ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Metal sites of copper-zinc superoxide dismutase

Cite this: Biochemistry 1977, 16, 9, 1930–1936
Publication Date (Print):May 3, 1977
https://doi.org/10.1021/bi00628a027
    ACS Legacy Archive

    Article Views

    217

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 58 publications.

    1. . Biochemistry Education: From Theory to Practice. 2019https://doi.org/10.1021/bk-2019-1337
    2. Shuchismita Dutta Daniel R. Dries . Virtual Exploration of Biomolecular Structure and Function. 2019, 21-41. https://doi.org/10.1021/bk-2019-1337.ch002
    3. Yi Lu,, James A. Roe,, Christopher J. Bender,, Jack Peisach,, Lucia Banci,, Ivano Bertini,, Edith B. Gralla, and, Joan Selverstone Valentine. New Type 2 Copper−Cysteinate Proteins. Copper Site Histidine-to-Cysteine Mutants of Yeast Copper−Zinc Superoxide Dismutase. Inorganic Chemistry 1996, 35 (6) , 1692-1700. https://doi.org/10.1021/ic9513189
    4. Alejandro R. Parise,, Luis M. Baraldo, and, José A. Olabe. Electronic Structure and Substitution and Redox Reactivity of Imidazolate-Bridged Complexes of Pentacyanoferrate and Pentaammineruthenium. Inorganic Chemistry 1996, 35 (17) , 5080-5086. https://doi.org/10.1021/ic951558o
    5. Michael T. Hay,, Richard M. Milberg, and, Yi Lu. Preparation and Characterization of Mercury and Silver Derivatives of an Engineered Purple Copper Center in Azurin. Journal of the American Chemical Society 1996, 118 (47) , 11976-11977. https://doi.org/10.1021/ja962280h
    6. Robert Bazala, Giorgio Zoppellaro, Gunther Kletetschka. Iron level changes in the brain with neurodegenerative disease. Brain Multiphysics 2023, 4 , 100063. https://doi.org/10.1016/j.brain.2023.100063
    7. Kaltum Abdiaziz, Enrico Salvadori, Katarzyna P. Sokol, Erwin Reisner, Maxie M. Roessler. Protein film electrochemical EPR spectroscopy as a technique to investigate redox reactions in biomolecules. Chemical Communications 2019, 55 (60) , 8840-8843. https://doi.org/10.1039/C9CC03212F
    8. Sandeep Kaushik, Soumya Lipsa Rath. Protein Structure Visualization. 2019, 520-538. https://doi.org/10.1016/B978-0-12-809633-8.20283-5
    9. Waleed H. Almalki, El-Shaimaa A. Arafa, Amal Y. Abdallah, Amal M. Mahfoz, Afaf O. Osman, Hekma A. Abd El-Latif, Imran Shahid. Zinc Chloride Protects against Streptozotocin-Induced Diabetic Nephropathy in Rats. Pharmacology & Pharmacy 2016, 07 (08) , 331-342. https://doi.org/10.4236/pp.2016.78041
    10. Yahia Z. Hamada, Robin Cox, Hasan Hamada. Cu2+-Citrate Dimer Complexes in Aqueous Solutions. Journal of Basic & Applied Sciences 2015, 11 , 583-589. https://doi.org/10.6000/1927-5129.2015.11.78
    11. Li-June Ming, Joan Selverstone Valentine. Insights into SOD1-linked amyotrophic lateral sclerosis from NMR studies of Ni2+- and other metal-ion-substituted wild-type copper–zinc superoxide dismutases. JBIC Journal of Biological Inorganic Chemistry 2014, 19 (4-5) , 647-657. https://doi.org/10.1007/s00775-014-1126-5
    12. Jane S. Richardson, David C. Richardson. Doing Molecular Biophysics: Finding, Naming, and Picturing Signal Within Complexity. Annual Review of Biophysics 2013, 42 (1) , 1-28. https://doi.org/10.1146/annurev-biophys-083012-130353
    13. Yoo-Jin Chun, Seong-Il Ham, San-Duk Yang, Arang Rhie, Hyun-Seok Park. Refactoring the Code for Visualizing Protein Database Information in a 3D Viewer for Software Reusability. Genomics & Informatics 2008, 6 (1) , 50-53. https://doi.org/10.5808/GI.2008.6.1.050
    14. Sung Nam Seo, Jae Ho Lee, Young Min Kim. Characterization of an Iron- and Manganese-containing Superoxide Dismutase from Methylobacillus Sp. Strain SK1 DSM 8269. Molecules and Cells 2007, 23 (3) , 370-378. https://doi.org/10.1016/S1016-8478(23)10728-X
    15. A.-F. Miller. Superoxide Processing. 2003, 479-506. https://doi.org/10.1016/B0-08-043748-6/08173-1
    16. Joy J. Goto, Haining Zhu, Raylene J. Sanchez, Aram Nersissian, Edith Butler Gralla, Joan Selverstone Valentine, Diane E. Cabelli. Loss of in Vitro Metal Ion Binding Specificity in Mutant Copper-Zinc Superoxide Dismutases Associated with Familial Amyotrophic Lateral Sclerosis. Journal of Biological Chemistry 2000, 275 (2) , 1007-1014. https://doi.org/10.1074/jbc.275.2.1007
    17. Joy J. Goto, Edith Butler Gralla, Joan Selverstone Valentine, Diane E. Cabelli. Reactions of Hydrogen Peroxide with Familial Amyotrophic Lateral Sclerosis Mutant Human Copper-Zinc Superoxide Dismutases Studied by Pulse Radiolysis. Journal of Biological Chemistry 1998, 273 (46) , 30104-30109. https://doi.org/10.1074/jbc.273.46.30104
    18. Ivano Bertini, Stefano Manganl, Maria Silvia Viezzoli. Structure and Properties of Copper-Zinc Superoxide Dismutases. 1998, 127-250. https://doi.org/10.1016/S0898-8838(08)60026-4
    19. C. G. Palivan, H. Palivan, B. A. Goodman. Characterisation by EPR spectroscopy of the co-ordination environment of copper in superoxide dismutase from horseradish ( Armoracia rusticana Gaertn.). Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences 1994, 102 , 273-277. https://doi.org/10.1017/S0269727000014238
    20. Ivano Bertini, Bertini Luchinat, Mario Piccioli, Margarita Vicens Oliver, Maria Silvia Viezzoli. 1H NMR investigation of reduced copper-cobalt superoxide dismutase. European Biophysics Journal 1991, 20 (5) , 269-279. https://doi.org/10.1007/BF00450562
    21. Morten J. Bierrum, Rogert Bauer, Eva Danielsen, Pauli Kofod. The Zn-Site in Bovine Copper, Zinc Superoxide Dismutase Studied by 111 Cd Pac. Free Radical Research Communications 1991, 12 (1) , 297-303. https://doi.org/10.3109/10715769109145798
    22. Ulrich Weser, Ralf Miesel, Margot Linss. Reactivity of Active Centre Analogues of Cu2Zn2Superoxide Dismutase. 1990, 51-57. https://doi.org/10.1007/978-1-4684-5730-8_8
    23. K. Mailer, R. Addetia, D.L. Livesey. UV spectroscopic studies of human erythrocyte superoxide dismutase. Journal of Inorganic Biochemistry 1989, 37 (2) , 151-161. https://doi.org/10.1016/0162-0134(89)80038-8
    24. Hosni M. Hassan. Microbial Superoxide Dismutases. 1989, 65-97. https://doi.org/10.1016/S0065-2660(08)60223-0
    25. Margot Linss, Ulrich Weser. Redox behaviour and stability of active centre analogues of Cu2Zn2-superoxide dismutase. Inorganica Chimica Acta 1987, 138 (2) , 163-166. https://doi.org/10.1016/S0020-1693(00)81202-5
    26. Marina Biagini Cingi, Anna Maria Manotti Lanfredi, Antonio Tiripicchio, Joost P. Cornelissen, Jaap G. Haasnoot, Jan Reedijk. Preparation, spectroscopic and magnetic characterization of a new series of two-dimensional transition metal compounds. The x-ray structure of poly-bis(thiocyanato-N)-bis-μ- [1,2,4] triazolo [1,5-a] pyrimidine-N1,N3)iron(II). Inorganica Chimica Acta 1987, 127 (2) , 189-193. https://doi.org/10.1016/S0020-1693(00)82119-2
    27. John R. Wright, Wayne A. Hendrickson, Shigemasa Osaki, Gordon T. James. Nuclear Magnetic Resonance (Nmr). 1986, 13-124. https://doi.org/10.1007/978-1-4684-4997-6_2
    28. Cynthia T. Brewer, Greg Brewer. Evaluation of the formation constant for an imidazolate bridged binuclear complex of Co(TPP). Inorganica Chimica Acta 1986, 111 (1) , L5-L7. https://doi.org/10.1016/S0020-1693(00)82201-X
    29. A. E. G. Cass. Superoxide Dismutases. 1985, 121-156. https://doi.org/10.1007/978-1-349-06372-7_4
    30. I. Bertini, C. Luchinat, R. Monnanni, A. Scozzafava, E. Borghi. Investigation of zinc-deprived bovine superoxide dismutase. Inorganica Chimica Acta 1984, 91 (2) , 109-111. https://doi.org/10.1016/S0020-1693(00)81788-0
    31. Bert L. Vallee, Alphonse Galdes. The Metallobiochemistry of Zinc Enzymes. 1984, 283-430. https://doi.org/10.1002/9780470123027.ch5
    32. John A. Tainer, Elizabeth D. Getzoff, Jane S. Richardson, David C. Richardson. Structure and mechanism of copper, zinc superoxide dismutase. Nature 1983, 306 (5940) , 284-287. https://doi.org/10.1038/306284a0
    33. René A. Lontie, Dominique R. Groeseneken. Recent developments with copper proteins. 1983, 1-33. https://doi.org/10.1007/3-540-11846-2_1
    34. I. Ross, N. Binstead, N. J. Blackburn, I. Bremner, G. P. Diakun, S. S. Hasnain, P. F. Knowles, M. Vasak, C. D. Garner. EXAFS Studies of Zinc and Copper in Chemical and Biochemical Systems. 1983, 337-341. https://doi.org/10.1007/978-3-642-50098-5_76
    35. Ivano Bertini. The Coordination Properties of the Active Site of Zinc Enzymes. 1983, 1-18. https://doi.org/10.1007/978-94-009-7049-6_1
    36. S. K. Sengupta, Shyam Kumar. Novel Mononuclear and Binuclear Zinc(II), Cadmium(II) and Mercury(II) Complexes of Macrocyclic Ligands. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 1983, 13 (7) , 929-941. https://doi.org/10.1080/00945718308059355
    37. M. Bacci. Spectroscopic and structural properties of metallo-proteins. La Rivista del Nuovo Cimento 1982, 5 (12) , 1-45. https://doi.org/10.1007/BF02740883
    38. Hiroshi Yokoi. 14N-ENDOR evidence for imidazole coordination in copper proteins. Biochemical and Biophysical Research Communications 1982, 108 (3) , 1278-1284. https://doi.org/10.1016/0006-291X(82)92138-6
    39. John A. Tainer, Elizabeth D. Getzoff, Karl M. Beem, Jane S. Richardson, David C. Richardson. Determination and analysis of the 2 Å structure of copper, zinc superoxide dismutase. Journal of Molecular Biology 1982, 160 (2) , 181-217. https://doi.org/10.1016/0022-2836(82)90174-7
    40. Joan C. Dunbar, Jack T. Johansen, Tetsu Uchida. Kinetics of metal dissociation in the yeast Cu2,Zn2-superoxide dismutase. Apparent asymmetry in the metal binding sites. Carlsberg Research Communications 1982, 47 (3) , 163-171. https://doi.org/10.1007/BF02904379
    41. Sandra L. Jewett, Gregory S. Latrenta, Carol M. Beck. Metal-deficient copper-zinc superoxide dismutases. Archives of Biochemistry and Biophysics 1982, 215 (1) , 116-128. https://doi.org/10.1016/0003-9861(82)90285-5
    42. Shinnichiro Suzuki, Jun Kino, Masazo Kimura, Wasuke Mori, Akitsugu Nakahara. Structure of the active site of hemocyanin. Cobalt(II)-substituted squid hemocyanin. Inorganica Chimica Acta 1982, 66 , 41-47. https://doi.org/10.1016/S0020-1693(00)85788-6
    43. Andrea Scozzafava. Cooperative phenomena in polynuclear metalloproteins. Inorganica Chimica Acta 1982, 62 , 15-22. https://doi.org/10.1016/S0020-1693(00)88473-X
    44. R.A. Lieberman, R.H. Sands, J.A. Fee. A study of the electron paramagnetic resonance properties of single monoclinic crystals of bovine superoxide dismutase.. Journal of Biological Chemistry 1982, 257 (1) , 336-344. https://doi.org/10.1016/S0021-9258(19)68367-5
    45. J.A. Fee, J. Peisach, W.B. Mims. Superoxide dismutase. Examination of the metal binding sites by electron spin echo spectroscopy.. Journal of Biological Chemistry 1981, 256 (4) , 1910-1914. https://doi.org/10.1016/S0021-9258(19)69893-5
    46. Irwin Fridovich. Superoxide Radical and Superoxide Dismutases. 1981, 250-272. https://doi.org/10.1007/978-1-4612-5890-2_13
    47. Bengt Reinhammar. An epr signal from the half-reduced type 3 copper pair in Rhus vernicifera laccase. Journal of Inorganic Biochemistry 1981, 15 (1) , 27-39. https://doi.org/10.1016/S0162-0134(00)80133-6
    48. James A. Ibers, Richard H. Holm. Modeling Coordination Sites in Metallobiomolecules. Science 1980, 209 (4453) , 223-235. https://doi.org/10.1126/science.7384796
    49. A. D. McLachlan. Repeated folding pattern in copper–zinc superoxide dismutase. Nature 1980, 285 (5762) , 267-268. https://doi.org/10.1038/285267a0
    50. Masaaki Sato, Koichi Kondo, Kiichi Takemoto. ESR studies on the dimer formation between copper ions in the poly(vinylimidazole) � copper(II) complex. Polymer Bulletin 1980, 2 (5) , 305-308. https://doi.org/10.1007/BF00266705
    51. Hosni Moustafa Hassan. Superoxide Dismutases. 1980, 125-142. https://doi.org/10.1002/9780470720622.ch7
    52. Wolfgang Ernst Höhne. Metallionen in Struktur und Funktion von Metallenzymen. Zeitschrift für Chemie 1980, 20 (1) , 1-11. https://doi.org/10.1002/zfch.19800200102
    53. Robert E. Burch, James F. Sullivan, Mary M. Jetton, Henry K. J. Hahn. The effect of aging on trace element content of various rat tissues: I. Early stages of aging. AGE 1979, 2 (4) , 103-107. https://doi.org/10.1007/BF02432215
    54. Lilia Calabrese, Dina Cocco, Alessandro Desideri. A Novel Co(II) binding site in copper‐free superoxide dismutase. FEBS Letters 1979, 106 (1) , 142-144. https://doi.org/10.1016/0014-5793(79)80713-9
    55. Hugo M.J. Hendriks, Jan Reedijk. New copper(II) dimers bridged by the imidazolato ligand. Inorganica Chimica Acta 1979, 37 , L509-L510. https://doi.org/10.1016/S0020-1693(00)95489-6
    56. Reg H. Prince. Some Aspects of the Bioinorganic Chemistry of Zinc. 1979, 349-440. https://doi.org/10.1016/S0065-2792(08)60085-0
    57. Ian M Armitage, Antonius J.M Schoot Uiterkamp, Jan F Chlebowski, Joseph E Coleman. 113Cd NMR as a probe of the active sites of metalloenzymes. Journal of Magnetic Resonance (1969) 1978, 29 (2) , 375-392. https://doi.org/10.1016/0022-2364(78)90160-9
    58. Alfred Gärtner, Ulrich Weser. Molecular and functional aspects of superoxide dismutases. , 1-61. https://doi.org/10.1007/BFb0018063

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect