Effects of magnesium on the dynamic instability of individual microtubules
Note: In lieu of an abstract, this is the article's first page.
Cited By
This article is cited by 52 publications.
- Zinnat Shahina, Ragothaman M. Yennamalli, Tanya E.S. Dahms. Key essential oil components delocalize Candida albicans Kar3p and impact microtubule structure. Microbiological Research 2023, 272 , 127373. https://doi.org/10.1016/j.micres.2023.127373
- Hadi Zadeh-Haghighi, Christoph Simon. Radical pairs may play a role in microtubule reorganization. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-10068-4
- Mikhail Anisimov. Approaches to visualize microtubule dynamics in vitro. Systems Biology and Physiology Reports 2022, 1 (6) , 1-16. https://doi.org/10.52455/sbpr.01.202206011
- Inga V. Hochheiser, Heide Behrmann, Gregor Hagelueken, Juan F. Rodríguez-Alcázar, Anja Kopp, Eicke Latz, Elmar Behrmann, Matthias Geyer. Directionality of PYD filament growth determined by the transition of NLRP3 nucleation seeds to ASC elongation. Science Advances 2022, 8 (19) https://doi.org/10.1126/sciadv.abn7583
- Lucas E Murray, Haein Kim, Luke M Rice, Charles L Asbury. . eLife 2022https://doi.org/10.7554/eLife.83225
- Veronica Farmer, Göker Arpağ, Sarah L. Hall, Marija Zanic. XMAP215 promotes microtubule catastrophe by disrupting the growing microtubule end. Journal of Cell Biology 2021, 220 (10) https://doi.org/10.1083/jcb.202012144
- Matthias Schmidt, Jan Kierfeld. Chemomechanical Simulation of Microtubule Dynamics With Explicit Lateral Bond Dynamics. Frontiers in Physics 2021, 9 https://doi.org/10.3389/fphy.2021.673875
- Olagoke Zacchaeus Olatunde, Jianping Yong, Canzhong Lu. The Progress of the Anticancer Agents Related to the Microtubules Target. Mini-Reviews in Medicinal Chemistry 2021, 20 (20) , 2165-2192. https://doi.org/10.2174/1389557520666200729162510
- Aleksandra S. Taran, Lilia D. Shuvalova, Maria A. Lagarkova, Irina B. Alieva. Huntington’s Disease—An Outlook on the Interplay of the HTT Protein, Microtubules and Actin Cytoskeletal Components. Cells 2020, 9 (6) , 1514. https://doi.org/10.3390/cells9061514
- Manas Chakraborty, Ekaterina V. Tarasovetc, Anatoly V. Zaytsev, Maxim Godzi, Ana C. Figueiredo, Fazly I. Ataullakhanov, Ekaterina L. Grishchuk. Microtubule end conversion mediated by motors and diffusing proteins with no intrinsic microtubule end-binding activity. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09411-7
- Claire Strothman, Veronica Farmer, Göker Arpağ, Nicole Rodgers, Marija Podolski, Stephen Norris, Ryoma Ohi, Marija Zanic. Microtubule minus-end stability is dictated by the tubulin off-rate. Journal of Cell Biology 2019, 218 (9) , 2841-2853. https://doi.org/10.1083/jcb.201905019
- Colby P. Fees, Jeffrey K. Moore, . A unified model for microtubule rescue. Molecular Biology of the Cell 2019, 30 (6) , 753-765. https://doi.org/10.1091/mbc.E18-08-0541
- Colby P Fees, Jeffrey K Moore. Regulation of microtubule dynamic instability by the carboxy-terminal tail of β-tubulin. Life Science Alliance 2018, 1 (2) , e201800054. https://doi.org/10.26508/lsa.201800054
- Christian Duellberg, Nicholas Ian Cade, Thomas Surrey, . Microtubule aging probed by microfluidics-assisted tubulin washout. Molecular Biology of the Cell 2016, 27 (22) , 3563-3573. https://doi.org/10.1091/mbc.e16-07-0548
- Benjamin Lacroix, Joël Ryan, Julien Dumont, Paul S. Maddox, Amy S. Maddox, . Identification of microtubule growth deceleration and its regulation by conserved and novel proteins. Molecular Biology of the Cell 2016, 27 (9) , 1479-1487. https://doi.org/10.1091/mbc.E16-01-0056
- Christian Duellberg, Nicholas I Cade, David Holmes, Thomas Surrey. The size of the EB cap determines instantaneous microtubule stability. eLife 2016, 5 https://doi.org/10.7554/eLife.13470
- Ahmed T. Ayoub, Mariusz Klobukowski, Jack A. Tuszynski, . Detailed Per-residue Energetic Analysis Explains the Driving Force for Microtubule Disassembly. PLOS Computational Biology 2015, 11 (6) , e1004313. https://doi.org/10.1371/journal.pcbi.1004313
- Adam J. Fournier, Labchan Rajbhandari, Shiva Shrestha, Arun Venkatesan, K. T. Ramesh. In vitro and in situ visualization of cytoskeletal deformation under load: traumatic axonal injury. The FASEB Journal 2014, 28 (12) , 5277-5287. https://doi.org/10.1096/fj.14-251942
- E.L. Grishchuk, J.R. McIntosh, M.I. Molodtsov, F.I. Ataullakhanov. 4.7 Force Generation by Dynamic Microtubule Polymers. 2012, 93-117. https://doi.org/10.1016/B978-0-12-374920-8.00409-4
- Melissa K. Gardner, Blake D. Charlebois, Imre M. Jánosi, Jonathon Howard, Alan J. Hunt, David J. Odde. Rapid Microtubule Self-Assembly Kinetics. Cell 2011, 146 (4) , 582-592. https://doi.org/10.1016/j.cell.2011.06.053
- Susana Montenegro Gouveia, Anna Akhmanova. Cell and Molecular Biology of Microtubule Plus End Tracking Proteins. 2010, 1-74. https://doi.org/10.1016/B978-0-12-381047-2.00001-3
- John J. Correia. Analysis of Tubulin Oligomers by Analytical Ultracentrifugation. 2010, 274-288. https://doi.org/10.1016/S0091-679X(10)95015-2
- Melissa K Gardner, Alan J Hunt, Holly V Goodson, David J Odde. Microtubule assembly dynamics: new insights at the nanoscale. Current Opinion in Cell Biology 2008, 20 (1) , 64-70. https://doi.org/10.1016/j.ceb.2007.12.003
- Henry T. Schek, Melissa K. Gardner, Jun Cheng, David J. Odde, Alan J. Hunt. Microtubule Assembly Dynamics at the Nanoscale. Current Biology 2007, 17 (17) , 1445-1455. https://doi.org/10.1016/j.cub.2007.07.011
- Ekaterina L. Grishchuk, Maxim I. Molodtsov, Fazly I. Ataullakhanov, J. Richard McIntosh. Force production by disassembling microtubules. Nature 2005, 438 (7066) , 384-388. https://doi.org/10.1038/nature04132
- Maxim I. Molodtsov, Elena A. Ermakova, Emmanuil E. Shnol, Ekaterina L. Grishchuk, J. Richard McIntosh, Fazly I. Ataullakhanov. A Molecular-Mechanical Model of the Microtubule. Biophysical Journal 2005, 88 (5) , 3167-3179. https://doi.org/10.1529/biophysj.104.051789
- Laura Romberg, Martha Simon, Harold P. Erickson. Polymerization of FtsZ, a Bacterial Homolog of Tubulin. Journal of Biological Chemistry 2001, 276 (15) , 11743-11753. https://doi.org/10.1074/jbc.M009033200
- Bin-Bing Zhou, Marc W. Kirschner. Quantitative measurement of the catastrophe rate of dynamic microtubules. Cell Motility and the Cytoskeleton 1999, 43 (1) , 43-51. https://doi.org/10.1002/(SICI)1097-0169(1999)43:1<43::AID-CM5>3.0.CO;2-A
- Robert J. Vasquez, David L. Gard, Lynne Cassimeris. Phosphorylation by CDK1 regulates XMAP215 function in vitro. Cell Motility and the Cytoskeleton 1999, 43 (4) , 310-321. https://doi.org/10.1002/(SICI)1097-0169(1999)43:4<310::AID-CM4>3.0.CO;2-J
- Bonnie Howell, Niklas Larsson, Martin Gullberg, Lynne Cassimeris, . Dissociation of the Tubulin-sequestering and Microtubule Catastrophe-promoting Activities of Oncoprotein 18/Stathmin. Molecular Biology of the Cell 1999, 10 (1) , 105-118. https://doi.org/10.1091/mbc.10.1.105
- Arshad Desai, Timothy J. Mitchison. MICROTUBULE POLYMERIZATION DYNAMICS. Annual Review of Cell and Developmental Biology 1997, 13 (1) , 83-117. https://doi.org/10.1146/annurev.cellbio.13.1.83
- J.A. Tuszynski, B. Trpišová, D. Sept, J.A. Brown. Selected Physical Issues in the Structure and Function of Microtubules. Journal of Structural Biology 1997, 118 (2) , 94-106. https://doi.org/10.1006/jsbi.1997.3843
- P.T. Tran, P. Joshi, E.D. Salmon. How Tubulin Subunits Are Lost from the Shortening Ends of Microtubules. Journal of Structural Biology 1997, 118 (2) , 107-118. https://doi.org/10.1006/jsbi.1997.3844
- E. Timothy O'Brien, E.D. Salmon, Harold P. Erickson. How calcium causes microtubule depolymerization. Cell Motility and the Cytoskeleton 1997, 36 (2) , 125-135. https://doi.org/10.1002/(SICI)1097-0169(1997)36:2<125::AID-CM3>3.0.CO;2-8
- Richard C. Moore, Min Zhang, Lynne Cassimeris, Richard J. Cyr. In vitro assembled plant microtubules exhibit a high state of dynamic instability. Cell Motility and the Cytoskeleton 1997, 38 (3) , 278-286. https://doi.org/10.1002/(SICI)1097-0169(1997)38:3<278::AID-CM6>3.0.CO;2-1
- Henrik Flyvbjerg, Timothy E. Holy, Stanislas Leibler. Microtubule dynamics: Caps, catastrophes, and coupled hydrolysis. Physical Review E 1996, 54 (5) , 5538-5560. https://doi.org/10.1103/PhysRevE.54.5538
- David J. Odde, Helen M. Buettner. Time series characterization of simulated microtubule dynamics in the nerve growth cone. Annals of Biomedical Engineering 1995, 23 (3) , 268-286. https://doi.org/10.1007/BF02584428
- David N. Drechsel, Marc W. Kirschner. The minimum GTP cap required to stabilize microtubules. Current Biology 1994, 4 (12) , 1053-1061. https://doi.org/10.1016/S0960-9822(00)00243-8
- Deborah Kuchnir Fygenson, Erez Braun, Albert Libchaber. Phase diagram of microtubules. Physical Review E 1994, 50 (2) , 1579-1588. https://doi.org/10.1103/PhysRevE.50.1579
- Richard J. Kowalski, Robley C. Williams. Unambiguous classification of microtubule-ends in vitro: Dynamic properties of the plus- and minus-ends. Cell Motility and the Cytoskeleton 1993, 26 (4) , 282-290. https://doi.org/10.1002/cm.970260403
- Nancy K. Pryer, Richard A. Walker, Victoria Petrie Skeen, Brenda D. Bourns, Michael F. Soboeiro, Edward D. Salmon. Brain microtubule-associated proteins modulate microtubule dynamic instability in vitro: Real-time observations using video microscopy. Journal of Cell Science 1992, 103 (4) , 965-977. https://doi.org/10.1242/jcs.103.4.965
- R.F. Gildersleeve, A.R. Cross, K.E. Cullen, A.P. Fagen, R C Williams. Microtubules grow and shorten at intrinsically variable rates.. Journal of Biological Chemistry 1992, 267 (12) , 7995-8006. https://doi.org/10.1016/S0021-9258(18)42399-X
- John R. Simon, Stephen F. Parsons, E. D. Salmon. Buffer conditions and non-tubulin factors critically affect the microtubule dynamic instability of sea urchin egg tubulin. Cell Motility and the Cytoskeleton 1992, 21 (1) , 1-14. https://doi.org/10.1002/cm.970210102
- Rick B. Dye, Paula F. Flicker, David Y. Lien, Robley C. Williams. End-stabilized microtubules observed in vitro: Stability, subunit interchange, and breakage. Cell Motility and the Cytoskeleton 1992, 21 (3) , 171-186. https://doi.org/10.1002/cm.970210302
- Eva-Maria Mandelkow, Eckhard Mandelkow. Microtubule oscillations. Cell Motility and the Cytoskeleton 1992, 22 (4) , 235-244. https://doi.org/10.1002/cm.970220403
- John J. Correia. Effects of antimitotic agents on tubulin-nucleotide interactions. Pharmacology & Therapeutics 1991, 52 (2) , 127-147. https://doi.org/10.1016/0163-7258(91)90004-6
- M.F. Carlier, D. Didry, C. Valentin-Ranc. Interaction between chromium GTP and tubulin. Stereochemistry of GTP binding, GTP hydrolysis, and microtubule stabilization. Journal of Biological Chemistry 1991, 266 (19) , 12361-12368. https://doi.org/10.1016/S0021-9258(18)98905-2
- Ernest Hamel, Chii M. Lin, Susan Kenney, Philip Skehan. Highly variable effects of beryllium and beryllium fluoride on tubulin polymerization under different reaction conditions: Comparison of assembly reactions dependent on microtubule-associated proteins, glycerol, dimethyl sulfoxide, and glutamate. Archives of Biochemistry and Biophysics 1991, 286 (1) , 57-69. https://doi.org/10.1016/0003-9861(91)90008-7
- Marie-France Carlier. Nucleotide hydrolysis in cytoskeletal assembly. Current Opinion in Cell Biology 1991, 3 (1) , 12-17. https://doi.org/10.1016/0955-0674(91)90160-Z
- William A. Voter, E. Timothy O'Brien, Harold P. Erickson. Dilution-induced disassembly of microtubules: Relation to dynamic instability and the GTP cap. Cell Motility and the Cytoskeleton 1991, 18 (1) , 55-62. https://doi.org/10.1002/cm.970180106
- John R. Simon, Edward D. Salmon. The structure of microtubule ends during the elongation and shortening phases of dynamic instability examined by negative-stain electron microscopy. Journal of Cell Science 1990, 96 (4) , 571-582. https://doi.org/10.1242/jcs.96.4.571
- Mary Ann Jordan, Leslie Wilson. Microtubule Dynamics. , 47-81. https://doi.org/10.1007/978-1-59745-336-3_3