ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids

Cite this: Biochemistry 1977, 16, 25, 5484–5491
Publication Date (Print):December 13, 1977
https://doi.org/10.1021/bi00644a014
    ACS Legacy Archive

    Article Views

    2478

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information


    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 736 publications.

    1. Dehui Kong, Tyler Fahrenhorst-Jones, Andy Kuo, Jacinta L. Simmons, Lendl Tan, Jed M. Burns, Gregory K. Pierens, Rui Li, Nicholas P. West, Glen M. Boyle, Maree T. Smith, G. Paul Savage, Craig M. Williams. seco-1-Azacubane-2-carboxylic Acid: Derivative Scope and Comparative Biological Evaluation. The Journal of Organic Chemistry 2024, 89 (1) , 798-803. https://doi.org/10.1021/acs.joc.3c02333
    2. Samuel W. K. Wong, Shihao Yang, S. C. Kou. Estimating and Assessing Differential Equation Models with Time-Course Data. The Journal of Physical Chemistry B 2023, 127 (11) , 2362-2374. https://doi.org/10.1021/acs.jpcb.2c08932
    3. Valeria Castelletto, Jani Seitsonen, Janne Ruokolainen, Sarah A. Barnett, Callum Sandu, Ian W. Hamley. Self-Assembly of Angiotensin-Converting Enzyme Inhibitors Captopril and Lisinopril and Their Crystal Structures. Langmuir 2021, 37 (30) , 9170-9178. https://doi.org/10.1021/acs.langmuir.1c01340
    4. Yuka Miyake, Yukihiro Itoh, Yoshinori Suzuma, Hidehiko Kodama, Takashi Kurohara, Yasunobu Yamashita, Remy Narozny, Yutaro Hanatani, Shusaku Uchida, Takayoshi Suzuki. Metalloprotein-Catalyzed Click Reaction for In Situ Generation of a Potent Inhibitor. ACS Catalysis 2020, 10 (10) , 5383-5392. https://doi.org/10.1021/acscatal.0c00369
    5. Ya-Hui Shih, Fu-An Chen, Li-Fei Wang, Jue-Liang Hsu. Discovery and Study of Novel Antihypertensive Peptides Derived from Cassia obtusifolia Seeds. Journal of Agricultural and Food Chemistry 2019, 67 (28) , 7810-7820. https://doi.org/10.1021/acs.jafc.9b01922
    6. Giovanni Covaleda, Pablo Gallego, Josep Vendrell, Dimitris Georgiadis, Julia Lorenzo, Vincent Dive, Francesc Xavier Aviles, David Reverter, Laurent Devel. Synthesis and Structural/Functional Characterization of Selective M14 Metallocarboxypeptidase Inhibitors Based on Phosphinic Pseudopeptide Scaffold: Implications on the Design of Specific Optical Probes. Journal of Medicinal Chemistry 2019, 62 (4) , 1917-1931. https://doi.org/10.1021/acs.jmedchem.8b01465
    7. Allie Y. Chen, Rebecca N. Adamek, Benjamin L. Dick, Cy V. Credille, Christine N. Morrison, Seth M. Cohen. Targeting Metalloenzymes for Therapeutic Intervention. Chemical Reviews 2019, 119 (2) , 1323-1455. https://doi.org/10.1021/acs.chemrev.8b00201
    8. Stephen Fienberg, Gyles E. Cozier, K. Ravi Acharya, Kelly Chibale, and Edward D. Sturrock . The Design and Development of a Potent and Selective Novel Diprolyl Derivative That Binds to the N-Domain of Angiotensin-I Converting Enzyme. Journal of Medicinal Chemistry 2018, 61 (1) , 344-359. https://doi.org/10.1021/acs.jmedchem.7b01478
    9. Olivier Van der Poorten, Astrid Knuhtsen, Daniel Sejer Pedersen, Steven Ballet, and Dirk Tourwé . Side Chain Cyclized Aromatic Amino Acids: Great Tools as Local Constraints in Peptide and Peptidomimetic Design. Journal of Medicinal Chemistry 2016, 59 (24) , 10865-10890. https://doi.org/10.1021/acs.jmedchem.6b01029
    10. Guolan Xiao, Chaoqun Ma, Dong Xing, and Wenhao Hu . Enantioselective Synthesis of α-Mercapto-β-amino Esters via Rh(II)/Chiral Phosphoric Acid-Cocatalyzed Three-Component Reaction of Diazo Compounds, Thiols, and Imines. Organic Letters 2016, 18 (23) , 6086-6089. https://doi.org/10.1021/acs.orglett.6b03075
