ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Chaperonin-facilitated refolding of ribulose bisphosphate carboxylase and ATP hydrolysis by chaperonin 60 (groEL) are potassium dependent

Cite this: Biochemistry 1990, 29, 24, 5665–5671
Publication Date (Print):June 19, 1990
https://doi.org/10.1021/bi00476a003
    ACS Legacy Archive

    Article Views

    584

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 319 publications.

    1. Thomas Walker, He Mirabel Sun, Tiffany Gunnels, Vicki Wysocki, Arthur Laganowsky, Hays Rye, David Russell. Dissecting the Thermodynamics of ATP Binding to GroEL One Nucleotide at a Time. ACS Central Science 2023, 9 (3) , 466-475. https://doi.org/10.1021/acscentsci.2c01065
    2. Thomas E. Walker, Mehdi Shirzadeh, He Mirabel Sun, Jacob W. McCabe, Andrew Roth, Zahra Moghadamchargari, David E. Clemmer, Arthur Laganowsky, Hays Rye, David H. Russell. Temperature Regulates Stability, Ligand Binding (Mg2+ and ATP), and Stoichiometry of GroEL–GroES Complexes. Journal of the American Chemical Society 2022, 144 (6) , 2667-2678. https://doi.org/10.1021/jacs.1c11341
    3. Andrew C. Marshall, Charles S. Bond, and John B. Bruning . Structure of Aspergillus fumigatus Cytosolic Thiolase: Trapped Tetrahedral Reaction Intermediates and Activation by Monovalent Cations. ACS Catalysis 2018, 8 (3) , 1973-1989. https://doi.org/10.1021/acscatal.7b02873
    4. Ranit Gruber and Amnon Horovitz . Allosteric Mechanisms in Chaperonin Machines. Chemical Reviews 2016, 116 (11) , 6588-6606. https://doi.org/10.1021/acs.chemrev.5b00556
    5. Arthur L. Horwich,, George W. Farr, and, Wayne A. Fenton. GroEL−GroES-Mediated Protein Folding. Chemical Reviews 2006, 106 (5) , 1917-1930. https://doi.org/10.1021/cr040435v
    6. James Zondlo, Kathryn E. Fisher, Zhanglin Lin, Karin R. Ducote, and Edward Eisenstein. Monomer-Heptamer Equilibrium of the Escherichia coli Chaperonin GroES. Biochemistry 1995, 34 (33) , 10334-10339. https://doi.org/10.1021/bi00033a003
    7. Ofer Yifrach and Amnon Horovitz. Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 1995, 34 (16) , 5303-5308. https://doi.org/10.1021/bi00016a001
    8. Sophia Diamant, Abdussalam Azem, Celeste Weiss, and Pierre Goloubinoff. Effect of Free and ATP-bound Magnesium and Manganese Ions on the ATPase Activity of Chaperonin GroEL14. Biochemistry 1995, 34 (1) , 273-277. https://doi.org/10.1021/bi00001a033
    9. Oleg Kovalenko, Ofer Yifrach, and Amnon Horovitz. Residue Lysine-34 in GroES Modulates Allosteric Transitions in GroEL. Biochemistry 1994, 33 (50) , 14974-14978. https://doi.org/10.1021/bi00254a004
    10. R. Max Wynn, James R. Davie, Wang Zhi, Rody P. Cox, and David T. Chuang. In vitro Reconstitution of the 24-meric E2 Inner Core of Bovine Mitochondrial Branched-Chain .alpha.-Keto Acid Dehydrogenase Complex: Requirement for Chaperonins GroEL and GroES. Biochemistry 1994, 33 (30) , 8962-8968. https://doi.org/10.1021/bi00196a014
    11. Abdussalam Azem, Sophia Diamant, and Pierre Goloubinoff. Effect of Divalent Cations on the Molecular Structure of the GroEL Oligomer. Biochemistry 1994, 33 (21) , 6671-6675. https://doi.org/10.1021/bi00187a037
    12. Elisabet Samuelsson, Tomas Moks, Mathias Uhlen, and Bjoern Nilsson. Enhanced in vitro Refolding of Insulin-like Growth Factor I Using a Solubilizing Fusion Partner. Biochemistry 1994, 33 (14) , 4207-4211. https://doi.org/10.1021/bi00180a013
    13. Matthew J. Todd, Paul V. Viitanen, and George H. Lorimer. Hydrolysis of adenosine 5'-triphosphate by Escherichia coli GroEL: Effects of GroES and potassium ion. Biochemistry 1993, 32 (33) , 8560-8567. https://doi.org/10.1021/bi00084a024
    14. Leonardo Erijman, George H. Lorimer, and Gregorio Weber. Reversible dissociation and conformational stability of dimeric ribulose bisphosphate carboxylase. Biochemistry 1993, 32 (19) , 5187-5195. https://doi.org/10.1021/bi00070a030
    15. Tamara Tsalkova, Gustavo Zardeneta, Wieslaw Kudlicki, Gisela Kramer, Paul M. Horowitz, and Boyd Hardesty. GroEL and GroES increase the specific enzymic activity of newly-synthesized rhodanese if present during in vitro transcription/translation. Biochemistry 1993, 32 (13) , 3377-3380. https://doi.org/10.1021/bi00064a022
    16. Mark T. Fisher. Promotion of the in vitro renaturation of dodecameric glutamine synthetase from Escherichia coli in the presence of GroEL (chaperonin-60) and ATP. Biochemistry 1992, 31 (16) , 3955-3963. https://doi.org/10.1021/bi00131a010
    17. Saskia M. Van der Vies, Paul V. Viitanen, Anthony A. Gatenby, George H. Lorimer, and Rainer Jaenicke. Conformational states of ribulose bisphosphate carboxylase and their interaction with chaperonin 60. Biochemistry 1992, 31 (14) , 3635-3644. https://doi.org/10.1021/bi00129a012
    18. Ralph Zahn and Andreas Plueckthun. GroE prevents the accumulation of early folding intermediates of pre-.beta.-lactamase without changing the folding pathway. Biochemistry 1992, 31 (12) , 3249-3255. https://doi.org/10.1021/bi00127a029
    19. Baerbel Hoell-Neugebauer, Rainer Rudolph, Marion Schmidt, and Johannes Buchner. Reconstitution of a heat shock effect in vitro: influence of GroE on the thermal aggregation of .alpha.-glucosidase from yeast. Biochemistry 1991, 30 (50) , 11609-11614. https://doi.org/10.1021/bi00114a001
    20. Paul V. Viitanen, Gail K. Donaldson, George H. Lorimer, Thomas H. Lubben, and Anthony A. Gatenby. Complex interactions between the chaperonin 60 molecular chaperone and dihydrofolate reductase. Biochemistry 1991, 30 (40) , 9716-9723. https://doi.org/10.1021/bi00104a021
    21. Katherine C. Terlesky and F. Robert Tabita. Purification and characterization of the chaperonin 10 and chaperonin 60 proteins from Rhodobacter sphaeroides. Biochemistry 1991, 30 (33) , 8181-8186. https://doi.org/10.1021/bi00247a013
    22. Rainer Jaenicke. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry 1991, 30 (13) , 3147-3161. https://doi.org/10.1021/bi00227a001
    23. Johannes Buchner, Marion Schmidt, Miriam Fuchs, Rainer Jaenicke, Rainer Rudolph, Franz X. Schmid, and Thomas Kiefhaber. GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 1991, 30 (6) , 1586-1591. https://doi.org/10.1021/bi00220a020
    24. Ritaban Halder, Daniel A. Nissley, Ian Sitarik, Yang Jiang, Yiyun Rao, Quyen V. Vu, Mai Suan Li, Justin Pritchard, Edward P. O’Brien. How soluble misfolded proteins bypass chaperones at the molecular level. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-38962-z
    25. Philip To, Yingzi Xia, Sea On Lee, Taylor Devlin, Karen G. Fleming, Stephen D. Fried. A proteome-wide map of chaperone-assisted protein refolding in a cytosol-like milieu. Proceedings of the National Academy of Sciences 2022, 119 (48) https://doi.org/10.1073/pnas.2210536119
    26. Giusy Tassone, Marco Mazzorana, Cecilia Pozzi. Structural Basis of Parasitic HSP90 ATPase Inhibition by Small Molecules. Pharmaceuticals 2022, 15 (11) , 1341. https://doi.org/10.3390/ph15111341
    27. Akanksha Pareek, Divya Mishra, Divya Rathi, Jitendra Kumar Verma, Subhra Chakraborty, Niranjan Chakraborty. The small heat shock proteins, chaperonin 10, in plants: An evolutionary view and emerging functional diversity. Environmental and Experimental Botany 2021, 182 , 104323. https://doi.org/10.1016/j.envexpbot.2020.104323
    28. Dong Yang, David P. Klebl, Sheng Zeng, Frank Sobott, Martine Prévost, Patrice Soumillion, Guy Vandenbussche, Véronique Fontaine. Interplays between copper and Mycobacterium tuberculosis GroEL1. Metallomics 2020, 12 (8) , 1267-1277. https://doi.org/10.1039/D0MT00101E
    29. Dong Yang, David P Klebl, Sheng Zeng, Frank Sobott, Martine Prévost, Patrice Soumillion, Guy Vandenbussche, Véronique Fontaine. Interplays between copper and Mycobacterium tuberculosis GroEL1. Metallomics 2020, 12 (8) , 1267-1277. https://doi.org/10.1039/d0mt00101e
    30. Michel W. Jaworek, Simone Möbitz, Mimi Gao, Roland Winter. Stability of the chaperonin system GroEL–GroES under extreme environmental conditions. Physical Chemistry Chemical Physics 2020, 22 (6) , 3734-3743. https://doi.org/10.1039/C9CP06468K
    31. Arthur L. Horwich, Wayne A. Fenton. Chaperonin-assisted protein folding: a chronologue. Quarterly Reviews of Biophysics 2020, 53 https://doi.org/10.1017/S0033583519000143
    32. Antoine Danchin, Pablo Iván Nikel. Why Nature Chose Potassium. Journal of Molecular Evolution 2019, 87 (9-10) , 271-288. https://doi.org/10.1007/s00239-019-09915-2
    33. Zininga, Shonhai. Small Molecule Inhibitors Targeting the Heat Shock Protein System of Human Obligate Protozoan Parasites. International Journal of Molecular Sciences 2019, 20 (23) , 5930. https://doi.org/10.3390/ijms20235930
    34. Neil Andrew D. Bascos, Samuel J. Landry. A History of Molecular Chaperone Structures in the Protein Data Bank. International Journal of Molecular Sciences 2019, 20 (24) , 6195. https://doi.org/10.3390/ijms20246195
    35. Omid Askari-Khorasgani, Mohammad Pessarakli. Protective roles of plant proteins in conferring tolerance to heat stress. Journal of Plant Nutrition 2019, 42 (9) , 1114-1123. https://doi.org/10.1080/01904167.2019.1589501
    36. Grégory Boël, Olivier Danot, Victor de Lorenzo, Antoine Danchin. Omnipresent Maxwell's demons orchestrate information management in living cells. Microbial Biotechnology 2019, 12 (2) , 210-242. https://doi.org/10.1111/1751-7915.13378
    37. Justyna Czyrko, Joanna Sliwiak, Barbara Imiolczyk, Zofia Gdaniec, Mariusz Jaskolski, Krzysztof Brzezinski. Metal-cation regulation of enzyme dynamics is a key factor influencing the activity of S-adenosyl-l-homocysteine hydrolase from Pseudomonas aeruginosa. Scientific Reports 2018, 8 (1) https://doi.org/10.1038/s41598-018-29535-y
    38. Rajach Sharkia, Paul Viitanen, Galit Levy-Rimler, Celeste Weiss, Adina Niv, Abdussalam Azem. The Higher Plant Chaperonins. 2018, 190-213. https://doi.org/10.1002/9781119312994.apr0062
    39. Tomohiro Mizobata, Yasushi Kawata. The versatile mutational “repertoire” of Escherichia coli GroEL, a multidomain chaperonin nanomachine. Biophysical Reviews 2018, 10 (2) , 631-640. https://doi.org/10.1007/s12551-017-0332-0
    40. Mina Mamipour, Mohammadreza Yousefi, Mohammad Hasanzadeh. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding. International Journal of Biological Macromolecules 2017, 102 , 367-375. https://doi.org/10.1016/j.ijbiomac.2017.04.025
    41. David W. Gohara, Enrico Di Cera. Molecular Mechanisms of Enzyme Activation by Monovalent Cations. Journal of Biological Chemistry 2016, 291 (40) , 20840-20848. https://doi.org/10.1074/jbc.R116.737833
    42. Andrija Finka, Rayees U.H. Mattoo, Pierre Goloubinoff. Experimental Milestones in the Discovery of Molecular Chaperones as Polypeptide Unfolding Enzymes. Annual Review of Biochemistry 2016, 85 (1) , 715-742. https://doi.org/10.1146/annurev-biochem-060815-014124
    43. Agnieszka Kłosowska, Tomasz Chamera, Krzysztof Liberek. Adenosine diphosphate restricts the protein remodeling activity of the Hsp104 chaperone to Hsp70 assisted disaggregation. eLife 2016, 5 https://doi.org/10.7554/eLife.15159
    44. D. V. Dibrova, M. Y. Galperin, E. V. Koonin, A. Y. Mulkidjanian. Ancient systems of sodium/potassium homeostasis as predecessors of membrane bioenergetics. Biochemistry (Moscow) 2015, 80 (5) , 495-516. https://doi.org/10.1134/S0006297915050016
    45. Andrew J. Ambrose, Wayne Fenton, Damian J. Mason, Eli Chapman, Arthur L. Horwich. Unfolded DapA forms aggregates when diluted into free solution, confounding comparison with folding by the GroEL/GroES chaperonin system. FEBS Letters 2015, 589 (4) , 497-499. https://doi.org/10.1016/j.febslet.2015.01.008
    46. William J. Percey, Lana Shabala, Michael C. Breadmore, Rosanne M. Guijt, Jayakumar Bose, Sergey Shabala. Ion transport in broad bean leaf mesophyll under saline conditions. Planta 2014, 240 (4) , 729-743. https://doi.org/10.1007/s00425-014-2117-z
    47. N. A. Ryabova, V. V. Marchenkov, S. Yu. Marchenkova, N. V. Kotova, G. V. Semisotnov. Molecular chaperone GroEL/ES: Unfolding and refolding processes. Biochemistry (Moscow) 2013, 78 (13) , 1405-1414. https://doi.org/10.1134/S0006297913130038
    48. Nicholas C. Corsepius, George H. Lorimer. Measuring how much work the chaperone GroEL can do. Proceedings of the National Academy of Sciences 2013, 110 (27) https://doi.org/10.1073/pnas.1307837110
    49. Andrey Dyachenko, Ranit Gruber, Liat Shimon, Amnon Horovitz, Michal Sharon. Allosteric mechanisms can be distinguished using structural mass spectrometry. Proceedings of the National Academy of Sciences 2013, 110 (18) , 7235-7239. https://doi.org/10.1073/pnas.1302395110
    50. Adinarayana Marada, Praveen Kumar Allu, Anjaneyulu Murari, BhoomiReddy PullaReddy, Prasad Tammineni, Venkata Ramana Thiriveedi, Jayasree Danduprolu, Naresh Babu V. Sepuri, . Mge1, a nucleotide exchange factor of Hsp70, acts as an oxidative sensor to regulate mitochondrial Hsp70 function. Molecular Biology of the Cell 2013, 24 (6) , 692-703. https://doi.org/10.1091/mbc.e12-10-0719
    51. Arthur L. Horwich, Helen R. Saibil. The GroEL/GroES Chaperonin Machine. 2011, 191-207. https://doi.org/10.1017/CBO9781139003704.012
    52. Melissa Illingworth, Andrew Ramsey, Zhida Zheng, Lingling Chen. Stimulating the Substrate Folding Activity of a Single Ring GroEL Variant by Modulating the Cochaperonin GroES. Journal of Biological Chemistry 2011, 286 (35) , 30401-30408. https://doi.org/10.1074/jbc.M111.255935
    53. Jin Chen, Koki Makabe, Takashi Nakamura, Tomonao Inobe, Kunihiro Kuwajima. Dissecting a Bimolecular Process of MgATP2− Binding to the Chaperonin GroEL. Journal of Molecular Biology 2011, 410 (2) , 343-356. https://doi.org/10.1016/j.jmb.2011.05.018
    54. Navneet K. Tyagi, Wayne A. Fenton, Ashok A. Deniz, Arthur L. Horwich. Double mutant MBP refolds at same rate in free solution as inside the GroEL/GroES chaperonin chamber when aggregation in free solution is prevented. FEBS Letters 2011, 585 (12) , 1969-1972. https://doi.org/10.1016/j.febslet.2011.05.031
    55. . References. 2010, 459-565. https://doi.org/10.1002/9780470872390.refs
    56. Miriam-Rose Ash, Amy Guilfoyle, Ronald J. Clarke, J. Mitchell Guss, Megan J. Maher, Mika Jormakka. Potassium-activated GTPase Reaction in the G Protein-coupled Ferrous Iron Transporter B. Journal of Biological Chemistry 2010, 285 (19) , 14594-14602. https://doi.org/10.1074/jbc.M110.111914
    57. Andrew I. Jewett, Joan-Emma Shea. Reconciling theories of chaperonin accelerated folding with experimental evidence. Cellular and Molecular Life Sciences 2010, 67 (2) , 255-276. https://doi.org/10.1007/s00018-009-0164-6
    58. . References. 2010, 807-843. https://doi.org/10.1016/B978-0-12-380924-7.10017-1
    59. Hernán Alonso, Michelle J. Blayney, Jennifer L. Beck, Spencer M. Whitney. Substrate-induced Assembly of Methanococcoides burtoniid-Ribulose-1,5-bisphosphate Carboxylase/Oxygenase Dimers into Decamers. Journal of Biological Chemistry 2009, 284 (49) , 33876-33882. https://doi.org/10.1074/jbc.M109.050989
    60. C. M. Santosh Kumar, Garima Khare, C. V. Srikanth, Anil K. Tyagi, Abhijit A. Sardesai, Shekhar C. Mande. Facilitated Oligomerization of Mycobacterial GroEL: Evidence for Phosphorylation-Mediated Oligomerization. Journal of Bacteriology 2009, 191 (21) , 6525-6538. https://doi.org/10.1128/JB.00652-09
    61. Arthur L. Horwich, Adrian C. Apetri, Wayne A. Fenton. The GroEL/GroES cis cavity as a passive anti‐aggregation device. FEBS Letters 2009, 583 (16) , 2654-2662. https://doi.org/10.1016/j.febslet.2009.06.049
    62. Ashish K. Patra, Jayant B. Udgaonkar. GroEL Can Unfold Late Intermediates Populated on the Folding Pathways of Monellin. Journal of Molecular Biology 2009, 389 (4) , 759-775. https://doi.org/10.1016/j.jmb.2009.04.039
    63. Arthur L. Horwich, Wayne A. Fenton. Chaperonin-mediated protein folding: using a central cavity to kinetically assist polypeptide chain folding. Quarterly Reviews of Biophysics 2009, 42 (2) , 83-116. https://doi.org/10.1017/S0033583509004764
    64. Victor Marchenkov, Gennady Semisotnov. GroEL-Assisted Protein Folding: Does It Occur Within the Chaperonin Inner Cavity?. International Journal of Molecular Sciences 2009, 10 (5) , 2066-2083. https://doi.org/10.3390/ijms10052066
    65. . References. 2009, 643-764. https://doi.org/10.1002/9780470447758.refs
    66. Sol Green, Christopher J. Squire, Niels J. Nieuwenhuizen, Edward N. Baker, William Laing. Defining the Potassium Binding Region in an Apple Terpene Synthase. Journal of Biological Chemistry 2009, 284 (13) , 8661-8669. https://doi.org/10.1074/jbc.M807140200
    67. John P. Grason, Jennifer S. Gresham, Lusiana Widjaja, Sarah C. Wehri, George H. Lorimer. Setting the chaperonin timer: The effects of K + and substrate protein on ATP hydrolysis. Proceedings of the National Academy of Sciences 2008, 105 (45) , 17334-17338. https://doi.org/10.1073/pnas.0807429105
    68. Adrian C. Apetri, Arthur L. Horwich. Chaperonin chamber accelerates protein folding through passive action of preventing aggregation. Proceedings of the National Academy of Sciences 2008, 105 (45) , 17351-17355. https://doi.org/10.1073/pnas.0809794105
    69. John P. Grason, Jennifer S. Gresham, George H. Lorimer. Setting the chaperonin timer: A two-stroke, two-speed, protein machine. Proceedings of the National Academy of Sciences 2008, 105 (45) , 17339-17344. https://doi.org/10.1073/pnas.0807418105
    70. Raji E. Joseph, Amy H. Andreotti. Bacterial expression and purification of Interleukin-2 Tyrosine kinase: Single step separation of the chaperonin impurity. Protein Expression and Purification 2008, 60 (2) , 194-197. https://doi.org/10.1016/j.pep.2008.04.001
    71. Riina Tehver, D. Thirumalai. Kinetic Model for the Coupling between Allosteric Transitions in GroEL and Substrate Protein Folding and Aggregation. Journal of Molecular Biology 2008, 377 (4) , 1279-1295. https://doi.org/10.1016/j.jmb.2008.01.059
    72. Johannes Buchner, Stefan Walter. Chaperone Function in Vitro. 2008, 162-196. https://doi.org/10.1002/9783527610754.sf15
    73. Rainer Jaenicke. Protein Stability and Protein Folding. 2007, 206-221. https://doi.org/10.1002/9780470514146.ch13
    74. Subhankar Paul, Chanpreet Singh, Saroj Mishra, Tapan K. Chaudhuri. The 69 kDa Escherichia coli maltodextrin glucosidase does not get encapsulated underneath GroES and folds through trans mechanism during GroEL/ GroES‐assisted folding. The FASEB Journal 2007, 21 (11) , 2874-2885. https://doi.org/10.1096/fj.06-7958com
    75. Han Liu, Peter A. Lund. The Roles of GroES as a Co-Chaperone for GroEL. 2007, 75-87. https://doi.org/10.1007/978-0-387-49310-7_7
    76. N. Yu. Marchenko, V. V. Marchenkov, A. L. Kaysheva, I. A. Kashparov, N. V. Kotova, P. A. Kaliman, G. V. Semisotnov. Affinity chromatography of GroEL chaperonin based on denatured proteins: Role of electrostatic interactions in regulation of GroEL affinity for protein substrates. Biochemistry (Moscow) 2006, 71 (12) , 1357-1364. https://doi.org/10.1134/S000629790612011X
    77. Zhen-Hua YONG, Gen-Yun CHEN, Jiao-Nai SHI, Da-Quan XU. In Vitro Reassembly of Tobacco Ribulose-1,5-bisphosphate Carboxylase/Oxygenase from Fully Denatured Subunits. Acta Biochimica et Biophysica Sinica 2006, 38 (10) , 737-745. https://doi.org/10.1111/j.1745-7270.2006.00221.x
    78. Michael J. Page, Enrico Di Cera. Role of Na + and K + in Enzyme Function. Physiological Reviews 2006, 86 (4) , 1049-1092. https://doi.org/10.1152/physrev.00008.2006
    79. Amnon Horovitz, Yael Fridmann, Galit Kafri, Ofer Yifrach. Allostery in chaperonins. Rendiconti Lincei 2006, 17 (1-2) , 115-131. https://doi.org/10.1007/BF02904504
    80. Zong Lin, Hays S. Rye. GroEL-Mediated Protein Folding: Making the Impossible, Possible. Critical Reviews in Biochemistry and Molecular Biology 2006, 41 (4) , 211-239. https://doi.org/10.1080/10409230600760382
    81. Enrico Di Cera. A Structural Perspective on Enzymes Activated by Monovalent Cations. Journal of Biological Chemistry 2006, 281 (3) , 1305-1308. https://doi.org/10.1074/jbc.R500023200
    82. Cecilia Bartolucci, Doriano Lamba, Saulius Grazulis, Elena Manakova, Hermann Heumann. Crystal Structure of Wild-type Chaperonin GroEL. Journal of Molecular Biology 2005, 354 (4) , 940-951. https://doi.org/10.1016/j.jmb.2005.09.096
    83. Girish C. Melkani, Gustavo Zardeneta, Jose A. Mendoza. On the chaperonin activity of GroEL at heat-shock temperature. The International Journal of Biochemistry & Cell Biology 2005, 37 (7) , 1375-1385. https://doi.org/10.1016/j.biocel.2005.01.007
    84. Lynda J. Donald, David J. Stokell, Neil J. Holliday, Werner Ens, Kenneth G. Standing, Harry W. Duckworth. Multiple equilibria of the Escherichia coli chaperonin GroES revealed by mass spectrometry. Protein Science 2005, 14 (5) , 1375-1379. https://doi.org/10.1110/ps.041164305
    85. Ji-Cheng Pan, Jin-Song Wang, Yuan Cheng, Zhenhang Yu, Xue-Ming Rao, Hai-Meng Zhou. The role of detergent in refolding of GdnHCl-denatured arginine kinase from shrimp Fenneropenaeus Chinensis : the solubilization of aggregate and refolding in detergent solutions. Biochemistry and Cell Biology 2005, 83 (2) , 140-146. https://doi.org/10.1139/o05-018
    86. Thomas Becker, Jurgen Soll, Enrico Schleiff. Chaperone Systems in Chloroplasts. 2005, 1047-1092. https://doi.org/10.1002/9783527619498.ch65
    87. Johannes Buchner, Stefan Walter. Analysis of Chaperone Function in Vitro. 2005, 162-196. https://doi.org/10.1002/9783527619498.ch38
    88. Rohini Qamra, Volety Srinivas, Shekhar C. Mande. Mycobacterium tuberculosis GroEL Homologues Unusually Exist as Lower Oligomers and Retain the Ability to Suppress Aggregation of Substrate Proteins. Journal of Molecular Biology 2004, 342 (2) , 605-617. https://doi.org/10.1016/j.jmb.2004.07.066
    89. Anuradha Alahari, Shree Kumar Apte. A novel potassium deficiency-induced stimulon inAnabaena torulosa. Journal of Biosciences 2004, 29 (2) , 153-161. https://doi.org/10.1007/BF02703413
    90. Amnon Amir, Amnon Horovitz. Kinetic Analysis of ATP-dependent Inter-ring Communication in GroEL. Journal of Molecular Biology 2004, 338 (5) , 979-988. https://doi.org/10.1016/j.jmb.2004.02.076
    91. Maja Pavela-Vrancic, Ralf Dieckmann, Hans von Döhren. ATPase activity of non-ribosomal peptide synthetases. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2004, 1696 (1) , 83-91. https://doi.org/10.1016/j.bbapap.2003.09.012
    92. Elke Deuerling, Bernd Bukau. Chaperone-Assisted Folding of Newly Synthesized Proteins in the Cytosol. Critical Reviews in Biochemistry and Molecular Biology 2004, 39 (5-6) , 261-277. https://doi.org/10.1080/10409230490892496
    93. Markandeswar Panda, Paul M. Horowitz. Activation Parameters for the Spontaneous and Pressure-Induced Phases of the Dissociation of Single-Ring GroEL (SR1) Chaperonin. The Protein Journal 2004, 23 (1) , 85-94. https://doi.org/10.1023/B:JOPC.0000016262.27420.3a
    94. Rafal Dutkiewicz, Brenda Schilke, Helena Knieszner, William Walter, Elizabeth A. Craig, Jaroslaw Marszalek. Ssq1, a Mitochondrial Hsp70 Involved in Iron-Sulfur (Fe/S) Center Biogenesis. Journal of Biological Chemistry 2003, 278 (32) , 29719-29727. https://doi.org/10.1074/jbc.M303527200
    95. Andrew R Kusmierczyk, Jörg Martin. Nested cooperativity and salt dependence of the ATPase activity of the archaeal chaperonin Mm-cpn. FEBS Letters 2003, 547 (1-3) , 201-204. https://doi.org/10.1016/S0014-5793(03)00722-1
    96. Baochong Gao, Min-Fu Tsan. Recombinant Human Heat Shock Protein 60 Does Not Induce the Release of Tumor Necrosis Factor α from Murine Macrophages. Journal of Biological Chemistry 2003, 278 (25) , 22523-22529. https://doi.org/10.1074/jbc.M303161200
    97. Munehito Arai, Tomonao Inobe, Kosuke Maki, Teikichi Ikura, Hiroshi Kihara, Yoshiyuki Amemiya, Kunihiro Kuwajima. Denaturation and reassembly of chaperonin GroEL studied by solution X‐ray scattering. Protein Science 2003, 12 (4) , 672-680. https://doi.org/10.1110/ps.0233603
    98. Arthur L. Horwich, Wayne A. Fenton. The Role of ATP in directing chaperonin-mediated polypeptide folding. 2003, 399-XII. https://doi.org/10.1016/S1874-6047(04)80010-6
    99. Devyani Nath, Urmila Rawat, Ramakrishnan Anish, Mala Rao. α‐Crystallin and ATP facilitate the in vitro renaturation of xylanase: enhancement of refolding by metal ions. Protein Science 2002, 11 (11) , 2727-2734. https://doi.org/10.1110/ps.0213802
    100. F. Valle, J.A. DeRose, G. Dietler, M. Kawe, A. Plückthun, G. Semenza. AFM structural study of the molecular chaperone GroEL and its two-dimensional crystals: an ideal “living” calibration sample. Ultramicroscopy 2002, 93 (1) , 83-89. https://doi.org/10.1016/S0304-3991(02)00149-3
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect