ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Regulation of forskolin interactions with type I, II, V, and VI adenylyl cyclases by Gs.alpha.

Cite this: Biochemistry 1994, 33, 43, 12852–12859
Publication Date (Print):January 1, 1994
https://doi.org/10.1021/bi00209a017
    ACS Legacy Archive

    Article Views

    190

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 117 publications.

    1. Kenneth B. Pomerantz,, Harry M. Lander,, Barbara Summers,, Janet D. Robishaw,, Eric Balcueva, and, David P. Hajjar. G-Protein-Mediated Signaling in Cholesterol-Enriched Arterial Smooth Muscle Cells. 1. Reduced Membrane-Associated G-Protein Content Due to Diminished Isoprenylation of G-γ Subunits and p21ras. Biochemistry 1997, 36 (31) , 9523-9531. https://doi.org/10.1021/bi963069l
    2. Liang Yang, David B. Finlay, Hayley M. Green, Xiao Zhu, Michelle Glass, Stephen Duffull. A quantitative pharmacology model for cannabinoid CB 1 receptor mediated by Gi/Gs protein competition. British Journal of Pharmacology 2024, 181 (8) , 1324-1340. https://doi.org/10.1111/bph.16293
    3. Lap Hang Tse, Suet Ting Cheung, Seayoung Lee, Yung Hou Wong. Real-Time Determination of Intracellular cAMP Reveals Functional Coupling of Gs Protein to the Melatonin MT1 Receptor. International Journal of Molecular Sciences 2024, 25 (5) , 2919. https://doi.org/10.3390/ijms25052919
    4. Jiang-Zhou Yu, Jennifer Wang, Steven D. Sheridan, Roy H. Perlis, Mark M. Rasenick. N-3 polyunsaturated fatty acids promote astrocyte differentiation and neurotrophin production independent of cAMP in patient-derived neural stem cells. Molecular Psychiatry 2021, 26 (9) , 4605-4615. https://doi.org/10.1038/s41380-020-0786-5
    5. Robert‐Marlo Bautista, Katharine Marie Carter, Stuart Gordon Jarrett, Dana Napier, Kazumasa Wakamatsu, Shosuke Ito, John August D'Orazio. Cutaneous pharmacologic cAMP induction induces melanization of the skin and improves recovery from ultraviolet injury in melanocortin 1 receptor‐intact or heterozygous skin. Pigment Cell & Melanoma Research 2020, 33 (1) , 30-40. https://doi.org/10.1111/pcmr.12817
    6. Nathan H. Wray, Mark M. Rasenick. Lipid rafts in psychiatry. 2019, 21-45. https://doi.org/10.1016/bs.apha.2019.04.001
    7. Monica Soto-Velasquez, Michael P. Hayes, Aktan Alpsoy, Emily C. Dykhuizen, Val J. Watts. A Novel CRISPR/Cas9-Based Cellular Model to Explore Adenylyl Cyclase and cAMP Signaling. Molecular Pharmacology 2018, 94 (3) , 963-972. https://doi.org/10.1124/mol.118.111849
    8. Élie Besserer-Offroy, Patrick Bérubé, Jérôme Côté, Alexandre Murza, Jean-Michel Longpré, Robert Dumaine, Olivier Lesur, Mannix Auger-Messier, Richard Leduc, Éric Marsault, Philippe Sarret. The hypotensive effect of activated apelin receptor is correlated with β-arrestin recruitment. Pharmacological Research 2018, 131 , 7-16. https://doi.org/10.1016/j.phrs.2018.02.032
    9. Carmen W. Dessauer, Val J. Watts, Rennolds S. Ostrom, Marco Conti, Stefan Dove, Roland Seifert, . International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacological Reviews 2017, 69 (2) , 93-139. https://doi.org/10.1124/pr.116.013078
    10. Yasunori Fukuda, Osamu Sano, Kenichi Kazetani, Koji Yamamoto, Hidehisa Iwata, Junji Matsui. Tubulin is a molecular target of the Wnt-activating chemical probe. BMC Biochemistry 2016, 17 (1) https://doi.org/10.1186/s12858-016-0066-9
    11. Amy S. Bogard, Anna V. Birg, Rennolds S. Ostrom. Non-raft adenylyl cyclase 2 defines a cAMP signaling compartment that selectively regulates IL-6 expression in airway smooth muscle cells: differential regulation of gene expression by AC isoforms. Naunyn-Schmiedeberg's Archives of Pharmacology 2014, 387 (4) , 329-339. https://doi.org/10.1007/s00210-013-0950-4
    12. Liz Kinast, Juliane von der Ohe, Heike Burhenne, Roland Seifert. Impairment of adenylyl cyclase 2 function and expression in hypoxanthine phosphoribosyltransferase-deficient rat B103 neuroblastoma cells as model for Lesch–Nyhan disease: BODIPY–forskolin as pharmacological tool. Naunyn-Schmiedeberg's Archives of Pharmacology 2012, 385 (7) , 671-683. https://doi.org/10.1007/s00210-012-0759-6
    13. Roland Seifert, Gerald H. Lushington, Tung-Chung Mou, Andreas Gille, Stephen R. Sprang. Inhibitors of membranous adenylyl cyclases. Trends in Pharmacological Sciences 2012, 33 (2) , 64-78. https://doi.org/10.1016/j.tips.2011.10.006
    14. J Daniel Hothersall, James Black, Stephen Caddick, Jeremy G Vinter, Andrew Tinker, James R Baker. The design, synthesis and pharmacological characterization of novel β 2 -adrenoceptor antagonists. British Journal of Pharmacology 2011, 164 (2) , 317-331. https://doi.org/10.1111/j.1476-5381.2011.01269.x
    15. Amaia Zalduegui, Maider López de Jesús, Luis F. Callado, J. Javier Meana, Joan Sallés. Levels of Gsα(short and long), Gαolf and Gβ(common) subunits, and calcium-sensitive adenylyl cyclase isoforms (1, 5/6, 8) in post-mortem human brain caudate and cortical membranes: Comparison with rat brain membranes and potential stoichiometric relationships. Neurochemistry International 2011, 58 (2) , 180-189. https://doi.org/10.1016/j.neuint.2010.11.014
    16. Daniela Corda, Pasquale Zizza, Alessia Varone, Beatrice Maria Filippi, Stefania Mariggiò. The glycerophosphoinositols: cellular metabolism and biological functions. Cellular and Molecular Life Sciences 2009, 66 (21) , 3449-3467. https://doi.org/10.1007/s00018-009-0113-4
    17. John A. Allen, Jiang Z. Yu, Rahul H. Dave, Anushree Bhatnagar, Bryan L. Roth, Mark M. Rasenick. Caveolin-1 and Lipid Microdomains Regulate G s Trafficking and Attenuate G s /Adenylyl Cyclase Signaling. Molecular Pharmacology 2009, 76 (5) , 1082-1093. https://doi.org/10.1124/mol.109.060160
    18. Emma Scotter, Scott Graham, Michelle Glass. Cannabinoid Receptor Signal Transduction Pathways. 2009, 153-171. https://doi.org/10.1007/978-1-59745-503-9_6
    19. Barbara Bosier, Emmanuel Hermans, Didier M. Lambert. Concomitant activation of adenylyl cyclase suppresses the opposite influences of CB1 cannabinoid receptor agonists on tyrosine hydroxylase expression. Biochemical Pharmacology 2009, 77 (2) , 216-227. https://doi.org/10.1016/j.bcp.2008.10.010
    20. Lily I. Jiang, Julie Collins, Richard Davis, Iain D. Fraser, Paul C. Sternweis. Regulation of cAMP Responses by the G12/13 Pathway Converges on Adenylyl Cyclase VII. Journal of Biological Chemistry 2008, 283 (34) , 23429-23439. https://doi.org/10.1074/jbc.M803281200
