ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin

Cite this: Biochemistry 1992, 31, 28, 6492–6498
Publication Date (Print):July 21, 1992
https://doi.org/10.1021/bi00143a019
    ACS Legacy Archive

    Article Views

    195

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    PDF (2 MB)

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Cited By

    This article is cited by 212 publications.

    1. Jason A. Scott, Monica Soto-Velasquez, Michael P. Hayes, Justin E. LaVigne, Heath R. Miller, Jatinder Kaur, Karin F. K. Ejendal, Val J. Watts, Daniel P. Flaherty. Optimization of a Pyrimidinone Series for Selective Inhibition of Ca2+/Calmodulin-Stimulated Adenylyl Cyclase 1 Activity for the Treatment of Chronic Pain. Journal of Medicinal Chemistry 2022, 65 (6) , 4667-4686. https://doi.org/10.1021/acs.jmedchem.1c01759
    2. Ahmed Mansour, Karim Nagi, Paul Dallaire, Viktoriya Lukasheva, Christian Le Gouill, Michel Bouvier, Graciela Pineyro. Comprehensive Signaling Profiles Reveal Unsuspected Functional Selectivity of δ-Opioid Receptor Agonists and Allow the Identification of Ligands with the Greatest Potential for Inducing Cyclase Superactivation. ACS Pharmacology & Translational Science 2021, 4 (5) , 1483-1498. https://doi.org/10.1021/acsptsci.1c00019
    3. Michael P. Hayes, Monica Soto-Velasquez, C. Andrew Fowler, Val J. Watts, and David L. Roman . Identification of FDA-Approved Small Molecules Capable of Disrupting the Calmodulin–Adenylyl Cyclase 8 Interaction through Direct Binding to Calmodulin. ACS Chemical Neuroscience 2018, 9 (2) , 346-357. https://doi.org/10.1021/acschemneuro.7b00349
    4. Tung-Chung Mou, Nanako Masada, Dermot M. F. Cooper and Stephen R. Sprang . Structural Basis for Inhibition of Mammalian Adenylyl Cyclase by Calcium. Biochemistry 2009, 48 (15) , 3387-3397. https://doi.org/10.1021/bi802122k
    5. Carole Daly, Bianca Plouffe. Gα q signalling from endosomes: A new conundrum. British Journal of Pharmacology 2023, 276 https://doi.org/10.1111/bph.16248
    6. Jiao Chen, Qi Ding, Lulu An, Hongbing Wang. Ca2+-stimulated adenylyl cyclases as therapeutic targets for psychiatric and neurodevelopmental disorders. Frontiers in Pharmacology 2022, 13 https://doi.org/10.3389/fphar.2022.949384
    7. Vikas Arige, David I. Yule. Spatial and temporal crosstalk between the cAMP and Ca2+ signaling systems. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2022, 1869 (9) , 119293. https://doi.org/10.1016/j.bbamcr.2022.119293
    8. Yosuke Okamoto, Naing Ye Aung, Masahiro Tanaka, Yuji Takeda, Daichi Takagi, Wataru Igarashi, Kuniaki Ishii, Mitsunori Yamakawa, Kyoichi Ono. Preferential Expression of Ca2+-Stimulable Adenylyl Cyclase III in the Supraventricular Area, including Arrhythmogenic Pulmonary Vein of the Rat Heart. Biomolecules 2022, 12 (5) , 724. https://doi.org/10.3390/biom12050724
    9. E. V. Bigdai, A. A. Sinegubov. Dysregulation of the cAMP System in Olfactory Neurons in a Model of Schizophrenia Induced by Administration of (+)-MK-801 to Rats. Biophysics 2022, 67 (2) , 209-215. https://doi.org/10.1134/S0006350922020026
    10. Katrina F. Ostrom, Justin E. LaVigne, Tarsis F. Brust, Roland Seifert, Carmen W. Dessauer, Val J. Watts, Rennolds S. Ostrom. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiological Reviews 2022, 102 (2) , 815-857. https://doi.org/10.1152/physrev.00013.2021
    11. Keisho Hirota, Tsuyoshi Hirashima, Kazuki Horikawa, Akihiro Yasoda, Michiyuki Matsuda. C-type Natriuretic Peptide–induced PKA Activation Promotes Endochondral Bone Formation in Hypertrophic Chondrocytes. Endocrinology 2022, 163 (3) https://doi.org/10.1210/endocr/bqac005
    12. Wen-Wen Zhang, Hong Cao, Yang Li, Xian-Jun Fu, Yu-Qiu Zhang. Peripheral ablation of type III adenylyl cyclase induces hyperalgesia and eliminates KOR-mediated analgesia in mice. JCI Insight 2022, 7 (3) https://doi.org/10.1172/jci.insight.153191
    13. Li Zhong, Evanna L. Gleason. Adenylate Cyclase 1 Links Calcium Signaling to CFTR-Dependent Cytosolic Chloride Elevations in Chick Amacrine Cells. Frontiers in Cellular Neuroscience 2021, 15 https://doi.org/10.3389/fncel.2021.726605
    14. Elentina K. Argyrousi, Pim R.A. Heckman, Jos Prickaerts. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neuroscience & Biobehavioral Reviews 2020, 113 , 12-38. https://doi.org/10.1016/j.neubiorev.2020.02.004
    15. Víctor Cilleros‐Mañé, Laia Just‐Borràs, Marta Tomàs, Neus Garcia, Josep Maria Tomàs, Maria Angel Lanuza. The M 2 muscarinic receptor, in association to M 1 , regulates the neuromuscular PKA molecular dynamics. The FASEB Journal 2020, 34 (4) , 4934-4955. https://doi.org/10.1096/fj.201902113R
    16. Carolyn M. Ott. Primary Cilia. 2020, 50-61. https://doi.org/10.1002/9781119436812.ch5
    17. Jose Sanchez-Collado, Jose J. Lopez, Isaac Jardin, Gines M. Salido, Juan A. Rosado. Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca2+ Homeostasis. 2020, 73-116. https://doi.org/10.1007/112_2020_55
    18. Tony Parker, Kai-Wen Wang, Declan Manning, Caroline Dart. Soluble adenylyl cyclase links Ca2+ entry to Ca2+/cAMP-response element binding protein (CREB) activation in vascular smooth muscle. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-43821-3
    19. Timothy B. Johnstone, Shailesh R. Agarwal, Robert D. Harvey, Rennolds S. Ostrom. cAMP Signaling Compartmentation: Adenylyl Cyclases as Anchors of Dynamic Signaling Complexes. Molecular Pharmacology 2018, 93 (4) , 270-276. https://doi.org/10.1124/mol.117.110825
    20. William G. Robichaux, Xiaodong Cheng. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiological Reviews 2018, 98 (2) , 919-1053. https://doi.org/10.1152/physrev.00025.2017
    21. Carmen W. Dessauer, Val J. Watts, Rennolds S. Ostrom, Marco Conti, Stefan Dove, Roland Seifert, . International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacological Reviews 2017, 69 (2) , 93-139. https://doi.org/10.1124/pr.116.013078
    22. Amy S. Bogard, Anna V. Birg, Rennolds S. Ostrom. Non-raft adenylyl cyclase 2 defines a cAMP signaling compartment that selectively regulates IL-6 expression in airway smooth muscle cells: differential regulation of gene expression by AC isoforms. Naunyn-Schmiedeberg's Archives of Pharmacology 2014, 387 (4) , 329-339. https://doi.org/10.1007/s00210-013-0950-4
    23. Stephen P.H. Alexander, Helen E. Benson, Elena Faccenda, Adam J. Pawson, Joanna L. Sharman, Michael Spedding, John A. Peters, Anthony J. Harmar, . The Concise Guide to PHARMACOLOGY 2013/14: Enzymes. British Journal of Pharmacology 2013, 170 (8) , 1797-1867. https://doi.org/10.1111/bph.12451
    24. Toshihiro Goto, Ayano Chiba, Jun Sukegawa, Teruyuki Yanagisawa, Masaki Saito, Norimichi Nakahata. Suppression of adenylyl cyclase-mediated cAMP production by plasma membrane associated cytoskeletal protein 4.1G. Cellular Signalling 2013, 25 (3) , 690-697. https://doi.org/10.1016/j.cellsig.2012.11.020
    25. Andrew C. Emery, Maribeth V. Eiden, Lee E. Eiden. A New Site and Mechanism of Action for the Widely Used Adenylate Cyclase Inhibitor SQ22,536. Molecular Pharmacology 2013, 83 (1) , 95-105. https://doi.org/10.1124/mol.112.081760
    26. Isabella Maiellaro, Konstantinos Lefkimmiatis, Mary Pat Moyer, Silvana Curci, Aldebaran M. Hofer. Termination and activation of store‐operated cyclic AMP production. Journal of Cellular and Molecular Medicine 2012, 16 (11) , 2715-2725. https://doi.org/10.1111/j.1582-4934.2012.01592.x
    27. Amy S. Bogard, Piyatilake Adris, Rennolds S. Ostrom. Adenylyl Cyclase 2 Selectively Couples to E Prostanoid Type 2 Receptors, Whereas Adenylyl Cyclase 3 Is Not Receptor-Regulated in Airway Smooth Muscle. Journal of Pharmacology and Experimental Therapeutics 2012, 342 (2) , 586-595. https://doi.org/10.1124/jpet.112.193425
    28. Ferenc A. Antoni. Interactions between intracellular free Ca2+ and cyclic AMP in neuroendocrine cells. Cell Calcium 2012, 51 (3-4) , 260-266. https://doi.org/10.1016/j.ceca.2011.12.013
    29. Rennolds S. Ostrom, Amy S. Bogard, Robert Gros, Ross D. Feldman. Choreographing the adenylyl cyclase signalosome: sorting out the partners and the steps. Naunyn-Schmiedeberg's Archives of Pharmacology 2012, 385 (1) , 5-12. https://doi.org/10.1007/s00210-011-0696-9
    30. Justyna Bien, Olga Sokolova, Przemyslaw Bozko. Role of Uropathogenic Escherichia coli Virulence Factors in Development of Urinary Tract Infection and Kidney Damage. International Journal of Nephrology 2012, 2012 , 1-15. https://doi.org/10.1155/2012/681473
    31. Soo‐Hyun Yoon, Ji yoon Ryu, Youngkyun Lee, Zang Hee Lee, Hong‐Hee Kim. Adenylate cyclase and calmodulin‐dependent kinase have opposite effects on osteoclastogenesis by regulating the PKA‐NFATc1 pathway. Journal of Bone and Mineral Research 2011, 26 (6) , 1217-1229. https://doi.org/10.1002/jbmr.310
    32. Hansen Wang, Hui Xu, Long-Jun Wu, Susan S. Kim, Tao Chen, Kohei Koga, Giannina Descalzi, Bo Gong, Kunjumon I. Vadakkan, Xuehan Zhang, Bong-Kiun Kaang, Min Zhuo. Identification of an Adenylyl Cyclase Inhibitor for Treating Neuropathic and Inflammatory Pain. Science Translational Medicine 2011, 3 (65) https://doi.org/10.1126/scitranslmed.3001269
    33. Ismail Memon, Khalid M. Khan, Sammer Siddiqui, Siddiqa Perveen, Muhammad Ishaq. Temporal expression of calcium/calmodulin‐dependent adenylyl cyclase isoforms in rat articular chondrocytes: RT‐PCR and immunohistochemical localization. Journal of Anatomy 2010, 217 (5) , 574-587. https://doi.org/10.1111/j.1469-7580.2010.01273.x
    34. C.M. Jin, Y.J. Yang, H.S. Huang, M. Kai, M.K. Lee. Mechanisms of L-DOPA-induced cytotoxicity in rat adrenal pheochromocytoma cells: implication of oxidative stress-related kinases and cyclic AMP. Neuroscience 2010, 170 (2) , 390-398. https://doi.org/10.1016/j.neuroscience.2010.07.039
    35. Wan Namkung, Walter E. Finkbeiner, A. S. Verkman, . CFTR-Adenylyl Cyclase I Association Responsible for UTP Activation of CFTR in Well-Differentiated Primary Human Bronchial Cell Cultures. Molecular Biology of the Cell 2010, 21 (15) , 2639-2648. https://doi.org/10.1091/mbc.e09-12-1004
    36. Adam J. Kuszak, Roger K. Sunahara. Adenylyl Cyclases. 2010, 1389-1397. https://doi.org/10.1016/B978-0-12-374145-5.00171-6
    37. Timothy A. Dunn, Daniel R. Storm, Marla B. Feller, . Calcium-Dependent Increases in Protein Kinase-A Activity in Mouse Retinal Ganglion Cells Are Mediated by Multiple Adenylate Cyclases. PLoS ONE 2009, 4 (11) , e7877. https://doi.org/10.1371/journal.pone.0007877
    38. Kumiko Yamaoka, Akiko Yano, Kenji Kuroiwa, Kazushi Morimoto, Tomoaki Inazumi, Noriyuki Hatae, Hiroyuki Tabata, Eri Segi-Nishida, Satoshi Tanaka, Atsushi Ichikawa, Yukihiko Sugimoto. Prostaglandin EP3 receptor superactivates adenylyl cyclase via the Gq/PLC/Ca2+ pathway in a lipid raft-dependent manner. Biochemical and Biophysical Research Communications 2009, 389 (4) , 678-682. https://doi.org/10.1016/j.bbrc.2009.09.064
    39. . ENZYMES. British Journal of Pharmacology 2009https://doi.org/10.1111/j.1476-5381.2009.00506.x
    40. . Adenylyl cyclases (E.C. 4.6.1.1). British Journal of Pharmacology 2009, S205-S206. https://doi.org/10.1111/j.1476-5381.2009.00506_3.x
    41. S. P. Saidu, S.D. Weeraratne, M. Valentine, R. Delay, J. L. Van Houten. Role of Plasma Membrane Calcium ATPases in Calcium Clearance from Olfactory Sensory Neurons. Chemical Senses 2009, 34 (4) , 349-358. https://doi.org/10.1093/chemse/bjp008
    42. Nanako Masada, Antonio Ciruela, David A. MacDougall, Dermot M.F. Cooper. Distinct Mechanisms of Regulation by Ca2+/Calmodulin of Type 1 and 8 Adenylyl Cyclases Support Their Different Physiological Roles. Journal of Biological Chemistry 2009, 284 (7) , 4451-4463. https://doi.org/10.1074/jbc.M807359200
    43. Marianne D. Sadar. The Role of Cyclic AMP in Regulating the Androgen Receptor. 2009, 465-503. https://doi.org/10.1007/978-0-387-69179-4_21
    44. Alessandra Baragli, Maria-Laura Grieco, Phan Trieu, Louis R. Villeneuve, Terence E. Hébert. Heterodimers of adenylyl cyclases 2 and 5 show enhanced functional responses in the presence of Gαs. Cellular Signalling 2008, 20 (3) , 480-492. https://doi.org/10.1016/j.cellsig.2007.10.033
    45. D. Klimmeck, U. Mayer, N. Ungerer, U. Warnken, M. Schnölzer, S. Frings, F. Möhrlen. Calcium-signaling networks in olfactory receptor neurons. Neuroscience 2008, 151 (3) , 901-912. https://doi.org/10.1016/j.neuroscience.2007.11.023
    46. Dyke P. McEwen, Paul M. Jenkins, Jeffrey R. Martens. Chapter 12 Olfactory Cilia: Our Direct Neuronal Connection to the External World. 2008, 333-370. https://doi.org/10.1016/S0070-2153(08)00812-0
    47. Debbie Willoughby, Dermot M. F. Cooper. Organization and Ca 2+ Regulation of Adenylyl Cyclases in cAMP Microdomains. Physiological Reviews 2007, 87 (3) , 965-1010. https://doi.org/10.1152/physrev.00049.2006
    48. Chang Yell Shin, Yul Pyo Lee, Hyun Ju Song, Hyun Dong Je, Uy Dong Sohn. Cyclic AMP dependent down regulation in the relaxation of smooth muscle cells of cat esophagitis. Archives of Pharmacal Research 2007, 30 (6) , 715-722. https://doi.org/10.1007/BF02977633
    49. Jeongmin Song, Matthew J Duncan, Guojie Li, Cheryl Chan, Richard Grady, Ann Stapleton, Soman N Abraham, . A Novel TLR4-Mediated Signaling Pathway Leading to IL-6 Responses in Human Bladder Epithelial Cells. PLoS Pathogens 2007, 3 (4) , e60. https://doi.org/10.1371/journal.ppat.0030060
    50. Christiane Kleuss. Type III Adenylate Cyclase. 2007, 1-4. https://doi.org/10.1016/B978-008055232-3.60600-2
    51. Nan Wu, Susan M. Hanson, Derek J. Francis, Sergey A. Vishnivetskiy, Marc Thibonnier, Candice S. Klug, Menachem Shoham, Vsevolod V. Gurevich. Arrestin Binding to Calmodulin: A Direct Interaction Between Two Ubiquitous Signaling Proteins. Journal of Molecular Biology 2006, 364 (5) , 955-963. https://doi.org/10.1016/j.jmb.2006.09.075
    52. Robert P. Lane, Gregory S. Smutzer, Gregory S. Smutzer, Richard L. Doty. Sense of Smell. 2006https://doi.org/10.1002/3527600906.mcb.200500060
    53. Margarita Kamenetsky, Sabine Middelhaufe, Erin M. Bank, Lonny R. Levin, Jochen Buck, Clemens Steegborn. Molecular Details of cAMP Generation in Mammalian Cells: A Tale of Two Systems. Journal of Molecular Biology 2006, 362 (4) , 623-639. https://doi.org/10.1016/j.jmb.2006.07.045
    54. Axel Visel, Gonzalo Alvarez‐Bolado, Christina Thaller, Gregor Eichele. Comprehensive analysis of the expression patterns of the adenylate cyclase gene family in the developing and adult mouse brain. Journal of Comparative Neurology 2006, 496 (5) , 684-697. https://doi.org/10.1002/cne.20953
    55. Michael A. Beazely, Val J. Watts. Regulatory properties of adenylate cyclases type 5 and 6: A progress report. European Journal of Pharmacology 2006, 535 (1-3) , 1-12. https://doi.org/10.1016/j.ejphar.2006.01.054
    56. S P H Alexander, A Mathie, J A Peters. Adenylyl cyclases (E.C. 4.6.1.1). British Journal of Pharmacology 2006, 12 , S154-S155. https://doi.org/10.1038/sj.bjp.0706579
    57. Sebastian Wachten, Jana Schlenstedt, Renate Gauss, Arnd Baumann. Molecular identification and functional characterization of an adenylyl cyclase from the honeybee. Journal of Neurochemistry 2006, 96 (6) , 1580-1590. https://doi.org/10.1111/j.1471-4159.2006.03666.x
    58. Jason D. Hoffert, Chung-Lin Chou, Robert A. Fenton, Mark A. Knepper. Calmodulin Is Required for Vasopressin-stimulated Increase in Cyclic AMP Production in Inner Medullary Collecting Duct. Journal of Biological Chemistry 2005, 280 (14) , 13624-13630. https://doi.org/10.1074/jbc.M500040200
    59. Vasantha Kolachala, Vivian Asamoah, Lixin Wang, Shanthi Srinivasan, Didier Merlin, Shanthi V. Sitaraman. Interferon-γ Down-regulates Adenosine 2b Receptor-mediated Signaling and Short Circuit Current in the Intestinal Epithelia by Inhibiting the Expression of Adenylate Cyclase. Journal of Biological Chemistry 2005, 280 (6) , 4048-4057. https://doi.org/10.1074/jbc.M409577200
    60. Naoko Kanda, Shinichi Watanabe. 17β-Estradiol Enhances the Production of Nerve Growth Factor in THP-1-Derived Macrophages or Peripheral Blood Monocyte-Derived Macrophages. Journal of Investigative Dermatology 2003, 121 (4) , 771-780. https://doi.org/10.1046/j.1523-1747.2003.12487.x
    61. Jin Oshikawa, Yoshiyuki Toya, Takayuki Fujita, Masato Egawa, Junichi Kawabe, Satoshi Umemura, Yoshihiro Ishikawa. Nicotinic acetylcholine receptor α 7 regulates cAMP signal within lipid rafts. American Journal of Physiology-Cell Physiology 2003, 285 (3) , C567-C574. https://doi.org/10.1152/ajpcell.00422.2002
    62. Rennolds S. Ostrom, Jennifer E. Naugle, Miki Hase, Caroline Gregorian, James S. Swaney, Paul A. Insel, Laurence L. Brunton, J. Gary Meszaros. Angiotensin II Enhances Adenylyl Cyclase Signaling via Ca2+/Calmodulin. Journal of Biological Chemistry 2003, 278 (27) , 24461-24468. https://doi.org/10.1074/jbc.M212659200
    63. Kousaku Iwatsubo, Takashi Tsunematsu, Yoshihiro Ishikawa. Isoform-specific regulation of adenylyl cyclase: a potential target in future pharmacotherapy. Expert Opinion on Therapeutic Targets 2003, 7 (3) , 441-451. https://doi.org/10.1517/14728222.7.3.441
    64. S.A. Adeoya‐Osiguwa, L.R. Fraser. Calcitonin acts as a first messenger to regulate adenylyl cyclase/cAMP and mammalian sperm function. Molecular Reproduction and Development 2003, 65 (2) , 228-236. https://doi.org/10.1002/mrd.10273
    65. Tatiana N. Litvin, Margarita Kamenetsky, Alla Zarifyan, Jochen Buck, Lonny R. Levin. Kinetic Properties of “Soluble” Adenylyl Cyclase. Journal of Biological Chemistry 2003, 278 (18) , 15922-15926. https://doi.org/10.1074/jbc.M212475200
    66. Naoko Kanda, Shinichi Watanabe. 17β-estradiol Inhibits the Production of Interferon-induced Protein of 10kDa by Human Keratinocytes. Journal of Investigative Dermatology 2003, 120 (3) , 411-419. https://doi.org/10.1046/j.1523-1747.2003.12066.x
    67. Hongbing Wang, Daniel R. Storm. Calmodulin-Regulated Adenylyl Cyclases: Cross-Talk and Plasticity in the Central Nervous System. Molecular Pharmacology 2003, 63 (3) , 463-468. https://doi.org/10.1124/mol.63.3.463
    68. Matt R. Whorton, Roger K. Sunahara. Adenylyl Cyclases. 2003, 419-426. https://doi.org/10.1016/B978-012124546-7/50551-9
    69. Naoko Kanda, Shinichi Watanabe. Ketoconazole Suppresses Interleukin-4 plus Anti-CD40-Induced IgE Class Switching in Surface IgE Negative B Cells from Patients with Atopic Dermatitis. Journal of Investigative Dermatology 2002, 119 (3) , 590-599. https://doi.org/10.1046/j.1523-1747.2002.01864.x
    70. Naoko Kanda, Shinichi Watanabe. Ketoconazole Suppresses Prostaglandin E2-Induced Cyclooxygenase-2 Expression in Human Epidermoid Carcinoma A-431 Cells. Journal of Investigative Dermatology 2002, 119 (1) , 174-181. https://doi.org/10.1046/j.1523-1747.2002.01804.x
    71. Raja’ M. Abdel-Majid, François Tremblay, William H. Baldridge. Localization of adenylyl cyclase proteins in the rodent retina. Molecular Brain Research 2002, 101 (1-2) , 62-70. https://doi.org/10.1016/S0169-328X(02)00163-8
    72. Naoko Kanda, Shinichi Watanabe. 17β-Estradiol Enhances Vascular Endothelial Growth Factor Production and Dihydrotestosterone Antagonizes the Enhancement via the Regulation of Adenylate Cyclase in Differentiated THP-1 Cells. Journal of Investigative Dermatology 2002, 118 (3) , 519-529. https://doi.org/10.1046/j.0022-202x.2002.01672.x
    73. Gabriele V. Ronnett, Cheil Moon. G Proteins and Olfactory Signal Transduction. Annual Review of Physiology 2002, 64 (1) , 189-222. https://doi.org/10.1146/annurev.physiol.64.082701.102219
    74. Naoko Kanda, Utayo Enomoto, Shinichi Watanabe. Anti-Mycotics Suppress Interleukin-4 and Interleukin-5 Production in Anti-CD3 Plus Anti-CD28-Stimulated T Cells from Patients with Atopic Dermatitis. Journal of Investigative Dermatology 2001, 117 (6) , 1635-1646. https://doi.org/10.1046/j.0022-202x.2001.01566.x
    75. Klaus Scholich, Sandra Pierre, Tarun B. Patel. Protein Associated with Myc (PAM) Is a Potent Inhibitor of Adenylyl Cyclases. Journal of Biological Chemistry 2001, 276 (50) , 47583-47589. https://doi.org/10.1074/jbc.M107816200
    76. Jerry G. Webb, Phillip W. Yates, Qing Yang, Yurii V. Mukhin, Stephen M. Lanier. Adenylyl cyclase isoforms and signal integration in models of vascular smooth muscle cells. American Journal of Physiology-Heart and Circulatory Physiology 2001, 281 (4) , H1545-H1552. https://doi.org/10.1152/ajpheart.2001.281.4.H1545
    77. Dingbang Xu, Cary Isaacs, Ian P. Hall, Charles W. Emala. Human airway smooth muscle expresses 7 isoforms of adenylyl cyclase: a dominant role for isoform V. American Journal of Physiology-Lung Cellular and Molecular Physiology 2001, 281 (4) , L832-L843. https://doi.org/10.1152/ajplung.2001.281.4.L832
    78. Naoko Kanda, Shinichi Watanabe. Regulatory roles of adenylate cyclase and cyclic nucleotide phosphodiesterases 1 and 4 in interleukin-13 production by activated human T cells11Abbreviations: AC, adenylate cyclase; AP, activator protein; AS-O, antisense oligonucleotide; cAMP, 3′,5′-adenosine-cyclic monophosphate; cGMP, 3′,5′-guanosine-cyclic monophosphate; EHNA, erythro-9-(2-hydroxy-3-nonyl)adenine; GAM, goat anti-mouse IgG polyclonal antibody; IBMX, 3-isobutyl-1-methylxanthine; IL-13, interleukin-13; 8-methoxymethyl-IBMX, 8-methoxymethyl-3-isobutyl-1-methylxanthine; NS-O, nonsense oligonucleotide; PCR, polymerase chain reaction; PDE, cyclic nucleotide phosphodiesterase; PHA, phytohemagglutinin; RT, reverse transcription; and TCR, T cell receptor.. Biochemical Pharmacology 2001, 62 (4) , 495-507. https://doi.org/10.1016/S0006-2952(01)00688-8
    79. Naoko Kanda, Kenji Nakai, Shinichi Watanabe. Gangliosides GD1b, GT1b, and GQ1b Suppress the Growth of Human Melanoma by Inhibiting Interleukin-8 Production: the Inhibition of Adenylate Cyclase11The nomenclature for gangliosides used in this paper follows the system ofSvennerholm (1963).. Journal of Investigative Dermatology 2001, 117 (2) , 284-293. https://doi.org/10.1046/j.0022-202x.2001.01423.x
    80. Pierluigi Onali, Angela Ingianni, Maria C. Olianas. Dual coupling of opioid receptor‐like (ORL1) receptors to adenylyl cyclase in the different layers of the rat main olfactory bulb. Journal of Neurochemistry 2001, 77 (6) , 1520-1530. https://doi.org/10.1046/j.1471-4159.2001.00371.x
    81. Tarun B. Patel, Ziyun Du, Sandra Pierre, Laura Cartin, Klaus Scholich. Molecular biological approaches to unravel adenylyl cyclase signaling and function. Gene 2001, 269 (1-2) , 13-25. https://doi.org/10.1016/S0378-1119(01)00448-6
    82. Naoko Kanda, Shinichi Watanabe. Intracellular 3′,5′-Adenosine Cyclic Monophosphate Level Regulates House Dust Mite-Induced Interleukin-13 Production by T Cells from Mite-Sensitive Patients with Atopic Dermatitis. Journal of Investigative Dermatology 2001, 116 (1) , 3-11. https://doi.org/10.1046/j.1523-1747.2001.01196.x
    83. Naoko Kanda, Shinichi Watanabe. Gangliosides GD1b, GT1b, and GQ1b Enhance IL-2 and IFN-γ Production and Suppress IL-4 and IL-5 Production in Phytohemagglutinin-Stimulated Human T Cells. The Journal of Immunology 2001, 166 (1) , 72-80. https://doi.org/10.4049/jimmunol.166.1.72
    84. Nicole Defer, Martin Best-Belpomme, Jacques Hanoune. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. American Journal of Physiology-Renal Physiology 2000, 279 (3) , F400-F416. https://doi.org/10.1152/ajprenal.2000.279.3.F400
    85. Eileen L. Watson, Kerry L. Jacobson, Jean C. Singh, Rejean Idzerda, Sabrina M. Ott, Dennis H. DiJulio, Scott T. Wong, Daniel R. Storm. The Type 8 Adenylyl Cyclase Is Critical for Ca2+Stimulation of cAMP Accumulation in Mouse Parotid Acini. Journal of Biological Chemistry 2000, 275 (19) , 14691-14699. https://doi.org/10.1074/jbc.275.19.14691
    86. Yijuang Chern. Regulation of adenylyl cyclase in the central nervous system. Cellular Signalling 2000, 12 (4) , 195-204. https://doi.org/10.1016/S0898-6568(99)00084-4
    87. Vadim Iourgenko, Lonny R Levin. A calcium-inhibited Drosophila adenylyl cyclase. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2000, 1495 (2) , 125-139. https://doi.org/10.1016/S0167-4889(99)00155-X
    88. Roni Mamluk, Nicole Defer, Jacques Hanoune, Rina Meidan. Molecular Identification of Adenylyl Cyclase 3 in Bovine Corpus Luteum and Its Regulation by Prostaglandin F2α-Induced Signaling Pathways1. Endocrinology 1999, 140 (10) , 4601-4608. https://doi.org/10.1210/endo.140.10.7099
    89. Danielle Chabardès, Martine Imbert-Teboul, Jean-Marc Elalouf. Functional Properties of Ca2+-Inhibitable Type 5 and Type 6 Adenylyl Cyclases and Role of Ca2+ Increase in the Inhibition of Intracellular cAMP Content. Cellular Signalling 1999, 11 (9) , 651-663. https://doi.org/10.1016/S0898-6568(99)00031-5
    90. Claus Wittpoth, Klaus Scholich, Yinges Yigzaw, Teresa M. Stringfield, Tarun B. Patel. Regions on adenylyl cyclase that are necessary for inhibition of activity by βγ and G iα subunits of heterotrimeric G proteins. Proceedings of the National Academy of Sciences 1999, 96 (17) , 9551-9556. https://doi.org/10.1073/pnas.96.17.9551
    91. Gerhard Reich, Ingrid Boekhoff, Heinz Breer, Barry W. Ache. Calcium Regulation of Cyclic Nucleotide Signaling in Lobster Olfactory Receptor Neurons. Journal of Neurochemistry 1999, 73 (1) , 147-152. https://doi.org/10.1046/j.1471-4159.1999.0730147.x
    92. Anthony Persechini, Benjamin Cronk. The Relationship between the Free Concentrations of Ca2+ and Ca2+-calmodulin in Intact Cells. Journal of Biological Chemistry 1999, 274 (11) , 6827-6830. https://doi.org/10.1074/jbc.274.11.6827
    93. William F. Simonds. G protein regulation of adenylate cyclase. Trends in Pharmacological Sciences 1999, 20 (2) , 66-73. https://doi.org/10.1016/S0165-6147(99)01307-3
    94. Andrew J. Morris, Craig C. Malbon. Physiological Regulation of G Protein-Linked Signaling. Physiological Reviews 1999, 79 (4) , 1373-1430. https://doi.org/10.1152/physrev.1999.79.4.1373
    95. Shoko Ueki, Junichi Takagi, Yuichi Kobayashi, Fumie Sato, Yuji Saito. 12-Hydroxy-5Z, 8Z, 10E, 14Z, eicosatetraenoic acid (12-HETE) stimulates cAMP production in normal human fibroblasts. Journal of Cellular Physiology 1999, 178 (1) , 63-68. https://doi.org/10.1002/(SICI)1097-4652(199901)178:1<63::AID-JCP8>3.0.CO;2-J
    96. Olivier Albert, Nicolas Ancellin, Laurence Preisser, Alain Morel, Bruno Corman. Serotonin, bradykinin and endothelin signalling in a sheep choroid plexus cell line. Life Sciences 1999, 64 (10) , 859-867. https://doi.org/10.1016/S0024-3205(99)00007-7
    97. Gezhi Weng, Yibang Chen, Ravi Iyengar. Mammalian G s ‐Stimulated Adenylyl Cyclases. 1998, 165-176. https://doi.org/10.1002/cphy.cp070108
    98. Timothy M. Moore, Paul M. Chetham, John J. Kelly, Troy Stevens. Signal transduction and regulation of lung endothelial cell permeability. Interaction between calcium and cAMP. American Journal of Physiology-Lung Cellular and Molecular Physiology 1998, 275 (2) , L203-L222. https://doi.org/10.1152/ajplung.1998.275.2.L203
    99. Larissa Lipskaia, Claudine Grépin, Nicole Defer, Jacques Hanoune. Adenylyl cyclase activity and gene expression during mesodermal differentiation of the P19 embryonal carcinoma cells. Journal of Cellular Physiology 1998, 176 (1) , 50-56. https://doi.org/10.1002/(SICI)1097-4652(199807)176:1<50::AID-JCP6>3.0.CO;2-7
    100. Karnam S. Murthy, Gabriel M. Makhlouf. Regulation of Adenylyl Cyclase Type V/VI in Smooth Muscle: Interplay of Inhibitory G Protein and Ca 2+ Influx. Molecular Pharmacology 1998, 54 (1) , 122-128. https://doi.org/10.1124/mol.54.1.122
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect