Spectrum of Antimicrobial Activity and Assembly of Dermaseptin-b and Its Precursor Form in Phospholipid MembranesClick to copy article linkArticle link copied!

Note: In lieu of an abstract, this is the article's first page.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 109 publications.
- Jakub Brzeski, Dariusz Wyrzykowski, Agnieszka Chylewska, Mariusz Makowski, Anna Maria Papini, Joanna Makowska. Metal-Ion Interactions with Dodecapeptide Fragments of Human Cationic Antimicrobial Protein LL-37 [hCAP(134–170)]. The Journal of Physical Chemistry B 2022, 126
(36)
, 6911-6921. https://doi.org/10.1021/acs.jpcb.2c05200
- Sonia André, Shannon K. Washington, Emily Darby, Marvin M. Vega, Ari D. Filip, Nathaniel S. Ash, Katy A. Muzikar, Christophe Piesse, Thierry Foulon, Daniel J. O’Leary, Ali Ladram. Structure–Activity Relationship-based Optimization of Small Temporin-SHf Analogs with Potent Antibacterial Activity. ACS Chemical Biology 2015, 10
(10)
, 2257-2266. https://doi.org/10.1021/acschembio.5b00495
- Dmytro P. Yevtushenko Santosh Misra . Transgenic Expression of Antimicrobial Peptides in Plants: Strategies for Enhanced Disease Resistance, Improved Productivity, and Production of Therapeutics. 2012, 445-458. https://doi.org/10.1021/bk-2012-1095.ch021
- Cécile Galanth, Feten Abbassi, Olivier Lequin, Jésus Ayala-Sanmartin, Ali Ladram, Pierre Nicolas and Mohamed Amiche . Mechanism of Antibacterial Action of Dermaseptin B2: Interplay between Helix−Hinge−Helix Structure and Membrane Curvature Strain. Biochemistry 2009, 48
(2)
, 313-327. https://doi.org/10.1021/bi802025a
- Peter V. Dubovskii,, Pavel E. Volynsky,, Anton A. Polyansky,, Vladimir V. Chupin,, Roman G. Efremov, and, Alexander S. Arseniev. Spatial Structure and Activity Mechanism of a Novel Spider Antimicrobial Peptide,. Biochemistry 2006, 45
(35)
, 10759-10767. https://doi.org/10.1021/bi060635w
- Emilie A. Porter,, Bernard Weisblum, and, Samuel H. Gellman. Use of Parallel Synthesis To Probe Structure−Activity Relationships among 12-Helical β-Peptides: Evidence of a Limit on Antimicrobial Activity. Journal of the American Chemical Society 2005, 127
(32)
, 11516-11529. https://doi.org/10.1021/ja0519785
- Antje Pokorny,, T. Harry Birkbeck, and, Paulo F. F. Almeida. Mechanism and Kinetics of δ-Lysin Interaction with Phospholipid Vesicles. Biochemistry 2002, 41
(36)
, 11044-11056. https://doi.org/10.1021/bi020244r
- Emilie A. Porter,, Bernard Weisblum, and, Samuel H. Gellman. Mimicry of Host-Defense Peptides by Unnatural Oligomers: Antimicrobial β-Peptides. Journal of the American Chemical Society 2002, 124
(25)
, 7324-7330. https://doi.org/10.1021/ja0260871
- Carolina Proaño-Bolaños, Giovanna Morán-Marcillo, Nina Espinosa de los Monteros-Silva, Sebastián Bermúdez-Puga, Mateo A. Salazar, Ailín Blasco-Zúñiga, Sebastián Cuesta, Carolina Molina, Franklin Espinosa, Lorena Meneses, Patricio Rojas-Silva, Sonia Zapata Mena, Fabián E. Sáenz, Miryan Rivera I., Jaime A. Costales, . Bioactivity of synthetic peptides from Ecuadorian frog skin secretions against
Leishmania mexicana
,
Plasmodium falciparum
, and
Trypanosoma cruzi. Microbiology Spectrum 2024, 12
(8)
https://doi.org/10.1128/spectrum.03339-23
- Houda Haddad, Radhia Mejri, Amira Zaïri. Evaluation of the Antibacterial Activity of New Dermaseptin Derivatives against Acinetobacter baumannii. Pharmaceuticals 2024, 17
(2)
, 171. https://doi.org/10.3390/ph17020171
- Ziba Nazari, Farhad Nazarian-Firouzabadi, Ahmad Ismaili, Mostafa Darvishnia. Transgenic tobacco plants expressing a chimeric antimicrobial protein show disease resistance to plant diseases. Physiological and Molecular Plant Pathology 2023, 127 , 102083. https://doi.org/10.1016/j.pmpp.2023.102083
- Kenichi Kawano, Kouhei Kamasaka, Fumiaki Yokoyama, Jun Kawamoto, Takuya Ogawa, Tatsuo Kurihara, Katsumi Matsuzaki. Structural factors governing binding of curvature-sensing peptides to bacterial extracellular vesicles covered with hydrophilic polysaccharide chains. Biophysical Chemistry 2023, 299 , 107039. https://doi.org/10.1016/j.bpc.2023.107039
- P. Prajosh, H. Shabeer Ali, Renu Tripathi, K. Sreejith. Antimicrobial lipopeptides of bacterial origin—the molecules of future antimicrobial chemotherapy. 2023, 81-98. https://doi.org/10.1016/B978-0-323-85682-9.00013-1
- Haixin Qin, Weimin Zuo, Lilin Ge, Shirley W.I. Siu, Lei Wang, Xiaoling Chen, Chengbang Ma, Tianbao Chen, Mei Zhou, Zhijian Cao, Hang Fai Kwok. Discovery and analysis of a novel antimicrobial peptide B1AW from the skin secretion of Amolops wuyiensis and improving the membrane-binding affinity through the construction of the lysine-introduced analogue. Computational and Structural Biotechnology Journal 2023, 21 , 2960-2972. https://doi.org/10.1016/j.csbj.2023.05.006
- Ahmed A. Abdille, Shedrack Reuben Kitimu, Mark M. Ndubi, Josephine Kimani, Esther N. Maina, Wallace Bulimo, Yahaya Gavamukulya, Fred Wamunyokoli. Sub-acute and sub-chronic toxicity assessment of the antimicrobial peptide Dermaseptin B2 on biochemical, haematological and histopathological parameters in BALB/c mice and Albino Wistar rats. Heliyon 2022, 8
(12)
, e12124. https://doi.org/10.1016/j.heliyon.2022.e12124
- Hnin Yu Lwin, Yukari Aoki-Nonaka, Aoi Matsugishi, Naoki Takahashi, Takumi Hiyoshi, Koichi Tabeta. Soybean peptide inhibits the biofilm of periodontopathic bacteria via bactericidal activity. Archives of Oral Biology 2022, 142 , 105497. https://doi.org/10.1016/j.archoralbio.2022.105497
- Paola Ruiz Puentes, Maria C. Henao, Javier Cifuentes, Carolina Muñoz-Camargo, Luis H. Reyes, Juan C. Cruz, Pablo Arbeláez. Rational Discovery of Antimicrobial Peptides by Means of Artificial Intelligence. Membranes 2022, 12
(7)
, 708. https://doi.org/10.3390/membranes12070708
- Caitlin Thompson, Martin L Williams. Review of the physiological effects of Phyllomedusa bicolor skin secretion peptides on humans receiving Kambô. Toxicology Research and Application 2022, 6 https://doi.org/10.1177/23978473221085746
- Kenichi Kawano, Fumiaki Yokoyama, Kouhei Kamasaka, Jun Kawamoto, Takuya Ogawa, Tatsuo Kurihara, Shiroh Futaki. Design of the N-Terminus Substituted Curvature-Sensing Peptides That Exhibit Highly Sensitive Detection Ability of Bacterial Extracellular Vesicles. Chemical and Pharmaceutical Bulletin 2021, 69
(11)
, 1075-1082. https://doi.org/10.1248/cpb.c21-00516
- Kenichi Kawano, Fumiaki Yokoyama, Jun Kawamoto, Takuya Ogawa, Tatsuo Kurihara, Shiroh Futaki. Development of a Simple and Rapid Method for In Situ Vesicle Detection in Cultured Media. Journal of Molecular Biology 2020, 432
(22)
, 5876-5888. https://doi.org/10.1016/j.jmb.2020.09.009
- Mitra Khademi, Marzieh Varasteh-Shams, Farhad Nazarian-Firouzabadi, Ahmad Ismaili. New Recombinant Antimicrobial Peptides Confer Resistance to Fungal Pathogens in Tobacco Plants. Frontiers in Plant Science 2020, 11 https://doi.org/10.3389/fpls.2020.01236
- Emiel Jacob Henri Bartels, Douwe Dekker, Mohamed Amiche. Dermaseptins, Multifunctional Antimicrobial Peptides: A Review of Their Pharmacology, Effectivity, Mechanism of Action, and Possible Future Directions. Frontiers in Pharmacology 2019, 10 https://doi.org/10.3389/fphar.2019.01421
- Jiri Patocka, Eugenie Nepovimova, Blanka Klimova, Qinghua Wu, Kamil Kuca. Antimicrobial Peptides: Amphibian Host Defense Peptides. Current Medicinal Chemistry 2019, 26
(32)
, 5924-5946. https://doi.org/10.2174/0929867325666180713125314
- Kenichi Kawano, Masaya Ogushi, Toshihiro Masuda, Shiroh Futaki. Development of a Membrane Curvature-Sensing Peptide Based on a Structure–Activity Correlation Study. Chemical and Pharmaceutical Bulletin 2019, 67
(10)
, 1131-1138. https://doi.org/10.1248/cpb.c19-00465
- Marzieh Varasteh Shams, Farhad Nazarian-Firouzabadi, Ahmad Ismaili, Reza Shirzadian-Khorramabad. Production of a Recombinant Dermaseptin Peptide in Nicotiana tabacum Hairy Roots with Enhanced Antimicrobial Activity. Molecular Biotechnology 2019, 61
(4)
, 241-252. https://doi.org/10.1007/s12033-019-00153-x
- Daniel A. Holdbrook, Shalini Singh, Yeu Khai Choong, Jitka Petrlova, Martin Malmsten, Peter J. Bond, Navin Kumar Verma, Artur Schmidtchen, Rathi Saravanan. Influence of pH on the activity of thrombin-derived antimicrobial peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes 2018, 1860
(11)
, 2374-2384. https://doi.org/10.1016/j.bbamem.2018.06.002
- Yining Tan, Xiaoling Chen, Chengbang Ma, Xinping Xi, Lei Wang, Mei Zhou, James F. Burrows, Hang Fai Kwok, Tianbao Chen. Biological Activities of Cationicity-Enhanced and Hydrophobicity-Optimized Analogues of an Antimicrobial Peptide, Dermaseptin-PS3, from the Skin Secretion of Phyllomedusa sauvagii. Toxins 2018, 10
(8)
, 320. https://doi.org/10.3390/toxins10080320
- A. Belmadani, A. Semlali, M. Rouabhia. Dermaseptin-S1 decreases
Candida albicans
growth, biofilm formation and the expression of hyphal wall protein 1 and aspartic protease genes. Journal of Applied Microbiology 2018, 125
(1)
, 72-83. https://doi.org/10.1111/jam.13745
- Andrea Sala, Clotilde Silvia Cabassi, Davide Santospirito, Eugenia Polverini, Sara Flisi, Sandro Cavirani, Simone Taddei, . Novel Naja atra cardiotoxin 1 (CTX-1) derived antimicrobial peptides with broad spectrum activity. PLOS ONE 2018, 13
(1)
, e0190778. https://doi.org/10.1371/journal.pone.0190778
- Bruno Casciaro, Floriana Cappiello, Mauro Cacciafesta, Maria Luisa Mangoni. Promising Approaches to Optimize the Biological Properties of the Antimicrobial Peptide Esculentin-1a(1–21)NH2: Amino Acids Substitution and Conjugation to Nanoparticles. Frontiers in Chemistry 2017, 5 https://doi.org/10.3389/fchem.2017.00026
- Barbara Biondi, Bruno Casciaro, Antonio Di Grazia, Floriana Cappiello, Vincenzo Luca, Marco Crisma, Maria Luisa Mangoni. Effects of Aib residues insertion on the structural–functional properties of the frog skin-derived peptide esculentin-1a(1–21)NH2. Amino Acids 2017, 49
(1)
, 139-150. https://doi.org/10.1007/s00726-016-2341-x
- Daning Shi, Xiaojuan Hou, Lei Wang, Yitian Gao, Di Wu, Xinping Xi, Mei Zhou, Hang Kwok, Jinao Duan, Tianbao Chen, Chris Shaw. Two Novel Dermaseptin-Like Antimicrobial Peptides with Anticancer Activities from the Skin Secretion of Pachymedusa dacnicolor. Toxins 2016, 8
(5)
, 144. https://doi.org/10.3390/toxins8050144
- Pramod Shah, Felix Shih‐Hsiang Hsiao, Yu‐Hsuan Ho, Chien‐Sheng Chen. The proteome targets of intracellular targeting antimicrobial peptides. PROTEOMICS 2016, 16
(8)
, 1225-1237. https://doi.org/10.1002/pmic.201500380
- Antonio Di Grazia, Floriana Cappiello, Hadar Cohen, Bruno Casciaro, Vincenzo Luca, Alessandro Pini, Y. Peter Di, Yechiel Shai, Maria Luisa Mangoni. d-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions. Amino Acids 2015, 47
(12)
, 2505-2519. https://doi.org/10.1007/s00726-015-2041-y
- Francesco Giansanti, Loris Leboffe, Francesco Angelucci, Giovanni Antonini. The Nutraceutical Properties of Ovotransferrin and Its Potential Utilization as a Functional Food. Nutrients 2015, 7
(11)
, 9105-9115. https://doi.org/10.3390/nu7115453
- Dejun Lin, Alan Grossfield. Thermodynamics of Micelle Formation and Membrane Fusion Modulate Antimicrobial Lipopeptide Activity. Biophysical Journal 2015, 109
(4)
, 750-759. https://doi.org/10.1016/j.bpj.2015.07.011
- Claudia Szczepanski, Olav Tenstad, Anne Baumann, Aurora Martinez, Reidar Myklebust, Rolf Bjerkvig, Lars Prestegarden. Identification of a novel lytic peptide for the treatment of solid tumours. Genes & Cancer 2014, 5
(5-6)
, 186-200. https://doi.org/10.18632/genesandcancer.18
- Nathan W. Schmidt, Gerard C.L. Wong. Antimicrobial peptides and induced membrane curvature: Geometry, coordination chemistry, and molecular engineering. Current Opinion in Solid State and Materials Science 2013, 17
(4)
, 151-163. https://doi.org/10.1016/j.cossms.2013.09.004
- Ana Badea, François Eudes, Andre Laroche, Rob Graf, Ketan Doshi, Eric Amundsen, Denise Nilsson, Byron Puchalski. Antimicrobial peptides expressed in wheat reduce susceptibility to
Fusarium
head blight and powdery mildew. Canadian Journal of Plant Science 2013, 93
(2)
, 199-208. https://doi.org/10.4141/cjps2012-125
- Francesco Giansanti, Loris Leboffe, Giuseppina Pitari, Rodolfo Ippoliti, Giovanni Antonini. Physiological roles of ovotransferrin. Biochimica et Biophysica Acta (BBA) - General Subjects 2012, 1820
(3)
, 218-225. https://doi.org/10.1016/j.bbagen.2011.08.004
- Robert S. Hodges, Ziqing Jiang, James Whitehurst, Colin T. Mant. Development of Antimicrobial Peptides as Therapeutic Agents. 2011, 1-73. https://doi.org/10.1002/9780470571224.pse430
- Leonardo de Azevedo Calderon, Alexandre de Almeida E. Silva, Pietro Ciancaglini, Rodrigo Guerino Stábeli. Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications. Amino Acids 2011, 40
(1)
, 29-49. https://doi.org/10.1007/s00726-010-0622-3
- Feten Abbassi, Olivier Lequin, Christophe Piesse, Nicole Goasdoué, Thierry Foulon, Pierre Nicolas, Ali Ladram. Temporin-SHf, a New Type of Phe-rich and Hydrophobic Ultrashort Antimicrobial Peptide. Journal of Biological Chemistry 2010, 285
(22)
, 16880-16892. https://doi.org/10.1074/jbc.M109.097204
- Pierre Nicolas. Multifunctional host defense peptides: intracellular‐targeting antimicrobial peptides. The FEBS Journal 2009, 276
(22)
, 6483-6496. https://doi.org/10.1111/j.1742-4658.2009.07359.x
- Evan F. Haney, Howard N. Hunter, Katsumi Matsuzaki, Hans J. Vogel. Solution NMR studies of amphibian antimicrobial peptides: Linking structure to function?. Biochimica et Biophysica Acta (BBA) - Biomembranes 2009, 1788
(8)
, 1639-1655. https://doi.org/10.1016/j.bbamem.2009.01.002
- Sandra Veldhoen, Sandra D. Laufer, Tobias Restle. Recent Developments in Peptide-Based Nucleic Acid Delivery. International Journal of Molecular Sciences 2008, 9
(7)
, 1276-1320. https://doi.org/10.3390/ijms9071276
- Dmytro P. Yevtushenko, Santosh Misra. Comparison of pathogen‐induced expression and efficacy of two amphibian antimicrobial peptides, MsrA2 and temporin A, for engineering wide‐spectrum disease resistance in tobacco. Plant Biotechnology Journal 2007, 5
(6)
, 720-734. https://doi.org/10.1111/j.1467-7652.2007.00277.x
- Yuxin Chen, Michael T. Guarnieri, Adriana I. Vasil, Michael L. Vasil, Colin T. Mant, Robert S. Hodges. Role of Peptide Hydrophobicity in the Mechanism of Action of α-Helical Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy 2007, 51
(4)
, 1398-1406. https://doi.org/10.1128/AAC.00925-06
- Sónia Troeira Henriques, Manuel Nuno Melo, Miguel A. R. B. Castanho. How to address CPP and AMP translocation? Methods to detect and quantify peptide internalization
in vitro
and
in vivo
(Review). Molecular Membrane Biology 2007, 24
(3)
, 173-184. https://doi.org/10.1080/09687860601102476
- Lovisa Ringstad, Emma Andersson Nordahl, Artur Schmidtchen, Martin Malmsten. Composition Effect on Peptide Interaction with Lipids and Bacteria: Variants of C3a Peptide CNY21. Biophysical Journal 2007, 92
(1)
, 87-98. https://doi.org/10.1529/biophysj.106.088161
- Sónia Troeira Henriques, Manuel Nuno Melo, Miguel A. R. B. Castanho. Cell-penetrating peptides and antimicrobial peptides: how different are they?. Biochemical Journal 2006, 399
(1)
, 1-7. https://doi.org/10.1042/BJ20061100
- Dagmar Zweytick, Georg Pabst, Peter M. Abuja, Alexander Jilek, Sylvie E. Blondelle, Jörg Andrä, Roman Jerala, Daniel Monreal, Guillermo Martinez de Tejada, Karl Lohner. Influence of N-acylation of a peptide derived from human lactoferricin on membrane selectivity. Biochimica et Biophysica Acta (BBA) - Biomembranes 2006, 1758
(9)
, 1426-1435. https://doi.org/10.1016/j.bbamem.2006.02.032
- Himanshu Khandelia, Yiannis N. Kaznessis. Molecular dynamics investigation of the influence of anionic and zwitterionic interfaces on antimicrobial peptides’ structure: Implications for peptide toxicity and activity. Peptides 2006, 27
(6)
, 1192-1200. https://doi.org/10.1016/j.peptides.2005.10.022
- Amir Malina, Yechiel Shai. Conjugation of fatty acids with different lengths modulates the antibacterial and antifungal activity of a cationic biologically inactive peptide. Biochemical Journal 2005, 390
(3)
, 695-702. https://doi.org/10.1042/BJ20050520
- Milan Osusky, Lubica Osuska, William Kay, Santosh Misra. Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2. Theoretical and Applied Genetics 2005, 111
(4)
, 711-722. https://doi.org/10.1007/s00122-005-2056-y
- Claudia Mazzuca, Lorenzo Stella, Mariano Venanzi, Fernando Formaggio, Claudio Toniolo, Basilio Pispisa. Mechanism of Membrane Activity of the Antibiotic Trichogin GA IV: A Two-State Transition Controlled by Peptide Concentration. Biophysical Journal 2005, 88
(5)
, 3411-3421. https://doi.org/10.1529/biophysj.104.056077
- Clarisse Lorin, Héla Saidi, Afifa Belaid, Amira Zairi, Françoise Baleux, Hakim Hocini, Laurent Bélec, Khaled Hani, Frédéric Tangy. The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology 2005, 334
(2)
, 264-275. https://doi.org/10.1016/j.virol.2005.02.002
- Kalvin Gregory, Charlene M. Mello. Immobilization of
Escherichia coli
Cells by Use of the Antimicrobial Peptide Cecropin P1. Applied and Environmental Microbiology 2005, 71
(3)
, 1130-1134. https://doi.org/10.1128/AEM.71.3.1130-1134.2005
- M. A. Castiglione‐Morelli, Pierluigi Cristinziano, Antonietta Pepe, Piero A. Temussi. Conformation–activity relationship of a novel peptide antibiotic: Structural characterization of dermaseptin DS 01 in media that mimic the membrane environment. Peptide Science 2005, 80
(5)
, 688-696. https://doi.org/10.1002/bip.20244
- Orsolya Toke. Antimicrobial peptides: New candidates in the fight against bacterial infections. Peptide Science 2005, 80
(6)
, 717-735. https://doi.org/10.1002/bip.20286
- Mónica Viejo-DÃaz, MarÃa T. Andrés, José F. Fierro. Effects of human lactoferrin on the cytoplasmic membrane of
Candida albicans
cells related with its candidacidal activity. FEMS Immunology & Medical Microbiology 2004, 42
(2)
, 181-185. https://doi.org/10.1016/j.femsim.2004.04.005
- L Marenah, C Shaw, D.F Orr, S McClean, P.R Flatt, Y.H.A Abdel-Wahab. Isolation and characterisation of an unexpected class of insulinotropic peptides in the skin of the frog Agalychnis litodryas. Regulatory Peptides 2004, 120
(1-3)
, 33-38. https://doi.org/10.1016/j.regpep.2004.02.007
- L. Marenah, S. McClean, P. R. Flatt, D. F. Orr, C. Shaw, Y. H. A. Abdel-Wahab. Novel Insulin-Releasing Peptides in the Skin of Phyllomedusa trinitatis Frog Include 28 Amino Acid Peptide From Dermaseptin BIV Precursor. Pancreas 2004, 29
(2)
, 110-115. https://doi.org/10.1097/00006676-200408000-00005
- Dorit Avrahami, Yechiel Shai. A New Group of Antifungal and Antibacterial Lipopeptides Derived from Non-membrane Active Peptides Conjugated to Palmitic Acid. Journal of Biological Chemistry 2004, 279
(13)
, 12277-12285. https://doi.org/10.1074/jbc.M312260200
- Lorenzo Stella, Claudia Mazzuca, Mariano Venanzi, Antonio Palleschi, Mara Didonè, Fernando Formaggio, Claudio Toniolo, Basilio Pispisa. Aggregation and Water-Membrane Partition as Major Determinants of the Activity of the Antibiotic Peptide Trichogin GA IV. Biophysical Journal 2004, 86
(2)
, 936-945. https://doi.org/10.1016/S0006-3495(04)74169-7
- Arnaldo da Silva, Omar Teschke. Effects of the antimicrobial peptide PGLa on live Escherichia coli. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2003, 1643
(1-3)
, 95-103. https://doi.org/10.1016/j.bbamcr.2003.10.001
- M.Luisa Mangoni, Daniela Fiocco, Giuseppina Mignogna, Donatella Barra, Maurizio Simmaco. Functional characterisation of the 1–18 fragment of esculentin-1b, an antimicrobial peptide from Rana esculenta. Peptides 2003, 24
(11)
, 1771-1777. https://doi.org/10.1016/j.peptides.2003.07.029
- Hélène Gaussier, Thierry Lefèvre, Muriel Subirade. Binding of Pediocin PA-1 with Anionic Lipid Induces Model Membrane Destabilization. Applied and Environmental Microbiology 2003, 69
(11)
, 6777-6784. https://doi.org/10.1128/AEM.69.11.6777-6784.2003
- S. Noinville, F. Bruston, C. El Amri, D. Baron, P. Nicolas. Conformation, Orientation, and Adsorption Kinetics of Dermaseptin B2 onto Synthetic Supports at Aqueous/Solid Interface. Biophysical Journal 2003, 85
(2)
, 1196-1206. https://doi.org/10.1016/S0006-3495(03)74555-X
- Niv Papo, Ziv Oren, Ulrike Pag, Hans-Georg Sahl, Yechiel Shai. The Consequence of Sequence Alteration of an Amphipathic α-Helical Antimicrobial Peptide and Its Diastereomers. Journal of Biological Chemistry 2002, 277
(37)
, 33913-33921. https://doi.org/10.1074/jbc.M204928200
- Leah Efron, Arie Dagan, Leonid Gaidukov, Hagai Ginsburg, Amram Mor. Direct Interaction of Dermaseptin S4 Aminoheptanoyl Derivative with Intraerythrocytic Malaria Parasite Leading to Increased Specific Antiparasitic Activity in Culture. Journal of Biological Chemistry 2002, 277
(27)
, 24067-24072. https://doi.org/10.1074/jbc.M202089200
- Irina Kustanovich, Deborah E. Shalev, Masha Mikhlin, Leonid Gaidukov, Amram Mor. Structural Requirements for Potent Versus Selective Cytotoxicity for Antimicrobial Dermaseptin S4 Derivatives. Journal of Biological Chemistry 2002, 277
(19)
, 16941-16951. https://doi.org/10.1074/jbc.M111071200
- Arie Dagan, Leah Efron, Leonid Gaidukov, Amram Mor, Hagai Ginsburg. In Vitro Antiplasmodium Effects of Dermaseptin S4 Derivatives. Antimicrobial Agents and Chemotherapy 2002, 46
(4)
, 1059-1066. https://doi.org/10.1128/AAC.46.4.1059-1066.2002
- Yechiel Shai. Mode of action of membrane active antimicrobial peptides. Peptide Science 2002, 66
(4)
, 236-248. https://doi.org/10.1002/bip.10260
- Amram Mor. Antimicrobial Peptides. 2001https://doi.org/10.1002/0471238961.1605162023091905.a01.pub2
- David Andreu, Luis Rivas. Chemistry and Applications of Synthetic Antimicrobial Peptides. 2001https://doi.org/10.1201/9780203910801.pt1
- Yechiel Shai, Ziv Oren. From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 2001, 22
(10)
, 1629-1641. https://doi.org/10.1016/S0196-9781(01)00498-3
- Rina Feder, Rachel Nehushtai, Amram Mor. Affinity driven molecular transfer from erythrocyte membrane to target cells. Peptides 2001, 22
(10)
, 1683-1690. https://doi.org/10.1016/S0196-9781(01)00504-6
- Hisham R Ibrahim, Yasushi Sugimoto, Takayoshi Aoki. Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. Biochimica et Biophysica Acta (BBA) - General Subjects 2000, 1523
(2-3)
, 196-205. https://doi.org/10.1016/S0304-4165(00)00122-7
- Miriam Krugliak, Rina Feder, Vadim Y. Zolotarev, Leonid Gaidukov, Arie Dagan, Hagai Ginsburg, Amram Mor. Antimalarial Activities of Dermaseptin S4 Derivatives. Antimicrobial Agents and Chemotherapy 2000, 44
(9)
, 2442-2451. https://doi.org/10.1128/AAC.44.9.2442-2451.2000
- Tomas Rozek, Kate L. Wegener, John H. Bowie, Ian N. Olver, John A. Carver, John C. Wallace, Michael J. Tyler. The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs
Litoria aurea
and
Litoria raniformis. European Journal of Biochemistry 2000, 267
(17)
, 5330-5341. https://doi.org/10.1046/j.1432-1327.2000.01536.x
- Amram Mor. Peptide-based antibiotics: A potential answer to raging antimicrobial resistance. Drug Development Research 2000, 50
(3-4)
, 440-447. https://doi.org/10.1002/1098-2299(200007/08)50:3/4<440::AID-DDR27>3.0.CO;2-4
- Mohamed Amiche, Aurélia A. Seon, Henri Wroblewski, Pierre Nicolas. Isolation of dermatoxin from frog skin, an antibacterial peptide encoded by a novel member of the dermaseptin genes family. European Journal of Biochemistry 2000, 267
(14)
, 4583-4592. https://doi.org/10.1046/j.1432-1327.2000.01514.x
- Rina Feder, Arie Dagan, Amram Mor. Structure-Activity Relationship Study of Antimicrobial Dermaseptin S4 Showing the Consequences of Peptide Oligomerization on Selective Cytotoxicity. Journal of Biological Chemistry 2000, 275
(6)
, 4230-4238. https://doi.org/10.1074/jbc.275.6.4230
- Anthony J De Lucca. Antifungal peptides: potential candidates for the treatment of fungal infections. Expert Opinion on Investigational Drugs 2000, 9
(2)
, 273-299. https://doi.org/10.1517/13543784.9.2.273
- Yechiel Shai. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes 1999, 1462
(1-2)
, 55-70. https://doi.org/10.1016/S0005-2736(99)00200-X
- Paolo La Rocca, Phil C. Biggin, D.Peter Tieleman, Mark S.P. Sansom. Simulation studies of the interaction of antimicrobial peptides and lipid bilayers. Biochimica et Biophysica Acta (BBA) - Biomembranes 1999, 1462
(1-2)
, 185-200. https://doi.org/10.1016/S0005-2736(99)00206-0
- Mohamed Amiche, Aurelia Anne Seon, Thierry Nicolas Pierre, Pierre Nicolas. The dermaseptin precursors: a protein family with a common preproregion and a variable C‐terminal antimicrobial domain. FEBS Letters 1999, 456
(3)
, 352-356. https://doi.org/10.1016/S0014-5793(99)00964-3
- P. La Rocca, Y. Shai, M.S.P. Sansom. Peptide–bilayer interactions: simulations of dermaseptin B, an antimicrobial peptide. Biophysical Chemistry 1999, 76
(2)
, 145-159. https://doi.org/10.1016/S0301-4622(98)00232-4
- Iris Ben-Efraim, Yossef Kliger, Chen Hermesh, Yechiel Shai. Membrane-induced step in the activation of sendai virus fusion protein 1 1Edited by A. R. Fersht. Journal of Molecular Biology 1999, 285
(2)
, 609-625. https://doi.org/10.1006/jmbi.1998.2370
- DE LUCCA, BLAND, JACKS, GRIMM, WALSH. Fungicidal and binding properties of the natural peptides cecropin B and dermaseptin. Medical Mycology 1998, 36
(5)
, 291-298. https://doi.org/10.1046/j.1365-280X.1998.00160.x
- Mira Edgerton, Svetlana E. Koshlukova, Thomas E. Lo, Brian G. Chrzan, Robert M. Straubinger, Periathamby A. Raj. Candidacidal Activity of Salivary Histatins. Journal of Biological Chemistry 1998, 273
(32)
, 20438-20447. https://doi.org/10.1074/jbc.273.32.20438
- Hisham R Ibrahim, Eiko Iwamori, Yasushi Sugimoto, Takayoshi Aoki. Identification of a distinct antibacterial domain within the N-lobe of ovotransferrin. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1998, 1401
(3)
, 289-303. https://doi.org/10.1016/S0167-4889(97)00132-8
- Maurizio Simmaco, Giuseppina Mignogna, Donatella Barra. Antimicrobial peptides from amphibian skin: What do they tell us?. Biopolymers 1998, 47
(6)
, 435-450. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8
- Ziv Oren, Yechiel Shai. Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers 1998, 47
(6)
, 451-463. https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F
- Jimut Kanti Ghosh, Dan Shaool, Philippe Guillaud, Liliane Cicéron, Dominique Mazier, Irina Kustanovich, Yechiel Shai, Amram Mor. Selective Cytotoxicity of Dermaseptin S3 toward IntraerythrocyticPlasmodium falciparum and the Underlying Molecular Basis. Journal of Biological Chemistry 1997, 272
(50)
, 31609-31616. https://doi.org/10.1074/jbc.272.50.31609
- Angelika Latal, Gabor Degovics, Raquel F. Epand, Richard M. Epand, Karl Lohner. Structural Aspects of the Interaction of peptidyl‐glycylleucine‐carboxyamide, a Highly Potent Antimicrobial Peptide from Frog Skin, with Lipids. European Journal of Biochemistry 1997, 248
(3)
, 938-946. https://doi.org/10.1111/j.1432-1033.1997.00938.x
- Ziv Oren, Jiang Hong, Yechiel Shai. A Repertoire of Novel Antibacterial Diastereomeric Peptides with Selective Cytolytic Activity. Journal of Biological Chemistry 1997, 272
(23)
, 14643-14649. https://doi.org/10.1074/jbc.272.23.14643
- Yossef Kliger, Amir Aharoni, Doron Rapaport, Philip Jones, Robert Blumenthal, Yechiel Shai. Fusion Peptides Derived from the HIV Type 1 Glycoprotein 41 Associate within Phospholipid Membranes and Inhibit Cell-Cell Fusion. Journal of Biological Chemistry 1997, 272
(21)
, 13496-13505. https://doi.org/10.1074/jbc.272.21.13496
- Matthew R Kaser, George G Skouteris. Inhibition of Bacterial Growth by Synthetic SP-B1-78 Peptides. Peptides 1997, 18
(9)
, 1441-1444. https://doi.org/10.1016/S0196-9781(97)00211-8
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.