    11. Reynetha D. S. Rawendra, Aisha, Sin-Hong Chen, Chi-I Chang, Wen-Ling Shih, Tzou-Chi Huang, Ming-Huei Liao, and Jue-Liang Hsu . Isolation and Characterization of a Novel Angiotensin-Converting Enzyme-Inhibitory Tripeptide from Enzymatic Hydrolysis of Soft-Shelled Turtle (Pelodiscus sinensis) Egg White: In Vitro, In Vivo, and In Silico Study. Journal of Agricultural and Food Chemistry 2014, 62 (50) , 12178-12185. https://doi.org/10.1021/jf504734g
    12. Aurora García-Tejedor, Laura Sánchez-Rivera, María Castelló-Ruiz, Isidra Recio, Juan B. Salom, and Paloma Manzanares . Novel Antihypertensive Lactoferrin-Derived Peptides Produced by Kluyveromyces marxianus: Gastrointestinal Stability Profile and In Vivo Angiotensin I-Converting Enzyme (ACE) Inhibition. Journal of Agricultural and Food Chemistry 2014, 62 (7) , 1609-1616. https://doi.org/10.1021/jf4053868
    13. Faïza Zidane, Gabrielle Zeder-Lutz, Danièle Altschuh, Jean-Michel Girardet, Laurent Miclo, Catherine Corbier, and Céline Cakir-Kiefer . Surface Plasmon Resonance Analysis of the Binding Mechanism of Pharmacological and Peptidic Inhibitors to Human Somatic Angiotensin I-Converting Enzyme. Biochemistry 2013, 52 (48) , 8722-8731. https://doi.org/10.1021/bi4006144
    14. Yesmine Ben Henda, Anis Labidi, Ingrid Arnaudin, Nicolas Bridiau, Régis Delatouche, Thierry Maugard, Jean-Marie Piot, Frédéric Sannier, Valérie Thiéry, and Stéphanie Bordenave-Juchereau . Measuring Angiotensin-I Converting Enzyme Inhibitory Activity by Micro Plate Assays: Comparison Using Marine Cryptides and Tentative Threshold Determinations with Captopril and Losartan. Journal of Agricultural and Food Chemistry 2013, 61 (45) , 10685-10690. https://doi.org/10.1021/jf403004e
    15. Iwao Ojima . Exploration of Fluorine Chemistry at the Multidisciplinary Interface of Chemistry and Biology. The Journal of Organic Chemistry 2013, 78 (13) , 6358-6383. https://doi.org/10.1021/jo400301u
    16. Chunchun Zhang, Shanshan Wu, and Dingguo Xu . Catalytic Mechanism of Angiotensin-Converting Enzyme and Effects of the Chloride Ion. The Journal of Physical Chemistry B 2013, 117 (22) , 6635-6645. https://doi.org/10.1021/jp400974n
    17. Thomas L. Poulos and Huiying Li . Structural Basis for Isoform-Selective Inhibition in Nitric Oxide Synthase. Accounts of Chemical Research 2013, 46 (2) , 390-398. https://doi.org/10.1021/ar300175n
    18. Swapnil Singh and Scott McN. Sieburth . Serine Protease Inhibition by a Silanediol Peptidomimetic. Organic Letters 2012, 14 (17) , 4422-4425. https://doi.org/10.1021/ol301933n
    19. Sudhanva M. Srinivas and Nanishankar V. Harohally . Improved Synthesis of Lysine- and Arginine-Derived Amadori and Heyns Products and in Vitro Measurement of their Angiotensin I-Converting Enzyme Inhibitory Activity. Journal of Agricultural and Food Chemistry 2012, 60 (6) , 1522-1527. https://doi.org/10.1021/jf204185y
    20. Xuemei Wang, Shanshan Wu, Dingguo Xu, Daiqian Xie, and Hua Guo . Inhibitor and Substrate Binding by Angiotensin-Converting Enzyme: Quantum Mechanical/Molecular Mechanical Molecular Dynamics Studies. Journal of Chemical Information and Modeling 2011, 51 (5) , 1074-1082. https://doi.org/10.1021/ci200083f
    21. Wendy A. Loughlin, Joel D. A. Tyndall, Matthew P. Glenn, Timothy A. Hill, and David P. Fairlie. Update 1 of: Beta-Strand Mimetics. Chemical Reviews 2010, 110 (6) , PR32-PR69. https://doi.org/10.1021/cr900395y
    22. Nikolaos Dimitropoulos, Athanasios Papakyriakou, Georgios A. Dalkas, Edward D. Sturrock and Georgios A. Spyroulias . A Computational Approach to the Study of the Binding Mode of Dual ACE/NEP Inhibitors. Journal of Chemical Information and Modeling 2010, 50 (3) , 388-396. https://doi.org/10.1021/ci9005047
    23. Elizabeth Escudero, Miguel Angel Sentandreu, Keizo Arihara and Fidel Toldrá . Angiotensin I-Converting Enzyme Inhibitory Peptides Generated from in Vitro Gastrointestinal Digestion of Pork Meat. Journal of Agricultural and Food Chemistry 2010, 58 (5) , 2895-2901. https://doi.org/10.1021/jf904204n
    24. V. K. Jimsheena and Lalitha R. Gowda. Colorimetric, High-Throughput Assay for Screening Angiotensin I-Converting Enzyme Inhibitors. Analytical Chemistry 2009, 81 (22) , 9388-9394. https://doi.org/10.1021/ac901775h
    25. Yong Guo,, Kana Fujiwara,, Hideki Amii, and, Kenji Uneyama. Selective Defluorination Approach to N-Cbz-3,3-difluoro-2-difluoromethylenepyrrolidine and Its Application to 3,3-Difluoroproline Dipeptide Synthesis. The Journal of Organic Chemistry 2007, 72 (22) , 8523-8526. https://doi.org/10.1021/jo070719q
    26. Satya P. Gupta. Quantitative Structure−Activity Relationship Studies on Zinc-Containing Metalloproteinase Inhibitors. Chemical Reviews 2007, 107 (7) , 3042-3087. https://doi.org/10.1021/cr030448t
    27. Monika Rella,, Christopher A. Rushworth,, Jodie L. Guy,, Anthony J. Turner,, Thierry Langer, and, Richard M. Jackson. Structure-Based Pharmacophore Design and Virtual Screening for Novel Angiotensin Converting Enzyme 2 Inhibitors. Journal of Chemical Information and Modeling 2006, 46 (2) , 708-716. https://doi.org/10.1021/ci0503614
    28. Naoya Kasai and, Hiroko Ikehara. Stepwise Extraction of Proteins and Carbohydrates from Soybean Seed. Journal of Agricultural and Food Chemistry 2005, 53 (10) , 4245-4252. https://doi.org/10.1021/jf048337y
    29. Takashi Tsukamoto,, Pavel Majer,, Dilrukshi Vitharana,, Chiyou Ni,, Bunda Hin,, Xi-Chun M. Lu,, Ajit G. Thomas,, Krystyna M. Wozniak,, David C. Calvin,, Ying Wu,, Barbara S. Slusher,, David Scarpetti, and, George W. Bonneville. Enantiospecificity of Glutamate Carboxypeptidase II Inhibition. Journal of Medicinal Chemistry 2005, 48 (7) , 2319-2324. https://doi.org/10.1021/jm049258g
    30. Wendy A. Loughlin,, Joel D. A. Tyndall,, Matthew P. Glenn, and, David P. Fairlie. Beta-Strand Mimetics. Chemical Reviews 2004, 104 (12) , 6085-6118. https://doi.org/10.1021/cr040648k
    31. José A. Gómez-Ruiz,, Isidra Recio, and, Josefina Belloque. ACE-Inhibitory Activity and Structural Properties of Peptide Asp-Lys-Ile-His-Pro [β-CN f(47−51)]. Study of the Peptide Forms Synthesized by Different Methods. Journal of Agricultural and Food Chemistry 2004, 52 (20) , 6315-6319. https://doi.org/10.1021/jf049532f
    32. David J. Burinsky, Scott L. Sides. Mass spectral fragmentation reactions of angiotensin-converting enzyme (ACE) inhibitors. Journal of the American Society for Mass Spectrometry 2004, 15 (9) , 1300-1314. https://doi.org/10.1016/j.jasms.2004.05.010
    33. Atsushi Suzuki,, Masayuki Mae,, Hideki Amii, and, Kenji Uneyama. Catalytic Route to the Synthesis of Optically Active β,β-Difluoroglutamic Acid and β,β-Difluoroproline Derivatives. The Journal of Organic Chemistry 2004, 69 (15) , 5132-5134. https://doi.org/10.1021/jo049789c
    34. Blanca Hernández-Ledesma,, Lourdes Amigo,, Mercedes Ramos, and, Isidra Recio. Angiotensin Converting Enzyme Inhibitory Activity in Commercial Fermented Products. Formation of Peptides under Simulated Gastrointestinal Digestion. Journal of Agricultural and Food Chemistry 2004, 52 (6) , 1504-1510. https://doi.org/10.1021/jf034997b
    35. Andreas Bender,, Hamse Y. Mussa, and, Robert C. Glen, , Stephan Reiling. Molecular Similarity Searching Using Atom Environments, Information-Based Feature Selection, and a Naïve Bayesian Classifier. Journal of Chemical Information and Computer Sciences 2004, 44 (1) , 170-178. https://doi.org/10.1021/ci034207y
    36. John W. Clader. The Discovery of Ezetimibe:  A View from Outside the Receptor. Journal of Medicinal Chemistry 2004, 47 (1) , 1-9. https://doi.org/10.1021/jm030283g
    37. Pavel Majer,, Paul F. Jackson,, Greg Delahanty,, Brian S. Grella,, Yao-Sen Ko,, Weixing Li,, Qun Liu,, Keith M. Maclin,, Jana Poláková,, Kathryn A Shaffer,, Doris Stoermer,, Dilrukshi Vitharana,, Eric Yanjun Wang,, Anthony Zakrzewski,, Camilo Rojas,, Barbara S. Slusher,, Krystyna M. Wozniak,, Eric Burak,, Tharin Limsakun, and, Takashi Tsukamoto. Synthesis and Biological Evaluation of Thiol-Based Inhibitors of Glutamate Carboxypeptidase II:  Discovery of an Orally Active GCP II Inhibitor. Journal of Medicinal Chemistry 2003, 46 (10) , 1989-1996. https://doi.org/10.1021/jm020515w
    38. Arthur A. Patchett. 2002 Alfred Burger Award Address in Medicinal Chemistry. Natural Products and Design:  Interrelated Approaches in Drug Discovery. Journal of Medicinal Chemistry 2002, 45 (26) , 5609-5616. https://doi.org/10.1021/jm020424z
    39. Jung Dae Park,, Dong H. Kim,, Seung-Jun Kim,, Joo-Rang Woo, and, Seong Eon Ryu. Sulfamide-Based Inhibitors for Carboxypeptidase A. Novel Type Transition State Analogue Inhibitors for Zinc Proteases. Journal of Medicinal Chemistry 2002, 45 (24) , 5295-5302. https://doi.org/10.1021/jm020258v
    40. Hironari Ohkura,, Michiharu Handa,, Toshimasa Katagiri, and, Kenji Uneyama. Diastereoselective Synthesis of S-tert-Butyl-β-(trifluoromethyl)isocysteine. The Journal of Organic Chemistry 2002, 67 (8) , 2692-2695. https://doi.org/10.1021/jo016108u
    41. Jung Dae Park and, Dong H. Kim. Cysteine Derivatives as Inhibitors for Carboxypeptidase A:  Synthesis and Structure−Activity Relationships. Journal of Medicinal Chemistry 2002, 45 (4) , 911-918. https://doi.org/10.1021/jm010272s
    42. Sang J. Chung,, Suhman Chung,, Hyun Soo Lee,, Eun-Jung Kim,, Kyung Seok Oh,, Hyuk Soon Choi,, Kwang S. Kim,, Yeoun Jin Kim,, Jong Hoon Hahn, and, Dong H. Kim. Mechanistic Insight into the Inactivation of Carboxypeptidase A by α-Benzyl-2-oxo-1,3-oxazolidine-4-acetic Acid, a Novel Type of Irreversible Inhibitor for Carboxypeptidase A with No Stereospecificity. The Journal of Organic Chemistry 2001, 66 (19) , 6462-6471. https://doi.org/10.1021/jo010421e
    43. Isaac B. Bersuker,, Süleyman Bahçeci, and, James E. Boggs. Improved Electron-Conformational Method of Pharmacophore Identification and Bioactivity Prediction. Application to Angiotensin Converting Enzyme Inhibitors. Journal of Chemical Information and Computer Sciences 2000, 40 (6) , 1363-1376. https://doi.org/10.1021/ci000453n
    44. Moriz Mayer and, Bernd Meyer. Mapping the Active Site of Angiotensin-Converting Enzyme by Transferred NOE Spectroscopy. Journal of Medicinal Chemistry 2000, 43 (11) , 2093-2099. https://doi.org/10.1021/jm990194x
    45. Kristi M. Huntington,, David L. Bienvenue,, Yaoming Wei,, Brian Bennett,, Richard C. Holz, and, Dehua Pei. Slow-Binding Inhibition of the Aminopeptidase from Aeromonas proteolytica by Peptide Thiols: Synthesis and Spectroscopic Characterization. Biochemistry 1999, 38 (47) , 15587-15596. https://doi.org/10.1021/bi991283e
    46. Jason K. Myers,, Stephen M. Antonelli, and, Theodore S. Widlanski. