ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Fluorine-19 NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic binding to proteins. Analysis of isoflurane binding to serum albumin

Cite this: Biochemistry 1992, 31, 31, 7069–7076
Publication Date (Print):August 11, 1992
https://doi.org/10.1021/bi00146a007
    ACS Legacy Archive

    Article Views

    731

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 57 publications.

    1. Christian Prinz, Ludger Starke, Tizian-Frank Ramspoth, Janis Kerkering, Vera Martos Riaño, Jérôme Paul, Martin Neuenschwander, Andreas Oder, Silke Radetzki, Siegfried Adelhoefer, Paula Ramos Delgado, Mariya Aravina, Jason M. Millward, Ariane Fillmer, Friedemann Paul, Volker Siffrin, Jens-Peter von Kries, Thoralf Niendorf, Marc Nazaré, Sonia Waiczies. Pentafluorosulfanyl (SF5) as a Superior 19F Magnetic Resonance Reporter Group: Signal Detection and Biological Activity of Teriflunomide Derivatives. ACS Sensors 2021, 6 (11) , 3948-3956. https://doi.org/10.1021/acssensors.1c01024
    2. Luís Cruz, Juan Correa, Nuno Mateus, Victor de Freitas, Maun H. Tawara, Eduardo Fernandez-Megia. Dendrimers as Color-Stabilizers of Pyranoanthocyanins: The Dye Concentration Governs the Host–Guest Interaction Mechanisms. ACS Applied Polymer Materials 2021, 3 (3) , 1457-1464. https://doi.org/10.1021/acsapm.0c01321
    3. Bhawna Chaubey, Samanwita Pal. Binding Interaction of Organofluorine–Serum Albumin: A Comparative Ligand-Detected 19F NMR Analysis. The Journal of Physical Chemistry B 2018, 122 (40) , 9409-9418. https://doi.org/10.1021/acs.jpcb.8b06583
    4. Luiz F. Pinto, Juan Correa, Libo Zhao, Ricardo Riguera, Eduardo Fernandez-Megia. Fast NMR Screening of Macromolecular Complexes by a Paramagnetic Spin Relaxation Filter. ACS Omega 2018, 3 (3) , 2974-2983. https://doi.org/10.1021/acsomega.7b02074
    5. Mengxiao Liu, Yaewon Kim, and Christian Hilty . Characterization of Chemical Exchange Using Relaxation Dispersion of Hyperpolarized Nuclear Spins. Analytical Chemistry 2017, 89 (17) , 9154-9158. https://doi.org/10.1021/acs.analchem.7b01896
    6. Thomas Moschen, Sarina Grutsch, Michael A. Juen, Christoph H. Wunderlich, Christoph Kreutz, and Martin Tollinger . Measurement of Ligand–Target Residence Times by 1H Relaxation Dispersion NMR Spectroscopy. Journal of Medicinal Chemistry 2016, 59 (23) , 10788-10793. https://doi.org/10.1021/acs.jmedchem.6b01110
    7. Hai-Jing Wang, Alfred Kleinhammes, Pei Tang, Yan Xu, and Yue Wu . Critical Role of Water in the Binding of Volatile Anesthetics to Proteins. The Journal of Physical Chemistry B 2013, 117 (40) , 12007-12012. https://doi.org/10.1021/jp407115j
    8. Mauro Acchione, Yi-Chien Lee, Morgan E. DeSantis, Claudia A. Lipschultz, Alexander Wlodawer, Mi Li, Aranganathan Shanmuganathan, Richard L. Walter, Sandra Smith-Gill, and Joseph J. Barchi, Jr. . Specific Fluorine Labeling of the HyHEL10 Antibody Affects Antigen Binding and Dynamics. Biochemistry 2012, 51 (30) , 6017-6027. https://doi.org/10.1021/bi300455t
    9. Yuta Suzuki, Benjamin C. Buer, Hashim M. Al-Hashimi, and E. Neil G. Marsh . Using Fluorine Nuclear Magnetic Resonance To Probe Changes in the Structure and Dynamics of Membrane-Active Peptides Interacting with Lipid Bilayers. Biochemistry 2011, 50 (27) , 5979-5987. https://doi.org/10.1021/bi200639c
    10. Benjamin C. Buer, Jeetender Chugh, Hashim M. Al-Hashimi and E. Neil G. Marsh . Using Fluorine Nuclear Magnetic Resonance To Probe the Interaction of Membrane-Active Peptides with the Lipid Bilayer. Biochemistry 2010, 49 (27) , 5760-5765. https://doi.org/10.1021/bi100605e
    11. John H. Streiff and Keith A. Jones. Volatile Anesthetic Binding to Proteins Is Influenced by Solvent and Aliphatic Residues. Journal of Chemical Information and Modeling 2008, 48 (10) , 2066-2073. https://doi.org/10.1021/ci800206a
    12. Dmitri Tolkatchev,, Ping Xu, and, Feng Ni. Probing the Kinetic Landscape of Transient Peptide−Protein Interactions by Use of Peptide 15N NMR Relaxation Dispersion Spectroscopy:  Binding of an Antithrombin Peptide to Human Prothrombin. Journal of the American Chemical Society 2003, 125 (41) , 12432-12442. https://doi.org/10.1021/ja021238l
    13. Roderic G. Eckenhoff,, Frank J. Knoll,, Eric P. Greenblatt, and, William P. Dailey. Halogenated Diazirines as Photolabel Mimics of the Inhaled Haloalkane Anesthetics. Journal of Medicinal Chemistry 2002, 45 (9) , 1879-1886. https://doi.org/10.1021/jm0104926
    14. Deepak Kumar, Yogeshwaran Krishnan, Manikandan Paranjothy, Samanwita Pal. Determination of inclusion geometry of cyclodextrin host-guest complexes: Applicability of 1D selective NMR methods. Journal of Magnetic Resonance Open 2022, 10-11 , 100053. https://doi.org/10.1016/j.jmro.2022.100053
    15. Claudio Dalvit, Annick Parent, Francois Vallée, Magali Mathieu, Alexey Rak. Fast NMR Methods for Measuring in the Direct and/or Competition Mode the Dissociation Constants of Chemical Fragments Interacting with a Receptor. ChemMedChem 2019, 14 (11) , 1115-1127. https://doi.org/10.1002/cmdc.201900152
    16. Yaewon Kim, Mengxiao Liu, Christian Hilty. Determination of binding affinities using hyperpolarized NMR with simultaneous 4-channel detection. Journal of Magnetic Resonance 2018, 295 , 80-86. https://doi.org/10.1016/j.jmr.2018.08.002
    17. Hasan Babazada, Renyu Liu. Investigation of Anesthetic–Protein Interactions by a Thermodynamic Approach. 2018, 103-113. https://doi.org/10.1016/bs.mie.2018.02.023
    18. María Ángeles Canales, Juan Félix Espinosa. Ligand-detected NMR Methods in Drug Discovery. 2017, 23-43. https://doi.org/10.1039/9781788010016-00023
    19. Luis Pablo Calle, Juan Félix Espinosa. An improved 19 F‐CPMG scheme for detecting binding of polyfluorinated molecules to biological receptors. Magnetic Resonance in Chemistry 2017, 55 (4) , 355-358. https://doi.org/10.1002/mrc.4531
    20. Yaewon Kim, Christian Hilty. Affinity Screening Using Competitive Binding with Fluorine‐19 Hyperpolarized Ligands. Angewandte Chemie International Edition 2015, 54 (16) , 4941-4944. https://doi.org/10.1002/anie.201411424
    21. Yaewon Kim, Christian Hilty. Affinitätsbestimmung durch kompetitive Bindung mit Fluor‐19‐hyperpolarisierten Liganden. Angewandte Chemie 2015, 127 (16) , 5023-5027. https://doi.org/10.1002/ange.201411424
    22. Benjamin C. Buer, Benjamin J. Levin, E. Neil G. Marsh. Perfluoro- tert -butyl-homoserine as a sensitive 19 F NMR reporter for peptide-membrane interactions in solution. Journal of Peptide Science 2013, 19 (5) , 308-314. https://doi.org/10.1002/psc.2501
    23. Naveena Yanamala, Arpana Dutta, Barbara Beck, Bart Van Fleet, Kelly Hay, Ahmad Yazbak, Rieko Ishima, Alexander Doemling, Judith Klein‐Seetharaman. NMR‐Based Screening of Membrane Protein Ligands. Chemical Biology & Drug Design 2010, 75 (3) , 237-256. https://doi.org/10.1111/j.1747-0285.2009.00940.x
    24. Makoto Nishimoto, Ukyo Komatsu, Nobutake Tamai, Michio Yamanaka, Shoji Kaneshina, Kenji Ogli, Hitoshi Matsuki. A comparative study on specific and nonspecific interactions in bovine serum albumin: thermal and volume effects of halothane and palmitic acid. Colloid and Polymer Science 2009, 287 (8) , 979-989. https://doi.org/10.1007/s00396-009-2054-8
    25. James M. Lipchock, J. Patrick Loria. Monitoring Molecular Interactions by NMR. 2009, 115-134. https://doi.org/10.1007/978-1-59745-367-7_5
    26. Koichi Yuki, Nathan S. Astrof, Clay Bracken, Ronnie Yoo, Whitney Silkworth, Sulpicio G. Soriano, Motomu Shimaoka. The volatile anesthetic isoflurane perturbs conformational activation of integrin LFA‐1 by binding to the allosteric regulatory cavity. The FASEB Journal 2008, 22 (12) , 4109-4116. https://doi.org/10.1096/fj.08-113324
    27. Igor V. Mastikhin, Benedict Newling. Dynamics of dissolved gas in a cavitating fluid. Physical Review E 2008, 78 (6) https://doi.org/10.1103/PhysRevE.78.066316
    28. Igor V. Mastikhin, Benedict Newling. MRI of Fluids in Strong Acoustic Fields. 2008, 221-232. https://doi.org/10.1002/9783527626052.ch14
    29. C Michael Crowder. Does Natural Selection Explain the Universal Response of Metazoans to Volatile Anesthetics?. Anesthesia & Analgesia 2008, 107 (3) , 862-863. https://doi.org/10.1213/ane.0b013e31817d866a
    30. Jian‐Xin Yu, Weina Cui, Dawen Zhao, Ralph P. Mason. Non‐Invasive Physiology and Pharmacology Using 19F Magnetic Resonance. 2008, 197-276. https://doi.org/10.1016/B978-0-444-53086-8.00005-9
    31. John H. Streiff, Thomas W. Allen, Elena Atanasova, Nenad Juranic, Slobodan Macura, Alan R. Penheiter, Keith A. Jones. Prediction of Volatile Anesthetic Binding Sites in Proteins. Biophysical Journal 2006, 91 (9) , 3405-3414. https://doi.org/10.1529/biophysj.106.082586
    32. Ronald W. Sarver, Hua Gao, Fang Tian. Determining molecular binding sites on human serum albumin by displacement of oleic acid. Analytical Biochemistry 2005, 347 (2) , 297-302. https://doi.org/10.1016/j.ab.2005.09.039
    33. Tao Zhang, Jonas S. Johansson. The binding of 10 general anesthetics to a four-alpha-helix bundle protein displays enthalpy–entropy compensation. International Congress Series 2005, 1283 , 219-222. https://doi.org/10.1016/j.ics.2005.07.050
    34. Jonas S. Johansson, Gavin A. Manderson, Roberto Ramoni, Stefano Grolli, Roderic G. Eckenhoff. Binding of the volatile general anesthetics halothane and isoflurane to a mammalian β‐barrel protein. The FEBS Journal 2005, 272 (2) , 573-581. https://doi.org/10.1111/j.1742-4658.2004.04500.x
    35. John H. Streiff, Nenad O. Juranic, Slobodan I. Macura, David O. Warner, Keith A. Jones, William J. Perkins. Saturation Transfer Difference Nuclear Magnetic Resonance Spectroscopy As a Method for Screening Proteins for Anesthetic Binding. Molecular Pharmacology 2004, 66 (4) , 929-935. https://doi.org/10.1124/mol.66.4.929
    36. Tao Zhang, Jonas S. Johansson. An Isothermal Titration Calorimetry Study on the Binding of Four Volatile General Anesthetics to the Hydrophobic Core of a Four-α-Helix Bundle Protein. Biophysical Journal 2003, 85 (5) , 3279-3285. https://doi.org/10.1016/S0006-3495(03)74746-8
    37. Laurent Verdier, Josyane Gharbi-Benarous, Gildas Bertho, Pascale Mauvais, Jean-Pierre Girault. A novel mechanism of antibiotic resistance: study of the complex state of peptides with bacterial Staphylococcus aureus ribosomes. Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry 2001, 4 (10) , 745-750. https://doi.org/10.1016/S1387-1609(01)01316-0
    38. Jonas Johansson, Roderic Eckenhoff. Experimental Approaches to the Study of Volatile Anesthetic-ProteinInteractions. 2000, 37-68. https://doi.org/10.1201/9781420036800.ch2
    39. Ananyo A. Bhattacharya, Stephen Curry, Nicholas P. Franks. Binding of the General Anesthetics Propofol and Halothane to Human Serum Albumin. Journal of Biological Chemistry 2000, 275 (49) , 38731-38738. https://doi.org/10.1074/jbc.M005460200
    40. Roderic G. Eckenhoff, Charles E. Petersen, Chung-Eun Ha, Nadhipuram V. Bhagavan. Inhaled Anesthetic Binding Sites in Human Serum Albumin. Journal of Biological Chemistry 2000, 275 (39) , 30439-30444. https://doi.org/10.1074/jbc.M005052200
    41. Yan Xu, Tomoyoshi Seto, Pei Tang, Leonard Firestone. NMR Study of Volatile Anesthetic Binding to Nicotinic Acetylcholine Receptors. Biophysical Journal 2000, 78 (2) , 746-751. https://doi.org/10.1016/S0006-3495(00)76632-X
    42. Jonas S. Johansson, Daphna Scharf, Lowri A. Davies, Konda S. Reddy, Roderic G. Eckenhoff. A Designed Four-α-Helix Bundle That Binds the Volatile General Anesthetic Halothane with High Affinity. Biophysical Journal 2000, 78 (2) , 982-993. https://doi.org/10.1016/S0006-3495(00)76656-2
    43. Lowri A. Davies, Michael L. Klein, Daphna Scharf. Molecular dynamics simulation of a synthetic four‐α‐helix bundle that binds the anesthetic halothane. FEBS Letters 1999, 455 (3) , 332-338. https://doi.org/10.1016/S0014-5793(99)00890-X
    44. Jonas S. Johansson, Helen Zou. Partitioning of four modern volatile general anesthetics into solvents that model buried amino acid side-chains. Biophysical Chemistry 1999, 79 (2) , 107-116. https://doi.org/10.1016/S0301-4622(99)00046-0
    45. Jonathan W. Tanner, Roderic G. Eckenhoff, Paul A. Liebman. Halothane, an inhalational anesthetic agent, increases folding stability of serum albumin. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1999, 1430 (1) , 46-56. https://doi.org/10.1016/S0167-4838(98)00258-1
    46. A.B. Woska, M.L. Klein, D. Scharf. Computer simulation study of synthetic 4-helix bundle that binds halothane. Toxicology Letters 1998, 100-101 , 377-385. https://doi.org/10.1016/S0378-4274(98)00210-0
    47. Jonas S. Johansson. Probing the structural features of volatile anesthetic binding sites with synthetic peptides. Toxicology Letters 1998, 100-101 , 369-375. https://doi.org/10.1016/S0378-4274(98)00209-4
    48. Roderic G. Eckenhoff, Jonathan W. Tanner. Differential Halothane Binding and Effects on Serum Albumin and Myoglobin. Biophysical Journal 1998, 75 (1) , 477-483. https://doi.org/10.1016/S0006-3495(98)77536-8
    49. Jonas S. Johansson. Binding of the Volatile Anesthetic Chloroform to Albumin Demonstrated Using Tryptophan Fluorescence Quenching. Journal of Biological Chemistry 1997, 272 (29) , 17961-17965. https://doi.org/10.1074/jbc.272.29.17961
    50. Tadayoshi Yoshida, Masaki Tanaka, Yoshihito Mori, Issaku Ueda. Negative entropy of halothane binding to protein: 19F-NMR with a novel cell. Biochimica et Biophysica Acta (BBA) - General Subjects 1997, 1334 (2-3) , 117-122. https://doi.org/10.1016/S0304-4165(97)00014-7
    51. Roderic G. Eckenhoff. Amino Acid Resolution of Halothane Binding Sites in Serum Albumin. Journal of Biological Chemistry 1996, 271 (26) , 15521-15526. https://doi.org/10.1074/jbc.271.26.15521
    52. Theodore J. Passe, H.Cecil Charles, Pradeep Rajagopalan, K.Ranga Krishnan. Nuclear magnetic resonance spectroscopy: A review of neuropsychiatric applications. Progress in Neuro-Psychopharmacology and Biological Psychiatry 1995, 19 (4) , 541-563. https://doi.org/10.1016/0278-5846(95)00101-Z
    53. A. Dong, P. Huang, X.J. Zhao, V. Sampath, W.S. Caughey. Characterization of sites occupied by the anesthetic nitrous oxide within proteins by infrared spectroscopy.. Journal of Biological Chemistry 1994, 269 (39) , 23911-23917. https://doi.org/10.1016/S0021-9258(19)51025-0
    54. Feng Ni. Recent developments in transferred NOE methods. Progress in Nuclear Magnetic Resonance Spectroscopy 1994, 26 , 517-606. https://doi.org/10.1016/0079-6565(94)90000-0
    55. Danuta Kosk-Kosicka. Plasma Membrane Ca2+ -ATPase as a Target for Volatile Anesthetics. 1994, 313-322. https://doi.org/10.1016/S1054-3589(08)60624-9
    56. Jeffrey E. Fletcher, Vincent E. Welter. Enhancement of Halothane Action at the Ryanodine Receptor by Unsaturated Fatty Acids. 1994, 323-331. https://doi.org/10.1016/S1054-3589(08)60625-0
    57. Gottfried Otting. Experimental NMR techniques for studies of protein-ligand interactions. Current Opinion in Structural Biology 1993, 3 (5) , 760-768. https://doi.org/10.1016/0959-440X(93)90061-O

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect