ACS Publications. Most Trusted. Most Cited. Most Read
Soluble Guanylate Cyclase from Bovine Lung: Activation with Nitric Oxide and Carbon Monoxide and Spectral Characterization of the Ferrous and Ferric States
My Activity
    Article

    Soluble Guanylate Cyclase from Bovine Lung: Activation with Nitric Oxide and Carbon Monoxide and Spectral Characterization of the Ferrous and Ferric States
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 1994, 33, 18, 5636–5640
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi00184a036
    Published May 10, 1994

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 546 publications.

    1. Jiayuan Fu, Lisa-Marie Nisbett, Yulong Guo, Elizabeth M. Boon. NosP Detection of Heme Modulates Burkholderia thailandensis Biofilm Formation. Biochemistry 2023, 62 (16) , 2426-2441. https://doi.org/10.1021/acs.biochem.3c00187
    2. Elizabeth C. Wittenborn, William C. Thomas, Kimberly A. Houghton, Erika S. Wirachman, Yang Wu, Michael A. Marletta. Role of the Coiled-Coil Domain in Allosteric Activity Regulation in Soluble Guanylate Cyclase. Biochemistry 2023, 62 (10) , 1568-1576. https://doi.org/10.1021/acs.biochem.3c00052
    3. Dominique E. Williams, Natasha M. Nesbitt, Sandhya Muralidharan, Sajjad Hossain, Elizabeth M. Boon. H-NOX Regulates Biofilm Formation in Agrobacterium Vitis in Response to NO. Biochemistry 2023, 62 (4) , 912-922. https://doi.org/10.1021/acs.biochem.2c00639
    4. Nicolai Lehnert, Eunsuk Kim, Hai T. Dong, Jill B. Harland, Andrew P. Hunt, Elizabeth C. Manickas, Kady M. Oakley, John Pham, Garrett C. Reed, Victor Sosa Alfaro. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chemical Reviews 2021, 121 (24) , 14682-14905. https://doi.org/10.1021/acs.chemrev.1c00253
    5. Matthew R. Dent, Anthony W. DeMartino, Jesús Tejero, Mark T. Gladwin. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Inorganic Chemistry 2021, 60 (21) , 15918-15940. https://doi.org/10.1021/acs.inorgchem.1c01048
    6. Benjamin G. Horst, Edna M. Stewart, Aren A. Nazarian, Michael A. Marletta. Characterization of a Carbon Monoxide-Activated Soluble Guanylate Cyclase from Chlamydomonas reinhardtii. Biochemistry 2019, 58 (17) , 2250-2259. https://doi.org/10.1021/acs.biochem.9b00190
    7. Bezalel A. Bacon, Yilin Liu, James R. Kincaid, Elizabeth M. Boon. Spectral Characterization of a Novel NO Sensing Protein in Bacteria: NosP. Biochemistry 2018, 57 (43) , 6187-6200. https://doi.org/10.1021/acs.biochem.8b00451
    8. Levi A. Ekanger, Paul H. Oyala, Annie Moradian, Michael J. Sweredoski, Jacqueline K. Barton. Nitric Oxide Modulates Endonuclease III Redox Activity by a 800 mV Negative Shift upon [Fe4S4] Cluster Nitrosylation. Journal of the American Chemical Society 2018, 140 (37) , 11800-11810. https://doi.org/10.1021/jacs.8b07362
    9. Sajjad Hossain, Ilana Heckler, Elizabeth M. Boon. Discovery of a Nitric Oxide Responsive Quorum Sensing Circuit in Vibrio cholerae. ACS Chemical Biology 2018, 13 (8) , 1964-1969. https://doi.org/10.1021/acschembio.8b00360
    10. Ken Ling, Fang Men, Wei-Ci Wang, Ya-Qun Zhou, Hao-Wen Zhang, Da-Wei Ye. Carbon Monoxide and Its Controlled Release: Therapeutic Application, Detection, and Development of Carbon Monoxide Releasing Molecules (CORMs). Journal of Medicinal Chemistry 2018, 61 (7) , 2611-2635. https://doi.org/10.1021/acs.jmedchem.6b01153
    11. Ryu Makino, Yuji Obata, Motonari Tsubaki, Tetsutaro Iizuka, Yuki Hamajima, Yasuyuki Kato-Yamada, Keisuke Mashima, Yoshitsugu Shiro. Mechanistic Insights into the Activation of Soluble Guanylate Cyclase by Carbon Monoxide: A Multistep Mechanism Proposed for the BAY 41-2272 Induced Formation of 5-Coordinate CO–Heme. Biochemistry 2018, 57 (10) , 1620-1631. https://doi.org/10.1021/acs.biochem.7b01240
    12. W. Robert Scheidt, Jianfeng Li, and J. Timothy Sage . What Can Be Learned from Nuclear Resonance Vibrational Spectroscopy: Vibrational Dynamics and Hemes. Chemical Reviews 2017, 117 (19) , 12532-12563. https://doi.org/10.1021/acs.chemrev.7b00295
    13. Sajjad Hossain and Elizabeth M. Boon . Discovery of a Novel Nitric Oxide Binding Protein and Nitric-Oxide-Responsive Signaling Pathway in Pseudomonas aeruginosa. ACS Infectious Diseases 2017, 3 (6) , 454-461. https://doi.org/10.1021/acsinfecdis.7b00027
    14. Diep Nguyen and Cyrille Boyer . Macromolecular and Inorganic Nanomaterials Scaffolds for Carbon Monoxide Delivery: Recent Developments and Future Trends. ACS Biomaterials Science & Engineering 2015, 1 (10) , 895-913. https://doi.org/10.1021/acsbiomaterials.5b00230
    15. Nicolás Osa Codesido, Thomas Weyhermüller, José A. Olabe, and Leonardo D. Slep . Nitrosyl-Centered Redox and Acid–Base Interconversions in [Ru(Me3[9]aneN3)(bpy)(NO)]3,2,1+. The pKa of HNO for its Nitroxyl Derivative in Aqueous Solution. Inorganic Chemistry 2014, 53 (2) , 981-997. https://doi.org/10.1021/ic402448p
    16. Ryu Makino, Shinsuke Yazawa, Hiroshi Hori, and Yoshitsugu Shiro . Interactions of Soluble Guanylate Cyclase with a P-Site Inhibitor: Effects of Gaseous Heme Ligands, Azide, and Allosteric Activators on the Binding of 2′-Deoxy-3′-GMP. Biochemistry 2012, 51 (46) , 9277-9289. https://doi.org/10.1021/bi3004044
    17. Alexander Gunn, Emily R. Derbyshire, Michael A. Marletta, and R. David Britt . Conformationally Distinct Five-Coordinate Heme–NO Complexes of Soluble Guanylate Cyclase Elucidated by Multifrequency Electron Paramagnetic Resonance (EPR). Biochemistry 2012, 51 (42) , 8384-8390. https://doi.org/10.1021/bi300831m
    18. G. Silkstone, S. M. Kapetanaki, I. Husu, M. H. Vos, and M. T. Wilson . Nitric Oxide Binding to the Cardiolipin Complex of Ferric Cytochrome c. Biochemistry 2012, 51 (34) , 6760-6766. https://doi.org/10.1021/bi300582u
    19. Jose Carlos Toledo, Jr. and Ohara Augusto . Connecting the Chemical and Biological Properties of Nitric Oxide. Chemical Research in Toxicology 2012, 25 (5) , 975-989. https://doi.org/10.1021/tx300042g
    20. Niu Liu, Yueming Xu, Sajjad Hossain, Nick Huang, Dan Coursolle, Jeffrey A. Gralnick, and Elizabeth M. Boon . Nitric Oxide Regulation of Cyclic di-GMP Synthesis and Hydrolysis in Shewanella woodyi. Biochemistry 2012, 51 (10) , 2087-2099. https://doi.org/10.1021/bi201753f
    21. Chunmao He, Saburo Neya, and Markus Knipp . Breaking the Proximal FeII–NHis Bond in Heme Proteins through Local Structural Tension: Lessons from the Heme b Proteins Nitrophorin 4, Nitrophorin 7, and Related Site-Directed Mutant Proteins. Biochemistry 2011, 50 (40) , 8559-8575. https://doi.org/10.1021/bi201073t
    22. Junichi Taira, Masakazu Sugishima, Yutaka Kida, Eriko Oda, Masato Noguchi, and Yuichiro Higashimoto . Caveolin-1 Is a Competitive Inhibitor of Heme Oxygenase-1 (HO-1) with Heme: Identification of a Minimum Sequence in Caveolin-1 for Binding to HO-1. Biochemistry 2011, 50 (32) , 6824-6831. https://doi.org/10.1021/bi200601t
    23. Rosalie Tran, Emily E. Weinert, Elizabeth M. Boon, Richard A. Mathies, and Michael A. Marletta . Determinants of the Heme–CO Vibrational Modes in the H-NOX Family. Biochemistry 2011, 50 (30) , 6519-6530. https://doi.org/10.1021/bi200551s
    24. Pedro O. Quintas, Teresa Catarino, Smilja Todorovic, and David L. Turner . Highly Selective Ligand Binding by Methylophilus methylotrophus Cytochrome c′′. Biochemistry 2011, 50 (25) , 5624-5632. https://doi.org/10.1021/bi200480a
    25. Margarita A. Gonzalez, Nicole L. Fry, Richard Burt, Riddhi Davda, Adrian Hobbs, and Pradip K. Mascharak . Designed Iron Carbonyls as Carbon Monoxide (CO) Releasing Molecules: Rapid CO Release and Delivery to Myoglobin in Aqueous Buffer, and Vasorelaxation of Mouse Aorta. Inorganic Chemistry 2011, 50 (7) , 3127-3134. https://doi.org/10.1021/ic2000848
    26. Ah-Lim Tsai, Vladimir Berka, Faye Martin, Xiaolei Ma, Focco van den Akker, Marian Fabian and John S. Olson . Is Nostoc H-NOX a NO Sensor or Redox Switch?. Biochemistry 2010, 49 (31) , 6587-6599. https://doi.org/10.1021/bi1002234
    27. Saburo Neya, Masaaki Suzuki, Tyuji Hoshino, Hirotaka Ode, Kiyohiro Imai, Teruyuki Komatsu, Akira Ikezaki, Mikio Nakamura, Yuji Furutani and Hideki Kandori . Molecular Insight into Intrinsic Heme Distortion in Ligand Binding in Hemoprotein. Biochemistry 2010, 49 (27) , 5642-5650. https://doi.org/10.1021/bi1003553
    28. Thomas W. Miller, Jeff S. Isenberg and David D. Roberts. Molecular Regulation of Tumor Angiogenesis and Perfusion via Redox Signaling. Chemical Reviews 2009, 109 (7) , 3099-3124. https://doi.org/10.1021/cr8005125
    29. Saburo Neya, Masaaki Suzuki, Hirotaka Ode, Tyuji Hoshino, Yuji Furutani, Hideki Kandori, Hiroshi Hori, Kiyohiro Imai and Teruyuki Komatsu . Functional Evaluation of Iron Oxypyriporphyrin in Protein Heme Pocket. Inorganic Chemistry 2008, 47 (22) , 10771-10778. https://doi.org/10.1021/ic801406x
    30. Yi-Ju Chen, Wei-Chi Ku, Li-Ting Feng, Ming-Li Tsai, Chung-Hung Hsieh, Wen-Hwei Hsu, Wen-Feng Liaw, Chen-Hsiung Hung and Yu-Ju Chen . Nitric Oxide Physiological Responses and Delivery Mechanisms Probed by Water-Soluble Roussin’s Red Ester and {Fe(NO)2}10 DNIC. Journal of the American Chemical Society 2008, 130 (33) , 10929-10938. https://doi.org/10.1021/ja711494m
    31. Changliang Xu,, Mohammed Ibrahim, and, Thomas G. Spiro. DFT Analysis of Axial and Equatorial Effects on Heme−CO Vibrational Modes:  Applications to CooA and H−NOX Heme Sensor Proteins. Biochemistry 2008, 47 (8) , 2379-2387. https://doi.org/10.1021/bi702254y
    32. Shirley H. Huang,, Donald C. Rio, and, Michael A. Marletta. Ligand Binding and Inhibition of an Oxygen-Sensitive Soluble Guanylate Cyclase, Gyc-88E, from Drosophila. Biochemistry 2007, 46 (51) , 15115-15122. https://doi.org/10.1021/bi701771r
    33. Mark S. Price,, Lily Y. Chao, and, Michael A. Marletta. Shewanella oneidensis MR-1 H-NOX Regulation of a Histidine Kinase by Nitric Oxide. Biochemistry 2007, 46 (48) , 13677-13683. https://doi.org/10.1021/bi7019035
    34. Alexandra Ioanoviciu,, Erik T. Yukl,, Pierre Moënne-Loccoz, and, Paul R. Ortiz de Montellano. DevS, a Heme-Containing Two-Component Oxygen Sensor of Mycobacterium tuberculosis. Biochemistry 2007, 46 (14) , 4250-4260. https://doi.org/10.1021/bi602422p
    35. Shangwei Hou,, Mark F. Reynolds,, Frank T. Horrigan,, Stefan H. Heinemann, and, Toshinori Hoshi. Reversible Binding of Heme to Proteins in Cellular Signal Transduction. Accounts of Chemical Research 2006, 39 (12) , 918-924. https://doi.org/10.1021/ar040020w
    36. Ben J. Samelson-Jones and, Syun-Ru Yeh. Interactions between Nitric Oxide and Indoleamine 2,3-Dioxygenase. Biochemistry 2006, 45 (28) , 8527-8538. https://doi.org/10.1021/bi060143j
    37. Xiao-Qing Zhu,, Jian-Yu Zhang,, Lian-Rui Mei, and, Jin-Pei Cheng. Mechanism of NO Transfer from NO-Donors (SNAP and G-MNBS) to Ferrous Tetraphenylporphyrin in CH3OH. Organic Letters 2006, 8 (14) , 3065-3067. https://doi.org/10.1021/ol061021m
    38. Emily R. Derbyshire,, Rosalie Tran,, Richard A. Mathies, and, Michael A. Marletta. Characterization of Nitrosoalkane Binding and Activation of Soluble Guanylate Cyclase. Biochemistry 2005, 44 (49) , 16257-16265. https://doi.org/10.1021/bi0515671
    39. David S. Karow,, Duohai Pan,, Joseph H. Davis,, Sönke Behrends,, Richard A. Mathies, and, Michael A. Marletta. Characterization of Functional Heme Domains from Soluble Guanylate Cyclase. Biochemistry 2005, 44 (49) , 16266-16274. https://doi.org/10.1021/bi051601b
    40. Takeshi Uchida and, Teizo Kitagawa. Mechanism for Transduction of the Ligand-Binding Signal in Heme-Based Gas Sensory Proteins Revealed by Resonance Raman Spectroscopy. Accounts of Chemical Research 2005, 38 (8) , 662-670. https://doi.org/10.1021/ar030267d
    41. Emil Martin,, Kazimierz Czarnecki,, Vasanthi Jayaraman,, Ferid Murad, and, James Kincaid. Resonance Raman and Infrared Spectroscopic Studies of High-Output Forms of Human Soluble Guanylyl Cyclase. Journal of the American Chemical Society 2005, 127 (13) , 4625-4631. https://doi.org/10.1021/ja0440912
    42. Jonathan A. Winger and, Michael A. Marletta. Expression and Characterization of the Catalytic Domains of Soluble Guanylate Cyclase:  Interaction with the Heme Domain. Biochemistry 2005, 44 (10) , 4083-4090. https://doi.org/10.1021/bi047601d
    43. Zhengqiang Li,, Biswajit Pal,, Shigeo Takenaka,, Shingo Tsuyama, and, Teizo Kitagawa. Resonance Raman Evidence for the Presence of Two Heme Pocket Conformations with Varied Activities in CO-Bound Bovine Soluble Guanylate Cyclase and Their Conversion. Biochemistry 2005, 44 (3) , 939-946. https://doi.org/10.1021/bi0489208
    44. Luca G. Quaroni,, Harriet E. Seward,, Kirsty J. McLean,, Hazel M. Girvan,, Tobias W. B. Ost,, Michael A. Noble,, Sharon M. Kelly,, Nicholas C. Price,, Myles R. Cheesman,, W. Ewen Smith, and, Andrew W. Munro. Interaction of Nitric Oxide with Cytochrome P450 BM3. Biochemistry 2004, 43 (51) , 16416-16431. https://doi.org/10.1021/bi049163g
    45. David S. Karow,, Duohai Pan,, Rosalie Tran,, Patricia Pellicena,, Andrew Presley,, Richard A. Mathies, and, Michael A. Marletta. Spectroscopic Characterization of the Soluble Guanylate Cyclase-like Heme Domains from Vibrio cholerae and Thermoanaerobacter tengcongensis. Biochemistry 2004, 43 (31) , 10203-10211. https://doi.org/10.1021/bi049374l
    46. Christophe Colas and, Paul R. Ortiz de Montellano. Autocatalytic Radical Reactions in Physiological Prosthetic Heme Modification. Chemical Reviews 2003, 103 (6) , 2305-2332. https://doi.org/10.1021/cr0204303
    47. Xiao-Qing Zhu,, Qian Li,, Wei-Fang Hao, and, Jin-Pei Cheng. Dissociation Energies and Charge Distribution of the Co−NO Bond for Nitrosyl-α,β,γ,δ-tetraphenylporphinatocobalt(II) and Nitrosyl-α,β,γ,δ-tetraphenylporphinatocobalt(III) in Benzonitrile Solution. Journal of the American Chemical Society 2002, 124 (33) , 9887-9893. https://doi.org/10.1021/ja0201956
    48. Peng George Wang,, Ming Xian,, Xiaoping Tang,, Xuejun Wu,, Zhong Wen,, Tingwei Cai, and, Adam J. Janczuk. Nitric Oxide Donors:  Chemical Activities and Biological Applications. Chemical Reviews 2002, 102 (4) , 1091-1134. https://doi.org/10.1021/cr000040l
    49. Graeme R. A. Wyllie and, W. Robert Scheidt. Solid-State Structures of Metalloporphyrin NOx Compounds. Chemical Reviews 2002, 102 (4) , 1067-1090. https://doi.org/10.1021/cr000080p
    50. David L. Selwood,, David G. Brummell,, Joanna Budworth,, Guillaume E. Burtin,, Richard O. Campbell,, Surinder S. Chana,, Ian G. Charles,, Patricia A. Fernandez,, Robert C. Glen,, Maria C. Goggin,, Adrian J. Hobbs,, Marcel R. Kling,, Qian Liu,, David J. Madge,, Sylvie Meillerais,, Kenneth L. Powell,, Karen Reynolds,, Graham D. Spacey,, Jeremy N. Stables,, Mark A. Tatlock,, Kerry A. Wheeler,, Grant Wishart, and, Chi-Kit Woo. Synthesis and Biological Evaluation of Novel Pyrazoles and Indazoles as Activators of the Nitric Oxide Receptor, Soluble Guanylate Cyclase. Journal of Medicinal Chemistry 2001, 44 (1) , 78-93. https://doi.org/10.1021/jm001034k
    51. S. Patchkovskii and, T. Ziegler. Structural Origin of Two Paramagnetic Species in Six-Coordinated Nitrosoiron(II) Porphyrins Revealed by Density Functional Theory Analysis of the g Tensors. Inorganic Chemistry 2000, 39 (23) , 5354-5364. https://doi.org/10.1021/ic0005691
    52. Li Chen,, Masood A. Khan, and, George B. Richter-Addo. Nitrosylation of Octaethylporphyrin Osmium Complexes with Alkyl Nitrites and Thionitrites:  Molecular Structures of Three Osmium Porphyrin Derivatives. Inorganic Chemistry 1998, 37 (3) , 533-540. https://doi.org/10.1021/ic9708576
    53. Geun-Bae Yi,, Li Chen,, Masood A. Khan, and, George B. Richter-Addo. Activation of Thionitrites and Isoamyl Nitrite by Group 8 Metalloporphyrins and the Subsequent Generation of Nitrosyl Thiolates and Alkoxides of Ruthenium and Osmium Porphyrins. Inorganic Chemistry 1997, 36 (18) , 3876-3885. https://doi.org/10.1021/ic970282c
    54. Geurt Deinum,, James R. Stone,, Gerald T. Babcock, and, Michael A. Marletta. Binding of Nitric Oxide and Carbon Monoxide to Soluble Guanylate Cyclase As Observed with Resonance Raman Spectroscopy. Biochemistry 1996, 35 (5) , 1540-1547. https://doi.org/10.1021/bi952440m
    55. Karl M. Kadish,, Victor A. Adamian,, Eric Van Caemelbecke,, Zheng Tan,, Pietro Tagliatesta,, Paola Bianco,, Tristano Boschi,, Geun-Bae Yi,, Masood A. Khan, and, George B. Richter-Addo. Synthesis, Characterization, and Electrochemistry of Ruthenium Porphyrins Containing a Nitrosyl Axial Ligand. Inorganic Chemistry 1996, 35 (5) , 1343-1348. https://doi.org/10.1021/ic950799t
    56. George B. Richter-Addo,, Shelly J. Hodge,, Geun-Bae Yi,, Masood A. Khan,, Tianshu Ma,, Eric Van Caemelbecke,, Ning Guo, and, Karl M. Kadish. Synthesis, Characterization, and Spectroelectrochemistry of Cobalt Porphyrins Containing Axially Bound Nitric Oxide. Inorganic Chemistry 1996, 35 (22) , 6530-6538. https://doi.org/10.1021/ic960031o
    57. Seonyoung Kim,, Geurt Deinum,, Matthew T. Gardner,, Michael A. Marletta, and, Gerald T. Babcock. Distal Pocket Polarity in the Unusual Ligand Binding Site of Soluble Guanylate Cyclase:  Implications for the Control of •NO Binding. Journal of the American Chemical Society 1996, 118 (36) , 8769-8770. https://doi.org/10.1021/ja961411b
    58. Theresa Wittrien, Anne Rühle, Christin Elgert, Ilka Mathar, Peter Sandner, Sönke Behrends. Runcaciguat activates soluble guanylyl cyclase via the histidine essential for heme binding and nitric oxide activation. Biochemical Pharmacology 2025, 232 , 116739. https://doi.org/10.1016/j.bcp.2025.116739
    59. Dalila Andrade Pereira, Danillo Andrade Pereira, Tammyris Helena Rebecchi Silveira, Fabiano Beraldi Calmasini, Arthur L. Burnett, Fernando Ferreira Costa, Fábio Henrique Silva. Heme‐induced corpus cavernosum relaxation and its implications for priapism in sickle cell disease: a mechanistic insight. Andrology 2024, 12 (8) , 1857-1864. https://doi.org/10.1111/andr.13599
    60. Tammyris Helena Rebecchi Silveira, Fabiano Beraldi Calmasini, Mariana Gonçalves de Oliveira, Fernando Ferreira Costa, Fábio Henrique Silva. Targeting heme in sickle cell disease: new perspectives on priapism treatment. Frontiers in Physiology 2024, 15 https://doi.org/10.3389/fphys.2024.1435220
    61. Francesca Bonomi, Ettore Limido, Andrea Weinzierl, Yves Harder, Michael D. Menger, Matthias W. Laschke. Preconditioning Strategies for Improving the Outcome of Fat Grafting. Tissue Engineering Part B: Reviews 2024, 30 https://doi.org/10.1089/ten.teb.2024.0090
    62. Giovanna De Simone, Alessandra di Masi, Diego Sbardella, Paolo Ascenzi, Massimiliano Coletta. Nitric Oxide Binding Geometry in Heme-Proteins: Relevance for Signal Transduction. Antioxidants 2024, 13 (6) , 666. https://doi.org/10.3390/antiox13060666
    63. Francesca Bonomi, Ettore Limido, Andrea Weinzierl, Yves Harder, Michael D. Menger, Matthias W. Laschke. Preconditioning strategies for improving the outcome of fat grafting. Tissue Engineering Part B: Reviews 2024, 30 https://doi.org/10.1089/ten.TEB.2024.0090
    64. Mohammad Masood, Prithvi Singh, Daaniyaal Hariss, Faizya Khan, Daraksha Yameen, Seerat Siraj, Asimul Islam, Ravins Dohare, Mohammad Mahfuzul Haque. Nitric oxide as a double-edged sword in pulmonary viral infections: Mechanistic insights and potential therapeutic implications. Gene 2024, 899 , 148148. https://doi.org/10.1016/j.gene.2024.148148
    65. Fergus M. Payne, Samantha Nie, Gary M. Diffee, Gerard T. Wilkins, David S. Larsen, Joanne C. Harrison, James C. Baldi, Ivan A. Sammut. The carbon monoxide prodrug oCOm ‐21 increases Ca 2+ sensitivity of the cardiac myofilament. Physiological Reports 2024, 12 (6) https://doi.org/10.14814/phy2.15974
    66. Kundan Solanki, Evgeny Bezsonov, Alexander Orekhov, Suraj P. Parihar, Shivani Vaja, Fletcher A. White, Alexander G. Obukhov, Mirza S. Baig. Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascular Pharmacology 2024, 154 , 107282. https://doi.org/10.1016/j.vph.2024.107282
    67. Rafat Ali, Shantanu Sen, Rohil Hameed, Aamir Nazir, Sandeep Verma. Strategies for gaseous neuromodulator release in chemical neuroscience: Experimental approaches and translational validation. Journal of Controlled Release 2024, 365 , 132-160. https://doi.org/10.1016/j.jconrel.2023.11.014
    68. Giovanna De Simone, Sara Della Monaca, Paola Fattibene, Alessio Bocedi, Massimo Coletta, Paolo Ascenzi. Ferrous nitrosylated cytochrome c: The unusual strength of the proximal His18-Fe bond. Journal of Inorganic Biochemistry 2023, 247 , 112338. https://doi.org/10.1016/j.jinorgbio.2023.112338
    69. Huanying Liu, Ting Liu, Qian Qin, Bingyu Li, Fasheng Li, Boyu Zhang, Wen Sun. The importance of and difficulties involved in creating molecular probes for a carbon monoxide gasotransmitter. The Analyst 2023, 148 (17) , 3952-3970. https://doi.org/10.1039/D3AN00849E
    70. Zhaoqing Yu, Wei Zhang, He Yang, Shan-Ho Chou, Michael Y Galperin, Jin He. Gas and light: triggers of c-di-GMP-mediated regulation. FEMS Microbiology Reviews 2023, 47 (4) https://doi.org/10.1093/femsre/fuad034
    71. Alexandra K. McGregor, Anson C.K. Chan, Megan D. Schroeder, Long T.M. Do, Gurpreet Saini, Michael E.P. Murphy, Kirsten R. Wolthers. A new member of the flavodoxin superfamily from Fusobacterium nucleatum that functions in heme trafficking and reduction of anaerobilin. Journal of Biological Chemistry 2023, 299 (7) , 104902. https://doi.org/10.1016/j.jbc.2023.104902
    72. Ishaq Lugoloobi, Yuanmeng Fang, Faxing Jiang, Guoying Zhang, Jinming Hu. Gaseous signaling molecule-releasing hybrid nanomaterials for therapeutic applications. Giant 2023, 14 , 100153. https://doi.org/10.1016/j.giant.2023.100153
    73. Rui Liu, Yunlu Kang, Lei Chen. NO binds to the distal site of haem in the fully activated soluble guanylate cyclase. Nitric Oxide 2023, 134-135 , 17-22. https://doi.org/10.1016/j.niox.2023.03.002
    74. Iraida Sharina, Emil Martin. Cellular Factors That Shape the Activity or Function of Nitric Oxide-Stimulated Soluble Guanylyl Cyclase. Cells 2023, 12 (3) , 471. https://doi.org/10.3390/cells12030471
    75. Qingqiang Min, Xingyue Ji. Strategies toward Metal‐Free Carbon Monoxide Prodrugs: An Update. ChemMedChem 2023, 18 (1) https://doi.org/10.1002/cmdc.202200500
    76. Gang Wu, Iraida Sharina, Emil Martin. Soluble guanylyl cyclase: Molecular basis for ligand selectivity and action in vitro and in vivo. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.1007768
    77. Jun Guo, Xi Yu, Yanping Liu, Likui Lu, Dan Zhu, Yingying Zhang, Lingjun Li, Pengjie Zhang, Qinqin Gao, Xiyuan Lu, Miao Sun. Prenatal hypothyroidism diminished exogenous NO-mediated diastolic effects in fetal rat thoracic aorta smooth muscle via increased oxidative stress. Reproductive Toxicology 2022, 113 , 52-61. https://doi.org/10.1016/j.reprotox.2022.08.009
    78. Ana Paula Magrini Iacopucci, Pamela da Silva Pereira, Dalila Andrade Pereira, Fabiano Beraldi Calmasini, Valeria Pittalà, Leonardo Oliveira Reis, Arthur L. Burnett, Fernando Ferreira Costa, Fábio Henrique Silva. Intravascular hemolysis leads to exaggerated corpus cavernosum relaxation: Implication for priapism in sickle cell disease. The FASEB Journal 2022, 36 (10) https://doi.org/10.1096/fj.202200867R
    79. Ahmed M. Rozza, Marcell Papp, Neil R. McFarlane, Jeremy N. Harvey, Julianna Oláh. The Mechanism of Biochemical NO‐Sensing: Insights from Computational Chemistry. Chemistry – A European Journal 2022, 28 (49) https://doi.org/10.1002/chem.202200930
    80. Valeria Manuelli, Chiara Pecorari, Giuseppe Filomeni, Ester Zito. Regulation of redox signaling in HIF‐1‐dependent tumor angiogenesis. The FEBS Journal 2022, 289 (18) , 5413-5425. https://doi.org/10.1111/febs.16110
    81. Zahra Bahadoran, Parvin Mirmiran, Khosrow Kashfi, Asghar Ghasemi. Carbon monoxide and β-cell function: Implications for type 2 diabetes mellitus. Biochemical Pharmacology 2022, 201 , 115048. https://doi.org/10.1016/j.bcp.2022.115048
    82. Zhengnan Yuan, Ladie Kimberly De La Cruz, Xiaoxiao Yang, Binghe Wang, Qiang Ma. Carbon Monoxide Signaling: Examining Its Engagement with Various Molecular Targets in the Context of Binding Affinity, Concentration, and Biologic Response. Pharmacological Reviews 2022, 74 (3) , 825-875. https://doi.org/10.1124/pharmrev.121.000564
    83. Wen Lu, Xiaoxiao Yang, Binghe Wang. Carbon monoxide signaling and soluble guanylyl cyclase: Facts, myths, and intriguing possibilities. Biochemical Pharmacology 2022, 200 , 115041. https://doi.org/10.1016/j.bcp.2022.115041
    84. Stefano Gianni, Carlo Valsecchi, Lorenzo Berra. Therapeutic Gases and Inhaled Anesthetics as Adjunctive Therapies in Critically Ill Patients. Seminars in Respiratory and Critical Care Medicine 2022, 43 (03) , 440-452. https://doi.org/10.1055/s-0042-1747966
    85. Andreas Friebe, Nils Englert. NO‐sensitive guanylyl cyclase in the lung. British Journal of Pharmacology 2022, 179 (11) , 2328-2343. https://doi.org/10.1111/bph.15345
    86. Sofia M. Kapetanaki, Zsuzsanna Fekete, Pierre Dorlet, Marten H. Vos, Ursula Liebl, Andras Lukacs. Molecular insights into the role of heme in the transcriptional regulatory system AppA/PpsR. Biophysical Journal 2022, 121 (11) , 2135-2151. https://doi.org/10.1016/j.bpj.2022.04.031
    87. , , . Molecular Mechanisms of Actions for CO. 2022, 27-43. https://doi.org/10.1002/9781119783435.ch2
    88. Chiho Sumi‐Ichinose, Yui Suganuma, Taiki Kano, Kazuhisa Ikemoto, Noriko Ihira, Hiroshi Ichinose, Kazunao Kondo. Priapism caused by partial deficiency of tetrahydrobiopterin through hypofunction of the sympathetic neurons in sepiapterin reductase gene‐disrupted mice. Journal of Inherited Metabolic Disease 2022, 45 (3) , 621-634. https://doi.org/10.1002/jimd.12489
    89. Yilin Liu, James R. Kincaid. Resonance Raman studies of gas sensing heme proteins. Journal of Raman Spectroscopy 2021, 52 (12) , 2516-2535. https://doi.org/10.1002/jrs.6193
    90. Rui Liu, Yunlu Kang, Lei Chen. Activation mechanism of human soluble guanylate cyclase by stimulators and activators. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-25617-0
    91. Luiz Gonzaga de França Lopes, Florêncio S. Gouveia Júnior, Alda Karine Medeiros Holanda, Idalina Maria Moreira de Carvalho, Elisane Longhinotti, Tércio F. Paulo, Dieric S. Abreu, Paul V. Bernhardt, Marie-Alda Gilles-Gonzalez, Izaura Cirino Nogueira Diógenes, Eduardo Henrique Silva Sousa. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coordination Chemistry Reviews 2021, 445 , 214096. https://doi.org/10.1016/j.ccr.2021.214096
    92. Aloysius Wong, Ningxin Hu, Xuechen Tian, Yixin Yang, Christoph Gehring. Nitric oxide sensing revisited. Trends in Plant Science 2021, 26 (9) , 885-897. https://doi.org/10.1016/j.tplants.2021.03.009
    93. Wout Verbeure, Harry van Goor, Hideki Mori, André P. van Beek, Jan Tack, Peter R. van Dijk. The Role of Gasotransmitters in Gut Peptide Actions. Frontiers in Pharmacology 2021, 12 https://doi.org/10.3389/fphar.2021.720703
    94. R. C. Maurya, J. M. Mir. Nitric Oxide, Carbon Monoxide, and Hydrogen Sulfide as Biologically Important Signaling Molecules With the Significance of Their Respective Donors in Ophthalmic Diseases. 2021, 343-378. https://doi.org/10.1002/9781119640929.ch12
    95. Elizabeth C. Wittenborn, Michael A. Marletta. Structural Perspectives on the Mechanism of Soluble Guanylate Cyclase Activation. International Journal of Molecular Sciences 2021, 22 (11) , 5439. https://doi.org/10.3390/ijms22115439
    96. José Guadalupe Hernández, Jayanthi Narayanan, Elías Granados Hernández, Pandiyan Thangarasu. Understanding of [RuL(ONO)]n+ acting as nitric oxide precursor, a theoretical study of ruthenium complexes of 1,4,8,11-tetraazacyclo- tetradecane having different substituents: How spin multiplicity influences bond angle and bond lengths (Ru-O-NO) in releasing of NO. Journal of Inorganic Biochemistry 2021, 218 , 111406. https://doi.org/10.1016/j.jinorgbio.2021.111406
    97. Patrycja Kaczara, Kamil Przyborowski, Tasnim Mohaissen, Stefan Chlopicki. Distinct Pharmacological Properties of Gaseous CO and CO-Releasing Molecule in Human Platelets. International Journal of Molecular Sciences 2021, 22 (7) , 3584. https://doi.org/10.3390/ijms22073584
    98. Salvatore Rizza, Giuseppe Filomeni. Exploiting S- nitrosylation for cancer therapy: facts and perspectives. Biochemical Journal 2020, 477 (19) , 3649-3672. https://doi.org/10.1042/BCJ20200064
    99. Yang Zhou, Wenqi Yu, Jun Cao, Huile Gao. Harnessing carbon monoxide-releasing platforms for cancer therapy. Biomaterials 2020, 255 , 120193. https://doi.org/10.1016/j.biomaterials.2020.120193
    100. Ilana Heckler, Sajjad Hossain, Elizabeth M. Boon. Heme inhibits the activity of a c-di-GMP phosphodiesterase in Vibrio cholerae. Biochemical and Biophysical Research Communications 2020, 529 (4) , 1112-1116. https://doi.org/10.1016/j.bbrc.2020.06.048
    Load more citations

    Biochemistry

    Cite this: Biochemistry 1994, 33, 18, 5636–5640
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi00184a036
    Published May 10, 1994

    Article Views

    1165

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.