    21. Alessandra Baragli, Maria-Laura Grieco, Phan Trieu, Louis R. Villeneuve, Terence E. Hébert. Heterodimers of adenylyl cyclases 2 and 5 show enhanced functional responses in the presence of Gαs. Cellular Signalling 2008, 20 (3) , 480-492. https://doi.org/10.1016/j.cellsig.2007.10.033
    22. Michael T. Griffin, Katherine W. Figueroa, Sarah Liller, Frederick J. Ehlert. Estimation of Agonist Activity at G Protein-Coupled Receptors: Analysis of M 2 Muscarinic Receptor Signaling through G i/o ,G s , and G 15. Journal of Pharmacology and Experimental Therapeutics 2007, 321 (3) , 1193-1207. https://doi.org/10.1124/jpet.107.120857
    23. Denis J. Dupré, Alessandra Baragli, R. Victor Rebois, Nathalie Éthier, Terence E. Hébert. Signalling complexes associated with adenylyl cyclase II are assembled during their biosynthesis. Cellular Signalling 2007, 19 (3) , 481-489. https://doi.org/10.1016/j.cellsig.2006.07.021
    24. Christiane Kleuss. Type I Adenylate Cyclase. 2007, 1-8. https://doi.org/10.1016/B978-008055232-3.60598-7
    25. Christiane Kleuss. Type II Adenylate Cyclase. 2007, 1-8. https://doi.org/10.1016/B978-008055232-3.60599-9
    26. Timothy A. Vortherms, Chau H. Nguyen, Murat Bastepe, Harald Jüppner, Val J. Watts. D2 dopamine receptor-induced sensitization of adenylyl cyclase type 1 is Gαs independent. Neuropharmacology 2006, 50 (5) , 576-584. https://doi.org/10.1016/j.neuropharm.2005.11.004
    27. A.I. Hubich, T.A. Zheldakova, T.V. Chernikhova, E.V. Koroleva, F.A. Lakhvich, M.V. Sholukh. Synthetic heteroprostanoids of A- and E-types as novel non-comprehensive inhibitors of adenylyl cyclase in rat hepatocytes. Biochemical and Biophysical Research Communications 2006, 341 (2) , 357-362. https://doi.org/10.1016/j.bbrc.2005.12.196
    28. Maria C. Olianas, Paolo Solari, Luciana Garau, Anna Liscia, Roberto Crnjar, Pierluigi Onali. Stimulation of cyclic AMP formation and nerve electrical activity by octopamine in the terminal abdominal ganglion of the female gypsy moth Lymantria dispar. Brain Research 2006, 1071 (1) , 63-74. https://doi.org/10.1016/j.brainres.2005.11.096
    29. Devi Majumdar, Angela Peterson-Ford, Lynda Uphouse. 8-OH-DPAT attenuates isoproterenol- but not forskolin-stimulated accumulation of cAMP in mediobasal hypothalamus. Brain Research 2006, 1075 (1) , 93-99. https://doi.org/10.1016/j.brainres.2005.12.111
    30. John J. Kelly, Troy Stevens, W. Joseph Thompson, Roland Seifert. Adenylyl and Guanylyl Cyclase Assays. Current Protocols in Pharmacology 2005, 30 (1) https://doi.org/10.1002/0471141755.ph0202s30
    31. Naiel Azzam, Rinat Bar-Shalom, Zaki Kraiem, Fuad Fares. Human Thyrotropin (TSH) Variants Designed by Site-Directed Mutagenesis Block TSH Activity in Vitro and in Vivo. Endocrinology 2005, 146 (6) , 2845-2850. https://doi.org/10.1210/en.2005-0012
    32. Timothy A. Vortherms, Chau H. Nguyen, Catherine H. Berlot, Val J. Watts. Using Molecular Tools to Dissect the Role of Gα s in Sensitization of AC1. Molecular Pharmacology 2004, 66 (6) , 1617-1624. https://doi.org/10.1124/mol.104.000166
    33. Karl-Erik Andersson, Alan J. Wein. Pharmacology of the Lower Urinary Tract: Basis for Current and Future Treatments of Urinary Incontinence. Pharmacological Reviews 2004, 56 (4) , 581-631. https://doi.org/10.1124/pr.56.4.4
    34. Jesús Sánchez‐Más, Christa Hahmann, Ineke Gerritsen, José C García‐Borrón, Celia Jiménez‐Cervantes. Agonist‐Independent, High Constitutive Activity of the Human Melanocortin 1 Receptor. Pigment Cell Research 2004, 17 (4) , 386-395. https://doi.org/10.1111/j.1600-0749.2004.00160.x
    35. Tsutomu Nakahara, Takeshi Maruko, Kenji Sakamoto, Kunio Ishii. Influence of Receptor Number on the cAMP Response to Forskolin in Chinese Hamster Ovary Cells Transfected with Human .BETA.2-Adrenoceptor. Biological and Pharmaceutical Bulletin 2004, 27 (2) , 239-241. https://doi.org/10.1248/bpb.27.239
    36. Hong Cui, Richard D Green. Regulation of the cAMP-elevating effects of isoproterenol and forskolin in cardiac myocytes by treatments that cause increases in cAMP. Biochemical and Biophysical Research Communications 2003, 307 (1) , 119-126. https://doi.org/10.1016/S0006-291X(03)01130-6
    37. Michael T. Griffin, Jake Ching-Hsuan Hsu, Darakhshanda Shehnaz, Frederick J. Ehlert. Comparison of the pharmacological antagonism of M2 and M3 muscarinic receptors expressed in isolation and in combination. Biochemical Pharmacology 2003, 65 (8) , 1227-1241. https://doi.org/10.1016/S0006-2952(03)00068-6
    38. Fabio Apone, Adriana Vallesi, Barbara Di Pretoro, Pierangelo Luporini. Cross-talk between the autocrine (mitogenic) pheromone loop of the ciliate euplotes raikovi and the intracellular cyclic AMP concentration. Experimental Cell Research 2003, 285 (1) , 107-113. https://doi.org/10.1016/S0014-4827(03)00017-X
    39. Rob Leurs, Marcel Hoffmann, Astrid E. Alewijnse, Martine J. Smit, Henk Timmerman. Methods to determine the constitutive activity of histamine H2 receptors. 2002, 405-416. https://doi.org/10.1016/S0076-6879(02)43148-5
    40. Pierluigi Onali, Angela Ingianni, Maria C. Olianas. Dual coupling of opioid receptor‐like (ORL1) receptors to adenylyl cyclase in the different layers of the rat main olfactory bulb. Journal of Neurochemistry 2001, 77 (6) , 1520-1530. https://doi.org/10.1046/j.1471-4159.2001.00371.x
    41. Thomas Seebacher, Jürgen U. Linder, Joachim E. Schultz. An isoform–specific interaction of the membrane anchors affects mammalian adenylyl cyclase type V activity. European Journal of Biochemistry 2001, 268 (1) , 105-110. https://doi.org/10.1046/j.1432-1327.2001.01850.x
    42. Rennolds S. Ostrom, Caroline Gregorian, Paul A. Insel. Cellular Release of and Response to ATP as Key Determinants of the Set-Point of Signal Transduction Pathways. Journal of Biological Chemistry 2000, 275 (16) , 11735-11739. https://doi.org/10.1074/jbc.275.16.11735
    43. R. T. Windh, A. J. Barr, D. R. Manning. Insect Cell Systems to Study the Communication of Mammalian Receptors and G Proteins. 2000, 335-362. https://doi.org/10.1007/978-3-642-57081-0_13
    44. Danielle Chabardès, Martine Imbert-Teboul, Jean-Marc Elalouf. Functional Properties of Ca2+-Inhibitable Type 5 and Type 6 Adenylyl Cyclases and Role of Ca2+ Increase in the Inhibition of Intracellular cAMP Content. Cellular Signalling 1999, 11 (9) , 651-663. https://doi.org/10.1016/S0898-6568(99)00031-5
