ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
Recently Viewed
You have not visited any articles yet, Please visit some articles to see contents here.
CONTENT TYPES

Figure 1Loading Img

Mechanism of binding of the new antimitotic drug MDL 27048 to the colchicine site of tubulin: Equilibrium studies

Cite this: Biochemistry 1992, 31, 45, 11125–11132
Publication Date (Print):November 1, 1992
https://doi.org/10.1021/bi00160a024
ACS Legacy Archive
Article Views
168
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
PDF (944 KB)

Note: In lieu of an abstract, this is the article's first page.

Free first page

Cited By


This article is cited by 43 publications.

  1. Chunlin Zhuang, Wen Zhang, Chunquan Sheng, Wannian Zhang, Chengguo Xing, and Zhenyuan Miao . Chalcone: A Privileged Structure in Medicinal Chemistry. Chemical Reviews 2017, 117 (12) , 7762-7810. https://doi.org/10.1021/acs.chemrev.7b00020
  2. Daniel Leynadier, Vincent Peyrot, Marcel Sarrazin, Claudette Briand, Jose Manuel Andreu, Gregory A. Rener, and Caroll Temple, . Tubulin binding of two 1-deaza-7,8-dihydropteridines with different biological properties: Enantiomers NSC 613862 (S)-(-) and NSC 613863 (R)-(+). Biochemistry 1993, 32 (40) , 10675-10682. https://doi.org/10.1021/bi00091a018
  3. Jose Fernando Diaz and Jose Manuel Andreu. Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: Reversibility, ligand stoichiometry, and competition. Biochemistry 1993, 32 (11) , 2747-2755. https://doi.org/10.1021/bi00062a003
  4. Md. Jahangir Alam, Ozair Alam, Ahmad Perwez, Moshahid Alam Rizvi, Mohd Javed Naim, Vegi Naidu, Mohd Imran, Mohammed M. Ghoneim, Sultan Alshehri, Faiyaz Shakeel. Design, Synthesis, Molecular Docking, and Biological Evaluation of Pyrazole Hybrid Chalcone Conjugates as Potential Anticancer Agents and Tubulin Polymerization Inhibitors. Pharmaceuticals 2022, 15 (3) , 280. https://doi.org/10.3390/ph15030280
  5. Wenjing Liu, Min He, Yongjun Li, Zhiyun Peng, Guangcheng Wang. A review on synthetic chalcone derivatives as tubulin polymerisation inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry 2022, 37 (1) , 9-38. https://doi.org/10.1080/14756366.2021.1976772
  6. Adam McCluskey, Cecilia Russell. Chalcones: Potential Anticancer Agents. 2021,,https://doi.org/10.5772/intechopen.91441
  7. Bethi Rathnakar, Gajula S. Kumar, Saleem P. Mahammad, Sridhar Gattu, Sambaru Kalyani, Rameshwar Nimma, Mavurapu Satyanarayana. Design, synthesis, and evaluation of novel combretastatin A‐4 based chalcone derivatives as anticancer agents. Journal of Heterocyclic Chemistry 2021, 58 (2) , 488-501. https://doi.org/10.1002/jhet.4186
  8. Eavan C. McLoughlin, Niamh M. O’Boyle. Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals 2020, 13 (1) , 8. https://doi.org/10.3390/ph13010008
  9. Patricia Pinto, Carmen Mariana Machado, Joana Moreira, José Diogo P. Almeida, Patrícia M.A. Silva, Ana C. Henriques, José X. Soares, Jorge A.R. Salvador, Carlos Afonso, Madalena Pinto, Hassan Bousbaa, Honorina Cidade. Chalcone derivatives targeting mitosis: synthesis, evaluation of antitumor activity and lipophilicity. European Journal of Medicinal Chemistry 2019, 184 , 111752. https://doi.org/10.1016/j.ejmech.2019.111752
  10. Guangcheng Wang, Zhiyun Peng, Jiebing Zhang, Jie Qiu, Zhenzhen Xie, Zipeng Gong. Synthesis, biological evaluation and molecular docking studies of aminochalcone derivatives as potential anticancer agents by targeting tubulin colchicine binding site. Bioorganic Chemistry 2018, 78 , 332-340. https://doi.org/10.1016/j.bioorg.2018.03.028
  11. I. Kalhari Lindamulage, Hai-Yen Vu, Chandrabose Karthikeyan, James Knockleby, Yi-Fang Lee, Piyush Trivedi, Hoyun Lee. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-10972-0
  12. X. Janet Sabina, J. Karthikeyan, Gunasekaran Velmurugan, M. Muthu Tamizh, A. Nityananda Shetty. Design and in vitro biological evaluation of substituted chalcones synthesized from nitrogen mustards as potent microtubule targeted anticancer agents. New Journal of Chemistry 2017, 41 (10) , 4096-4109. https://doi.org/10.1039/C7NJ00265C
  13. Hassan Mirzaei, Saeed Emami. Recent advances of cytotoxic chalconoids targeting tubulin polymerization: Synthesis and biological activity. European Journal of Medicinal Chemistry 2016, 121 , 610-639. https://doi.org/10.1016/j.ejmech.2016.05.067
  14. Joana Fonseca, Sandra Marques, Patrícia Silva, Pedro Brandão, Honorina Cidade, Madalena Pinto, Hassan Bousbaa. Prenylated Chalcone 2 Acts as an Antimitotic Agent and Enhances the Chemosensitivity of Tumor Cells to Paclitaxel. Molecules 2016, 21 (8) , 982. https://doi.org/10.3390/molecules21080982
  15. Aaron DeBono, Ben Capuano, Peter J. Scammells. Progress Toward the Development of Noscapine and Derivatives as Anticancer Agents. Journal of Medicinal Chemistry 2015, 58 (15) , 5699-5727. https://doi.org/10.1021/jm501180v
  16. Arvind S. Negi, Yashveer Gautam, Sarfaraz Alam, Debabrata Chanda, Suaib Luqman, Jayanta Sarkar, Feroz Khan, Rituraj Konwar. Natural antitubulin agents: Importance of 3,4,5-trimethoxyphenyl fragment. Bioorganic & Medicinal Chemistry 2015, 23 (3) , 373-389. https://doi.org/10.1016/j.bmc.2014.12.027
  17. Huanhuan Li, Tao Liu, Hongxia Xuan, Senbiao Fang, Chunyan Zhao. A combination of pharmacophore modeling, virtual screening, and molecular docking studies for a diverse set of colchicine site inhibitors. Medicinal Chemistry Research 2014, 23 (11) , 4713-4723. https://doi.org/10.1007/s00044-014-1028-7
  18. Divakara Laxman Somayajulu Nori, Kasapu Vishnu Veera Venkata Satyanarayan, Vasudeva Rao Avupati, Bharat Kumar Bugata, Subhash Yenupuri. Synthesis, characterization and in vitro evaluation of some new 5-benzylidene-1,3-thiazolidine-2,4-dione analogs as new class of α-glucosidase inhibitors. European Journal of Chemistry 2014, 5 (1) , 144-149. https://doi.org/10.5155/eurjchem.5.1.144-149.925
  19. Yan-Ting Wang, Ya-Juan Qin, Ya-Liang Zhang, Yu-Jing Li, Bing Rao, Yan-Qing Zhang, Meng-Ru Yang, Ai-Qin Jiang, Jin-Liang Qi, Hai-Liang Zhu. Synthesis, biological evaluation, and molecular docking studies of novel chalcone oxime derivatives as potential tubulin polymerization inhibitors. RSC Adv. 2014, 4 (61) , 32263-32275. https://doi.org/10.1039/C4RA03803G
  20. Guangcheng Wang, Fei Peng, Dong Cao, Zhuang Yang, Xiaolei Han, Juan Liu, Wenshuang Wu, Lin He, Liang Ma, Jinying Chen, Yun Sang, Mingli Xiang, Aihua Peng, Yuquan Wei, Lijuan Chen. Design, synthesis and biological evaluation of millepachine derivatives as a new class of tubulin polymerization inhibitors. Bioorganic & Medicinal Chemistry 2013, 21 (21) , 6844-6854. https://doi.org/10.1016/j.bmc.2013.02.002
  21. P.O. Tsvetkov, P. Barbier, G. Breuzard, V. Peyrot, F. Devred. Microtubule-Associated Proteins and Tubulin Interaction by Isothermal Titration Calorimetry. 2013,,, 283-302. https://doi.org/10.1016/B978-0-12-407757-7.00018-9
  22. Vasudeva Rao Avupati, Rajendra Prasad Yejella, Annapurna Akula, Girija Sankar Guntuku, Bhagya Raju Doddi, Venkata Rao Vutla, Suvarna Ratna Anagani, Lakshmana Santhi Adimulam, Aruna Kumar Vyricharla. Synthesis, characterization and biological evaluation of some novel 2,4-thiazolidinediones as potential cytotoxic, antimicrobial and antihyperglycemic agents. Bioorganic & Medicinal Chemistry Letters 2012, 22 (20) , 6442-6450. https://doi.org/10.1016/j.bmcl.2012.08.052
  23. Philipp O. Tsvetkov, Alexander A. Makarov, Soazig Malesinski, Vincent Peyrot, Francois Devred. New insights into tau–microtubules interaction revealed by isothermal titration calorimetry. Biochimie 2012, 94 (3) , 916-919. https://doi.org/10.1016/j.biochi.2011.09.011
  24. Véronique Martel-Frachet, Malika Kadri, Ahcène Boumendjel, Xavier Ronot. Structural requirement of arylindolylpropenones as anti-bladder carcinoma cells agents. Bioorganic & Medicinal Chemistry 2011, 19 (20) , 6143-6148. https://doi.org/10.1016/j.bmc.2011.08.015
  25. Antonio Carta, Irene Briguglio, Sandra Piras, Giampiero Boatto, Paolo La Colla, Roberta Loddo, Manlio Tolomeo, Stefania Grimaudo, Antonietta Di Cristina, Rosaria Maria Pipitone, Erik Laurini, Maria Silvia Paneni, Paola Posocco, Maurizio Fermeglia, Sabrina Pricl. 3-Aryl-2-[1H-benzotriazol-1-yl]acrylonitriles: A novel class of potent tubulin inhibitors. European Journal of Medicinal Chemistry 2011, 46 (9) , 4151-4167. https://doi.org/10.1016/j.ejmech.2011.06.018
  26. Yin Luo, Ke-Ming Qiu, Xiang Lu, Kai Liu, Jie Fu, Hai-Liang Zhu. Synthesis, biological evaluation, and molecular modeling of cinnamic acyl sulfonamide derivatives as novel antitubulin agents. Bioorganic & Medicinal Chemistry 2011, 19 (16) , 4730-4738. https://doi.org/10.1016/j.bmc.2011.06.088
  27. Pradeep K. Naik, Seneha Santoshi, Ankit Rai, Harish C. Joshi. Molecular modelling and competition binding study of Br-noscapine and colchicine provide insight into noscapinoid–tubulin binding site. Journal of Molecular Graphics and Modelling 2011, 29 (7) , 947-955. https://doi.org/10.1016/j.jmgm.2011.03.004
  28. Richard A. Stanton, Kim M. Gernert, James H. Nettles, Ritu Aneja. Drugs that target dynamic microtubules: A new molecular perspective. Medicinal Research Reviews 2011, 31 (3) , 443-481. https://doi.org/10.1002/med.20242
  29. Christine Dyrager, Malin Wickström, Maria Fridén-Saxin, Annika Friberg, Kristian Dahlén, Erik A.A. Wallén, Joachim Gullbo, Morten Grøtli, Kristina Luthman. Inhibitors and promoters of tubulin polymerization: Synthesis and biological evaluation of chalcones and related dienones as potential anticancer agents. Bioorganic & Medicinal Chemistry 2011, 19 (8) , 2659-2665. https://doi.org/10.1016/j.bmc.2011.03.005
  30. François Devred, Pascale Barbier, Daniel Lafitte, Isabelle Landrieu, Guy Lippens, Vincent Peyrot. Microtubule and MAPs. 2010,,, 449-480. https://doi.org/10.1016/S0091-679X(10)95023-1
  31. Ahcene Boumendjel, Anne McLeer-Florin, Pierre Champelovier, Diane Allegro, Dima Muhammad, Florence Souard, Madiha Derouazi, Vincent Peyrot, Bertrand Toussaint, Jean Boutonnat. A novel chalcone derivative which acts as a microtubule depolymerising agent and an inhibitor of P-gp and BCRP in in-vitro and in-vivoglioblastoma models. BMC Cancer 2009, 9 (1) https://doi.org/10.1186/1471-2407-9-242
  32. Sylvie Ducki, Grant Mackenzie, Ben Greedy, Simon Armitage, Jérémie Fournier Dit Chabert, Elizabeth Bennett, Jim Nettles, James P. Snyder, Nicholas J. Lawrence. Combretastatin-like chalcones as inhibitors of microtubule polymerisation. Part 2: Structure-based discovery of alpha-aryl chalcones. Bioorganic & Medicinal Chemistry 2009, 17 (22) , 7711-7722. https://doi.org/10.1016/j.bmc.2009.09.044
  33. B.R. Hearn, S.J. Shaw, D.C. Myles. Microtubule Targeting Agents. 2007,,, 81-110. https://doi.org/10.1016/B0-08-045044-X/00205-4
  34. Do Yoon Kim, Kyun-Hwan Kim, Nam Doo Kim, Ki Young Lee, Cheol Kyu Han, Jeong Hyeok Yoon, Seung Kee Moon, Sung Sook Lee, Baik L. Seong. Design and Biological Evaluation of Novel Tubulin Inhibitors as Antimitotic Agents Using a Pharmacophore Binding Model with Tubulin. Journal of Medicinal Chemistry 2006, 49 (19) , 5664-5670. https://doi.org/10.1021/jm050761i
  35. Ritu Aneja, Surya N. Vangapandu, Manu Lopus, Vijaya G. Viswesarappa, Neerupma Dhiman, Akhilesh Verma, Ramesh Chandra, Dulal Panda, Harish C. Joshi. Synthesis of microtubule-interfering halogenated noscapine analogs that perturb mitosis in cancer cells followed by cell death. Biochemical Pharmacology 2006, 72 (4) , 415-426. https://doi.org/10.1016/j.bcp.2006.05.004
  36. Ritu Aneja, Surya N. Vangapandu, Manu Lopus, Ramesh Chandra, Dulal Panda, Harish C. Joshi. Development of a Novel Nitro-Derivative of Noscapine for the Potential Treatment of Drug-Resistant Ovarian Cancer and T-Cell Lymphoma. Molecular Pharmacology 2006, 69 (6) , 1801-1809. https://doi.org/10.1124/mol.105.021899
  37. B.A. Bhat, K.L. Dhar, S.C. Puri, A.K. Saxena, M. Shanmugavel, G.N. Qazi. Synthesis and biological evaluation of chalcones and their derived pyrazoles as potential cytotoxic agents. Bioorganic & Medicinal Chemistry Letters 2005, 15 (12) , 3177-3180. https://doi.org/10.1016/j.bmcl.2005.03.121
  38. Jun Zhou, Kamlesh Gupta, Shefali Aggarwal, Ritu Aneja, Ramesh Chandra, Dulal Panda, Harish C. Joshi. Brominated Derivatives of Noscapine Are Potent Microtubule-interfering Agents That Perturb Mitosis and Inhibit Cell Proliferation. Molecular Pharmacology 2003, 63 (4) , 799-807. https://doi.org/10.1124/mol.63.4.799
  39. Qun Li, Hing L Sham. Discovery and development of antimitotic agents that inhibit tubulin polymerisation for the treatment of cancer. Expert Opinion on Therapeutic Patents 2002, 12 (11) , 1663-1702. https://doi.org/10.1517/13543776.12.11.1663
  40. Allan Jordan, John A. Hadfield, Nicholas J. Lawrence, Alan T. McGown. Tubulin as a target for anticancer drugs: Agents which interact with the mitotic spindle. Medicinal Research Reviews 1998, 18 (4) , 259-296. https://doi.org/10.1002/(SICI)1098-1128(199807)18:4<259::AID-MED3>3.0.CO;2-U
  41. Sylvie Ducki, Richard Forrest, John A. Hadfield, Alex Kendall, Nicholas J. Lawrence, Alan T. McGown, David Rennison. Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorganic & Medicinal Chemistry Letters 1998, 8 (9) , 1051-1056. https://doi.org/10.1016/S0960-894X(98)00162-0
  42. Keqiang Ye, Yong Ke, Nagalakshmi Keshava, John Shanks, Judith A. Kapp, Rajeshwar R. Tekmal, John Petros, Harish C. Joshi. Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells. Proceedings of the National Academy of Sciences 1998, 95 (4) , 1601-1606. https://doi.org/10.1073/pnas.95.4.1601
  43. Susan L. Bane. Molecular Features of the Interaction of Colchicine and Related Structures with Tubulin. ,,, 259-279. https://doi.org/10.1007/978-1-59745-336-3_11

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

CONTINUE