ACS Publications. Most Trusted. Most Cited. Most Read
Photochemical properties of Escherichia coli DNA photolyase: selective photodecomposition of the second chromophore
My Activity
    Article

    Photochemical properties of Escherichia coli DNA photolyase: selective photodecomposition of the second chromophore
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Biochemistry

    Cite this: Biochemistry 1987, 26, 15, 4634–4640
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi00389a007
    Published July 28, 1987

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 58 publications.

    1. Jacopo Fadanni, Angela Acocella, Francesco Zerbetto. White and Colored Noises as Driving Forces of Electron Transfer: The Photolyase Repair Mechanism as a Test Case. The Journal of Physical Chemistry Letters 2019, 10 (16) , 4511-4516. https://doi.org/10.1021/acs.jpclett.9b01763
    2. Theodore J. Zwang, Edmund C. M. Tse, Dongping Zhong, Jacqueline K. Barton. A Compass at Weak Magnetic Fields Using Thymine Dimer Repair. ACS Central Science 2018, 4 (3) , 405-412. https://doi.org/10.1021/acscentsci.8b00008
    3. Raymond F. Pauszek, III, Goutham Kodali, and Robert J. Stanley . Excited State Electronic Structures of 5,10-Methenyltetrahydrofolate and 5,10-Methylenetetrahydrofolate Determined by Stark Spectroscopy. The Journal of Physical Chemistry A 2014, 118 (37) , 8320-8328. https://doi.org/10.1021/jp501143u
    4. Zheyun Liu, Xunmin Guo, Chuang Tan, Jiang Li, Ya-Ting Kao, Lijuan Wang, Aziz Sancar, and Dongping Zhong . Electron Tunneling Pathways and Role of Adenine in Repair of Cyclobutane Pyrimidine Dimer by DNA Photolyase. Journal of the American Chemical Society 2012, 134 (19) , 8104-8114. https://doi.org/10.1021/ja2105009
    5. Agnieszka A. Zieba, Caroline Richardson, Carlos Lucero, Senghane D. Dieng, Yvonne M. Gindt, and Johannes P. M. Schelvis . Evidence for Concerted Electron Proton Transfer in Charge Recombination between FADH– and 306Trp• in Escherichia coli Photolyase. Journal of the American Chemical Society 2011, 133 (20) , 7824-7836. https://doi.org/10.1021/ja2001488
    6. Goutham Kodali, Salim U. Siddiqui and Robert J. Stanley. Charge Redistribution in Oxidized and Semiquinone E. coli DNA Photolyase upon Photoexcitation: Stark Spectroscopy Reveals a Rationale for the Position of Trp382. Journal of the American Chemical Society 2009, 131 (13) , 4795-4807. https://doi.org/10.1021/ja809214r
    7. Anar K. Murphy, Margaret Tammaro, Frank Cortazar, Yvonne M. Gindt and Johannes P. M. Schelvis. Effect of the Cyclobutane Cytidine Dimer on the Properties of Escherichia coli DNA Photolyase. The Journal of Physical Chemistry B 2008, 112 (47) , 15217-15226. https://doi.org/10.1021/jp806526y
    8. Ya-Ting Kao, Chaitanya Saxena, Ting-Fang He, Lijun Guo, Lijuan Wang, Aziz Sancar and Dongping Zhong . Ultrafast Dynamics of Flavins in Five Redox States. Journal of the American Chemical Society 2008, 130 (39) , 13132-13139. https://doi.org/10.1021/ja8045469
    9. Martin Byrdin,, Sandrine Villette,, Andre P. M. Eker, and, Klaus Brettel. Observation of an Intermediate Tryptophanyl Radical in W306F Mutant DNA Photolyase from Escherichia coli Supports Electron Hopping along the Triple Tryptophan Chain. Biochemistry 2007, 46 (35) , 10072-10077. https://doi.org/10.1021/bi700891f
    10. Kongsheng Yang,, Spiridoula Matsika, and, Robert J. Stanley. 6MAP, a Fluorescent Adenine Analogue, Is a Probe of Base Flipping by DNA Photolyase. The Journal of Physical Chemistry B 2007, 111 (35) , 10615-10625. https://doi.org/10.1021/jp071035p
    11. Olga Sokolova,, Christine Cecala,, Anand Gopal,, Frank Cortazar,, Carla McDowell-Buchanan,, Aziz Sancar,, Yvonne M. Gindt, and, Johannes P. M. Schelvis. Resonance Raman Spectroscopic Investigation of the Light-Harvesting Chromophore in Escherichia coli Photolyase and Vibrio cholerae Cryptochrome-1. Biochemistry 2007, 46 (12) , 3673-3681. https://doi.org/10.1021/bi602385j
    12. Yvonne M. Gindt,, Johannes P. M. Schelvis,, Katie L. Thoren, and, Tina H. Huang. Substrate Binding Modulates the Reduction Potential of DNA Photolyase. Journal of the American Chemical Society 2005, 127 (30) , 10472-10473. https://doi.org/10.1021/ja051441r
    13. Haiyu Wang,, Chaitanya Saxena,, Donghui Quan,, Aziz Sancar, and, Dongping Zhong. Femtosecond Dynamics of Flavin Cofactor in DNA Photolyase:  Radical Reduction, Local Solvation, and Charge Recombination. The Journal of Physical Chemistry B 2005, 109 (4) , 1329-1333. https://doi.org/10.1021/jp044652b
    14. Chaitanya Saxena,, Aziz Sancar, and, Dongping Zhong. Femtosecond Dynamics of DNA Photolyase:  Energy Transfer of Antenna Initiation and Electron Transfer of Cofactor Reduction. The Journal of Physical Chemistry B 2004, 108 (46) , 18026-18033. https://doi.org/10.1021/jp048376c
    15. Ullas Gurudas and, Johannes P. M. Schelvis. Resonance Raman Spectroscopy of the Neutral Radical Trp306 in DNA Photolyase. Journal of the American Chemical Society 2004, 126 (40) , 12788-12789. https://doi.org/10.1021/ja047161d
    16. Sofia M. Kapetanaki,, Meghan Ramsey,, Yvonne M. Gindt, and, Johannes P. M. Schelvis. Substrate Electric Dipole Moment Exerts a pH-Dependent Effect on Electron Transfer in Escherichia coli Photolyase. Journal of the American Chemical Society 2004, 126 (20) , 6214-6215. https://doi.org/10.1021/ja049226i
    17. Johannes P. M. Schelvis,, Meghan Ramsey,, Olga Sokolova,, Celia Tavares,, Christine Cecala,, Katelyn Connell,, Stacey Wagner, and, Yvonne M. Gindt. Resonance Raman and UV−Vis Spectroscopic Characterization of FADH• in the Complex of Photolyase with UV-Damaged DNA. The Journal of Physical Chemistry B 2003, 107 (44) , 12352-12362. https://doi.org/10.1021/jp034209l
    18. Aziz Sancar. Structure and Function of DNA Photolyase and Cryptochrome Blue-Light Photoreceptors. Chemical Reviews 2003, 103 (6) , 2203-2238. https://doi.org/10.1021/cr0204348
    19. Stefan Weber,, Klaus Möbius,, Gerald Richter, and, Christopher W. M. Kay. The Electronic Structure of the Flavin Cofactor in DNA Photolyase. Journal of the American Chemical Society 2001, 123 (16) , 3790-3798. https://doi.org/10.1021/ja003426m
    20. Yvonne M. Gindt,, Esther Vollenbroek,, Kristi Westphal,, Heather Sackett,, Aziz Sancar, and, Gerald T. Babcock. Origin of the Transient Electron Paramagnetic Resonance Signals in DNA Photolyase. Biochemistry 1999, 38 (13) , 3857-3866. https://doi.org/10.1021/bi981191+
    21. Yuhei Hosokawa, Pavel Müller, Hirotaka Kitoh-Nishioka, Shigenori Iwai, Junpei Yamamoto. Limited solvation of an electron donating tryptophan stabilizes a photoinduced charge-separated state in plant (6–4) photolyase. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-08928-0
    22. Ibrahim Halil Kavakli, Ibrahim Baris, Mehmet Tardu, Şeref Gül, Haşimcan Öner, Sibel Çal, Selma Bulut, Darya Yarparvar, Çağlar Berkel, Pınar Ustaoğlu, Cihan Aydın. The Photolyase/Cryptochrome Family of Proteins as DNA Repair Enzymes and Transcriptional Repressors. Photochemistry and Photobiology 2017, 93 (1) , 93-103. https://doi.org/10.1111/php.12669
    23. Aziz Sancar. Mechanismen der DNA‐Reparatur durch Photolyasen und Exzisionsnukleasen (Nobel‐Aufsatz). Angewandte Chemie 2016, 128 (30) , 8643-8670. https://doi.org/10.1002/ange.201601524
    24. Aziz Sancar. Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture). Angewandte Chemie International Edition 2016, 55 (30) , 8502-8527. https://doi.org/10.1002/anie.201601524
    25. Chuang Tan, Zheyun Liu, Jiang Li, Xunmin Guo, Lijuan Wang, Aziz Sancar, Dongping Zhong. The molecular origin of high DNA-repair efficiency by photolyase. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms8302
    26. . Reversal of Base Damage Caused by UV Radiation. 2014, 109-138. https://doi.org/10.1128/9781555816704.ch4
    27. Zheyun Liu, Chuang Tan, Xunmin Guo, Ya-Ting Kao, Jiang Li, Lijuan Wang, Aziz Sancar, Dongping Zhong. Dynamics and mechanism of cyclobutane pyrimidine dimer repair by DNA photolyase. Proceedings of the National Academy of Sciences 2011, 108 (36) , 14831-14836. https://doi.org/10.1073/pnas.1110927108
    28. Jason L. Petersen, Patrick J. Ronan. Critical Role of 7,8-Didemethyl-8-hydroxy-5-deazariboflavin for Photoreactivation in Chlamydomonas reinhardtii. Journal of Biological Chemistry 2010, 285 (42) , 32467-32475. https://doi.org/10.1074/jbc.M110.146050
    29. Chih-Wei Chang, Lijun Guo, Ya-Ting Kao, Jiang Li, Chuang Tan, Tanping Li, Chaitanya Saxena, Zheyun Liu, Lijuan Wang, Aziz Sancar, Dongping Zhong. Ultrafast solvation dynamics at binding and active sites of photolyases. Proceedings of the National Academy of Sciences 2010, 107 (7) , 2914-2919. https://doi.org/10.1073/pnas.1000001107
    30. Rebecca L. Fagan, Bruce A. Palfey. Flavin-Dependent Enzymes. 2010, 37-113. https://doi.org/10.1016/B978-008045382-8.00135-0
    31. Julia Moldt, Richard Pokorny, Christian Orth, Uwe Linne, Yann Geisselbrecht, Mohamed A. Marahiel, Lars-Oliver Essen, Alfred Batschauer. Photoreduction of the Folate Cofactor in Members of the Photolyase Family. Journal of Biological Chemistry 2009, 284 (32) , 21670-21683. https://doi.org/10.1074/jbc.M109.018697
    32. Anwar Usman, Johanna Brazard, Monique M. Martin, Pascal Plaza, Marc Heijde, Gérald Zabulon, Chris Bowler. Spectroscopic characterization of a (6-4) photolyase from the green alga Ostreococcus tauri. Journal of Photochemistry and Photobiology B: Biology 2009, 96 (1) , 38-48. https://doi.org/10.1016/j.jphotobiol.2009.04.003
    33. A. Tyagi, A. Penzkofer, A. Batschauer, E. Wolf. Fluorescence behaviour of 5,10-methenyltetrahydrofolate, 10-formyltetrahydrofolate, 10-formyldihydrofolate, and 10-formylfolate in aqueous solution at pH 8. Chemical Physics 2009, 361 (1-2) , 75-82. https://doi.org/10.1016/j.chemphys.2009.05.008
    34. Ya-Ting Kao, Chaitanya Saxena, Lijuan Wang, Aziz Sancar, Dongping Zhong. Femtochemistry in enzyme catalysis: DNA photolyase. Cell Biochemistry and Biophysics 2007, 48 (1) , 32-44. https://doi.org/10.1007/s12013-007-0034-5
    35. S.-H. Song, B. Dick, A. Penzkofer, R. Pokorny, A. Batschauer, L.-O. Essen. Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana. Journal of Photochemistry and Photobiology B: Biology 2006, 85 (1) , 1-16. https://doi.org/10.1016/j.jphotobiol.2006.03.007
    36. Lei Xu, Dongfang Zhang, Wanmeng Mu, Willem J.H. van Berkel, Zhaofeng Luo. Reversible resolution of flavin and pterin cofactors of His-tagged Escherichia coli DNA photolyase. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2006, 1764 (9) , 1454-1461. https://doi.org/10.1016/j.bbapap.2006.06.016
    37. Zhanjia Hou, Goutham Kodali, Madhavan Narayanan, Kongsheng Yang, Robert J. Stanley. Intermediates in the ultrafast repair of DNA by DNA photolyase. 2006, 337-345. https://doi.org/10.1016/B978-044452821-6/50048-4
    38. Gwendolyn B. Sancar, Aziz Sancar. Purification and Characterization of DNA Photolyases. 2006, 121-156. https://doi.org/10.1016/S0076-6879(06)08009-8
    39. Stefan Weber. Light-driven enzymatic catalysis of DNA repair: a review of recent biophysical studies on photolyase. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2005, 1707 (1) , 1-23. https://doi.org/10.1016/j.bbabio.2004.02.010
    40. . Rearrangements. 2002, 505-561. https://doi.org/10.1016/B978-0-08-051336-2.50018-8
    41. Takeshi Todo. Functional diversity of the DNA photolyase/blue light receptor family. Mutation Research/DNA Repair 1999, 434 (2) , 89-97. https://doi.org/10.1016/S0921-8777(99)00013-0
    42. Akira Yasui, André P. M. Eker. DNA Photolyases. 1998, 9-32. https://doi.org/10.1007/978-1-59259-455-9_2
    43. Sang‐Tae Kim, Aziz Sancar. PHOTOREPAIR OF NONADJACENT PYRIMIDINE DIMERS BY DNA PHOTOLYASE. Photochemistry and Photobiology 1995, 61 (2) , 171-174. https://doi.org/10.1111/j.1751-1097.1995.tb03956.x
    44. Sang-Tae Kim, Paul F. Heelis, Aziz Sancar. [22] Role of tryptophans in substrate binding and catalysis by DNA photolyase. 1995, 319-343. https://doi.org/10.1016/0076-6879(95)58054-9
    45. Paul F. Heelis, Catherine A. Rowley-Williams, Rosemarie F. Hartman, Seth D. Rose. Detection of a reduced-flavin triplet state in free flavins and DNA photolyase. Journal of Photochemistry and Photobiology B: Biology 1994, 23 (2-3) , 155-159. https://doi.org/10.1016/1011-1344(94)06990-5
    46. Sang‐Tae Kim, Aziz Sancar. PHOTOCHEMISTRY, PHOTOPHYSICS, AND MECHANISM OF PYRIMIDINE DIMER REPAIR BY DNA PHOTOLYASE. Photochemistry and Photobiology 1993, 57 (5) , 895-904. https://doi.org/10.1111/j.1751-1097.1993.tb09232.x
    47. Paul F. Heelis, Sang-Tae Kim, Tadashi Okamura, Aziz Sancar. New trends in photobiology. Journal of Photochemistry and Photobiology B: Biology 1993, 17 (3) , 219-228. https://doi.org/10.1016/1011-1344(93)80019-6
    48. Paul F. Heelis, Aziz Sancar, Tadashi Okamura. Excited quartet states in DNA photolyase. Journal of Photochemistry and Photobiology B: Biology 1992, 16 (3-4) , 387-390. https://doi.org/10.1016/1011-1344(92)80028-T
    49. K Malhotra, S.T. Kim, C Walsh, A Sancar. Roles of FAD and 8-hydroxy-5-deazaflavin chromophores in photoreactivation by Anacystis nidulans DNA photolyase.. Journal of Biological Chemistry 1992, 267 (22) , 15406-15411. https://doi.org/10.1016/S0021-9258(19)49548-3
    50. Edward J. Brush, John W. Kozarich. 8 Enzymic Free Radical Mechanisms. 1992, 317-403. https://doi.org/10.1016/S1874-6047(08)60026-8
    51. S Hamm-Alvarez, A Sancar, K V Rajagopalan. The folate cofactor of Escherichia coli DNA photolyase acts catalytically.. Journal of Biological Chemistry 1990, 265 (30) , 18656-18662. https://doi.org/10.1016/S0021-9258(17)44802-2
    52. Sang‐Tae Kim, Seth D. Rose. Activation barriers in photosensitized pyrimidine dimer splitting. Journal of Physical Organic Chemistry 1990, 3 (9) , 581-586. https://doi.org/10.1002/poc.610030905
    53. Gwendolyn B. Sancar. DNA photolyases: Physical properties, action mechanism, and roles in dark repair. Mutation Research/DNA Repair 1990, 236 (2-3) , 147-160. https://doi.org/10.1016/0921-8777(90)90002-M
    54. A P Eker, P Kooiman, J K Hessels, A Yasui. DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans.. Journal of Biological Chemistry 1990, 265 (14) , 8009-8015. https://doi.org/10.1016/S0021-9258(19)39031-3
    55. Masashi Takao, Atsushi Oikawa, Andre P. M. Eker, Akira Yasui. EXPRESSION OF AN Anacystis nidulans PHOTOLYASE GENE IN Escherichia coli; FUNCTIONAL COMPLEMENTATION AND MODIFIED ACTION SPECTRUM OF PHOTOREACTIVATION. Photochemistry and Photobiology 1989, 50 (5) , 633-637. https://doi.org/10.1111/j.1751-1097.1989.tb04319.x
    56. Francesco Lenci, Francesco Ghetti, Domenico Gioffré, Vincenzo Passarelli, Paul F. Heelis, Barry Thomas, Glyn O. Phillips, Pill-Soon Song. Effects of the molecular environment on some spectroscopic properties of Blepharisma photoreceptor pigment. Journal of Photochemistry and Photobiology B: Biology 1989, 3 (3) , 449-453. https://doi.org/10.1016/1011-1344(89)80049-1
    57. S Hamm-Alvarez, A Sancar, K V Rajagopalan. Role of enzyme-bound 5,10-methenyltetrahydropteroylpolyglutamate in catalysis by Escherichia coli DNA photolyase. Journal of Biological Chemistry 1989, 264 (16) , 9649-9656. https://doi.org/10.1016/S0021-9258(18)60580-0
    58. Chyongjin Pac, Osamu Ishitani. ELECTRON‐TRANSFER ORGANIC AND BIOORGANIC PHOTOCHEMISTRY. Photochemistry and Photobiology 1988, 48 (6) , 767-785. https://doi.org/10.1111/j.1751-1097.1988.tb02893.x

    Biochemistry

    Cite this: Biochemistry 1987, 26, 15, 4634–4640
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bi00389a007
    Published July 28, 1987

    Article Views

    169

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.