    45. Jean-Louis Guillou, Gregory M. Rose, Dermot M. F. Cooper. Differential Activation of Adenylyl Cyclases by Spatial and Procedural Learning. The Journal of Neuroscience 1999, 19 (14) , 6183-6190. https://doi.org/10.1523/JNEUROSCI.19-14-06183.1999
    46. Mathieu Lachance, Nathalie Ethier, Gregor Wolbring, Paul P.M. Schnetkamp, Terence E. Hébert. Stable Association of G Proteins with β2AR Is Independent of the State of Receptor Activation. Cellular Signalling 1999, 11 (7) , 523-533. https://doi.org/10.1016/S0898-6568(99)00024-8
    47. Michael McVey, Jennifer Hill, Allyn Howlett, Claudette Klein. Adenylyl Cyclase, a Coincidence Detector for Nitric Oxide. Journal of Biological Chemistry 1999, 274 (27) , 18887-18892. https://doi.org/10.1074/jbc.274.27.18887
    48. Muna I Al-Dahan, Mohammad H Jalilian Tehrani, Robert H Thalmann. Regulation of cyclic AMP level by progesterone in ovariectomized rat neocortex. Brain Research 1999, 824 (2) , 258-266. https://doi.org/10.1016/S0006-8993(99)01222-6
    49. Mohammad H. Ghahremani, Peihua Cheng, Paola M.C. Lembo, Paul R. Albert. Distinct Roles for Gαi2, Gαi3, and Gβγ in Modulation of Forskolin- or Gs-mediated cAMP Accumulation and Calcium Mobilization by Dopamine D2S Receptors. Journal of Biological Chemistry 1999, 274 (14) , 9238-9245. https://doi.org/10.1074/jbc.274.14.9238
    50. Karl-Erik Andersson. Pathways for Relaxation of Detrusor Smooth Muscle. 1999, 241-252. https://doi.org/10.1007/978-1-4615-4737-2_18
    51. Gezhi Weng, Yibang Chen, Ravi Iyengar. Mammalian G s ‐Stimulated Adenylyl Cyclases. 1998, 165-176. https://doi.org/10.1002/cphy.cp070108
    52. Yukio Sasaki, Seiji Hori, Kyoko Oda, Toshikazu Okada, Misato Takimoto. Both ET A and ET B receptors are involved in mitogen‐activated protein kinase activation and DNA synthesis of astrocytes: study using ET B receptor‐deficient rats (aganglionosis rats). European Journal of Neuroscience 1998, 10 (9) , 2984-2993. https://doi.org/10.1111/j.1460-9568.1998.00305.x
    53. Michel Pucéat, Claire Bony, Marisa Jaconi, Guy Vassort. Specific activation of adenylyl cyclase V by a purinergic agonist. FEBS Letters 1998, 431 (2) , 189-194. https://doi.org/10.1016/S0014-5793(98)00747-9
    54. John J. Kelly, Troy Stevens, W. Joseph Thompson. Adenylate and Guanylate Cyclase Assays. Current Protocols in Pharmacology 1998, 00 (1) https://doi.org/10.1002/0471141755.ph0202s00
    55. Gary B Kaplan, Kimberly A Leite-Morris, Rajiv K Sethi, Eric G McClelland. Regulation of G protein-mediated adenylyl cyclase in striatum and cortex of opiate-dependent and opiate withdrawing mice. Brain Research 1998, 788 (1-2) , 104-110. https://doi.org/10.1016/S0006-8993(97)01524-2
    56. Shui-Zhong Yan, Zhi-Hui Huang, Rebecca K. Andrews, Wei-Jen Tang. Conversion of Forskolin-Insensitive to Forskolin-Sensitive (Mouse-Type IX) Adenylyl Cyclase. Molecular Pharmacology 1998, 53 (2) , 182-187. https://doi.org/10.1124/mol.53.2.182
    57. Astrid E Alewijnse, Martine J Smit, M Sol Rodriguez Pena, Dennis Verzijl, Henk Timmerman, Rob Leurs. Modulation of forskolin‐mediated adenylyl cyclase activation by constitutively active G s ‐coupled receptors. FEBS Letters 1997, 419 (2-3) , 171-174. https://doi.org/10.1016/S0014-5793(97)01440-3
    58. Staffan Enoksson, Ellen Blaak, Peter Arner. Forskolin Potentiates Isoprenaline‐Induced Glycerol Output and Local Blood Flow in Human Adipose Tissue in vivo. Pharmacology & Toxicology 1997, 81 (5) , 214-218. https://doi.org/10.1111/j.1600-0773.1997.tb00049.x
    59. Susan W. Robinson, Marc G. Caron. Selective Inhibition of Adenylyl Cyclase Type V by the Dopamine D 3 Receptor. Molecular Pharmacology 1997, 52 (3) , 508-514. https://doi.org/10.1124/mol.52.3.508
    60. Shui-Zhong Yan, Zhi-Hui Huang, Vibha D. Rao, James H. Hurley, Wei-Jen Tang. Three Discrete Regions of Mammalian Adenylyl Cyclase Form a Site for Gsα Activation. Journal of Biological Chemistry 1997, 272 (30) , 18849-18854. https://doi.org/10.1074/jbc.272.30.18849
    61. Jacques Hanoune, Yves Pouille, Eleni Tzavara, Tiansheng Shen, Larissa Lipskaya, Norihiro Miyamoto, Yosuke Suzuki, Nicole Defer. Adenylyl cyclases: structure, regulation and function in an enzyme superfamily. Molecular and Cellular Endocrinology 1997, 128 (1-2) , 179-194. https://doi.org/10.1016/S0303-7207(97)04013-6
    62. Klaus Scholich, Ann J. Barbier, Jason B. Mullenix, Tarun B. Patel. Characterization of soluble forms of nonchimeric type V adenylyl cyclases. Proceedings of the National Academy of Sciences 1997, 94 (7) , 2915-2920. https://doi.org/10.1073/pnas.94.7.2915
    63. Yoshihiro Ishikawa, Charles J. Homcy. The Adenylyl Cyclases as Integrators of Transmembrane Signal Transduction. Circulation Research 1997, 80 (3) , 297-304. https://doi.org/10.1161/01.RES.80.3.297
    64. Tomer Avidor-Reiss, Igal Nevo, Daniella Saya, Michael Bayewitch, Zvi Vogel. Opiate-induced Adenylyl Cyclase Superactivation Is Isozyme-specific. Journal of Biological Chemistry 1997, 272 (8) , 5040-5047. https://doi.org/10.1074/jbc.272.8.5040
    65. Ronald Taussig, Gregor Zimmermann. 4 Type-specific regulation of mammalian adenylyl cyclases by G protein pathways. 1997, 81-98. https://doi.org/10.1016/S1040-7952(98)80006-2
    66. Yoshihiro Ishikawa. 5 Regulation of cAMP signaling by phosphorylation. 1997, 99-120. https://doi.org/10.1016/S1040-7952(98)80007-4
    67. Boris Tabakoff, Paula L. Hoffman. 9 Adenylyl cyclases and alcohol. 1997, 173-193. https://doi.org/10.1016/S1040-7952(98)80011-6
    68. Evette E. Esqueda, Edward H. Gerstin, Michael T. Griffin, Frederick J. Ehlert. Stimulation of cyclic AMP accumulation and phosphoinositide hydrolysis by M3 muscarinic receptors in the rat peripheral lung. Biochemical Pharmacology 1996, 52 (4) , 643-658. https://doi.org/10.1016/0006-2952(96)00339-5
    69. KLAUS WITTE, BJÖRN LEMMER. Signal Transduction in Animal Models of Normotension and Hypertension. Annals of the New York Academy of Sciences 1996, 783 (1) , 71-83. https://doi.org/10.1111/j.1749-6632.1996.tb26708.x
    70. Richard T. Premont, Isao Matsuoka, Marie-Genevieve Mattei, Yves Pouille, Nicole Defer, Jacques Hanoune. Identification and Characterization of a Widely Expressed Form of Adenylyl Cyclase. Journal of Biological Chemistry 1996, 271 (23) , 13900-13907. https://doi.org/10.1074/jbc.271.23.13900
    71. Jeremy I. Levin. The preparation of forskolin analogs via quinone Diels-Alder reactions. Tetrahedron Letters 1996, 37 (18) , 3079-3082. https://doi.org/10.1016/0040-4039(96)00500-X
    72. Christopher P. Berrie, Marco Falasca, Angela Carvelli, Cristiano Iurisci, Daniela Corda. Glycerophosphoinositol-4-Phosphate in Intracellular Signalling. 1996, 229-237. https://doi.org/10.1007/978-1-4615-5875-0_30
    73. Steven R. Post, Olga Aguila-Buhain, Paul A. Insel. A Key Role for Protein Kinase A in Homologous Desensitization of the β2-Adrenergic Receptor Pathway in S49 Lymphoma Cells. Journal of Biological Chemistry 1996, 271 (2) , 895-900. https://doi.org/10.1074/jbc.271.2.895
    74. Steven R. Post, J. Paul Jacobson, Paul A. Insel. P2 Purinergic Receptor Agonists Enhance cAMP Production in Madin-Darby Canine Kidney Epithelial Cells via an Autocrine/Paracrine Mechanism. Journal of Biological Chemistry 1996, 271 (4) , 2029-2032. https://doi.org/10.1074/jbc.271.4.2029
    75. Nicole Mons, Dermot M.F. Cooper. Adenylate cyclases: critical foci in neuronal signaling. Trends in Neurosciences 1995, 18 (12) , 536-542. https://doi.org/10.1016/0166-2236(95)98375-9
    76. Zutang Chen, Heather S. Nield, Hui Sun, Ann Barbier, Tarun B. Patel. Expression of Type V Adenylyl Cyclase Is Required for Epidermal Growth Factor-mediated Stimulation of cAMP Accumulation. Journal of Biological Chemistry 1995, 270 (46) , 27525-27530. https://doi.org/10.1074/jbc.270.46.27525
    77. C.M. Tan, S. Xenoyannis, R.D. Feldman. Oxidant Stress Enhances Adenylyl Cyclase Activation. Circulation Research 1995, 77 (4) , 710-717. https://doi.org/10.1161/01.RES.77.4.710
    78. Stephen P. Daiger, Lori S. Sullivan, Joseph A. Rodriguez. Correlation of phenotype with genotype in inherited retinal degeneration. Behavioral and Brain Sciences 1995, 18 (3) , 452-467. https://doi.org/10.1017/S0140525X00039212
    79. Thomas W. Abrams. Calcium/calmodulin-sensitive adenylyl cyclase as an example of a molecular associative integrator. Behavioral and Brain Sciences 1995, 18 (3) , 468-469. https://doi.org/10.1017/S0140525X00039224
    80. Arlene D. Albert, Philip L. Yeagle. The determination of rhodopsin structure may require alternative approaches. Behavioral and Brain Sciences 1995, 18 (3) , 469-469. https://doi.org/10.1017/S0140525X00039236
    81. Colin J. Barnstable. Mechanisms of photoreceptor degenerations. Behavioral and Brain Sciences 1995, 18 (3) , 470-470. https://doi.org/10.1017/S0140525X00039248
    82. A. A. B. Bergen. Genetic and clinical heterogeneity in tapetal retinal dystrophies. Behavioral and Brain Sciences 1995, 18 (3) , 470-471. https://doi.org/10.1017/S0140525X0003925X
    83. R. Lane Brown, Jeffrey W. Karpen. Molecular insights gained from covalently tethering cGMP to the ligand-binding sites of retinal rod cGMP-gated channels. Behavioral and Brain Sciences 1995, 18 (3) , 471-472. https://doi.org/10.1017/S0140525X00039261
    84. Rosalie K. Crouch, D. Wesley Corson. The structure of rhodopsin and mechanisms of visual adaptation. Behavioral and Brain Sciences 1995, 18 (3) , 472-473. https://doi.org/10.1017/S0140525X00039273
    85. Edward A. Dratz. The key to rhodopsin function lies in the structure of its interface with transducin. Behavioral and Brain Sciences 1995, 18 (3) , 473-474. https://doi.org/10.1017/S0140525X00039285
    86. R. Michael Garavito. The atomic structure of visual rhodopsin: How and when?. Behavioral and Brain Sciences 1995, 18 (3) , 474-475. https://doi.org/10.1017/S0140525X00039297
    87. Mark P. Gray-Keller, Peter B. Detwiler. Does calmodulin play a functional role in phototransduction?. Behavioral and Brain Sciences 1995, 18 (3) , 475-476. https://doi.org/10.1017/S0140525X00039303
    88. Lawrence W. Haynes. Structure and physiology of photoreceptor cGMP-gated cation channels. Behavioral and Brain Sciences 1995, 18 (3) , 476-477. https://doi.org/10.1017/S0140525X00039315
    89. Warren Heideman. Long term potentiation and CaM-sensitive adenylyl cyclase: Long-term prospects. Behavioral and Brain Sciences 1995, 18 (3) , 477-478. https://doi.org/10.1017/S0140525X00039327
    90. Richard L. Hurwitz, Devesh Srivastava, Mary Y. Hurwitz. Channel structure and divalent cation regulation of phototransduction. Behavioral and Brain Sciences 1995, 18 (3) , 478-478. https://doi.org/10.1017/S0140525X00039339
    91. Michael W. Kaplan. Linking genotypes with phenotypes in human retinal degenerations: Implications for future research and treatment. Behavioral and Brain Sciences 1995, 18 (3) , 478-479. https://doi.org/10.1017/S0140525X00039340
    92. Satoru Kawamura. Unsolved issues in S-modulin/recoverin study. Behavioral and Brain Sciences 1995, 18 (3) , 479-480. https://doi.org/10.1017/S0140525X00039352
    93. Karl-Wilhelm Koch. Crucial steps in photoreceptor adaptation: Regulation of phosphodiesterase and guanylate cyclase activities and Ca 2+ -buffering. Behavioral and Brain Sciences 1995, 18 (3) , 480-481. https://doi.org/10.1017/S0140525X00039364
    94. H. R. Matthews, G. L. Fain. Reduced cytoplasmic calcium concentration may be both necessary and sufficient for photoreceptor light adaptation. Behavioral and Brain Sciences 1995, 18 (3) , 481-481. https://doi.org/10.1017/S0140525X00039376
    95. James F. McGinnis. Gene therapy, regulatory mechanisms, and protein function in vision. Behavioral and Brain Sciences 1995, 18 (3) , 481-482. https://doi.org/10.1017/S0140525X00039388
    96. Daniel D. Oprian. Structure of the cGMP-gated channel. Behavioral and Brain Sciences 1995, 18 (3) , 482-483. https://doi.org/10.1017/S0140525X0003939X
    97. Arthur S. Polans, Grazyna Adamus. Recoverin is the tumor antigen in cancerassociated retinopathy. Behavioral and Brain Sciences 1995, 18 (3) , 483-484. https://doi.org/10.1017/S0140525X00039406
    98. Mark M. Rasenick. Adenylyl cyclase, G proteins, and synaptic plasticity. Behavioral and Brain Sciences 1995, 18 (3) , 484-485. https://doi.org/10.1017/S0140525X00039418
    99. Erik D. Roberson, J. David Sweatt. Regulation of adenylyl cyclase in LTP. Behavioral and Brain Sciences 1995, 18 (3) , 485-486. https://doi.org/10.1017/S0140525X0003942X
    100. Mandeep S. Sagoo, Leon Lagnado. Modulation of the cGMP-gated channel by calcium. Behavioral and Brain Sciences 1995, 18 (3) , 486-486. https://doi.org/10.1017/S0140525X00039431
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect