org/10.1016/S0968-0896(03)00160-3
    92. Dae Young Kim, David F. Wiemer. Addition of allylindium reagents to acyl phosphonates: synthesis of tertiary α-hydroxy alkylphosphonates. Tetrahedron Letters 2003, 44 (14) , 2803-2805. https://doi.org/10.1016/S0040-4039(03)00454-4
    93. Nicola Ferri, Kohei Yokoyama, Martin Sadilek, Rodolfo Paoletti, Rafael Apitz‐Castro, Michael H Gelb, Alberto Corsini. Ajoene, a garlic compound, inhibits protein prenylation and arterial smooth muscle cell proliferation. British Journal of Pharmacology 2003, 138 (5) , 811-818. https://doi.org/10.1038/sj.bjp.0705126
    94. Danielle Skropeta, Richard R. Schmidt. Chiral, non-racemic α-hydroxyphosphonates and phosphonic acids via stereoselective hydroxylation of diallyl benzylphosphonates. Tetrahedron: Asymmetry 2003, 14 (2) , 265-273. https://doi.org/10.1016/S0957-4166(02)00786-3
    95. Jennifer A. Digits, Hyung-Jung Pyun, Robert M. Coates, Patrick J. Casey. Stereospecificity and Kinetic Mechanism of Human Prenylcysteine Lyase, an Unusual Thioether Oxidase. Journal of Biological Chemistry 2002, 277 (43) , 41086-41093. https://doi.org/10.1074/jbc.M208069200
    96. Salvatore Caccamese, Giovanna Scivoli, Yanming Du, David F Wiemer. Chiral liquid chromatography separation and chiroptical properties of the enantiomers of dimethyl α-hydroxyfarnesylphosphonate, a precursor of a farnesyl protein transferase inhibitor. Journal of Chromatography A 2002, 966 (1-2) , 221-225. https://doi.org/10.1016/S0021-9673(02)00736-7
    97. Eric K. Rowinsky. Selected Targets and Rationally Designed Therapeutics for Patients with Colorectal Cancer. 2002, 759-793. https://doi.org/10.1007/978-1-59259-160-2_40
    98. Herbert I. Hurwitz, Patrick J. Casey. Prenylation of CaaX-type proteins: Basic principles through clinical applications. 2002, 531-550. https://doi.org/10.1016/S1063-5823(02)52021-4
    99. M Crul, G J de Klerk, J H Beijnen, J HM Schellens. Ras biochemistry and farnesyl transferase inhibitors: a literature survey. Anti-Cancer Drugs 2001, 12 (3) , 163-184. https://doi.org/10.1097/00001813-200103000-00001
    100. David E. Metzler, Carol M. Metzler, David J. Sauke. An Introduction to Metabolism. 2001, 505-533. https://doi.org/10.1016/B978-012492543-4/50013-1
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect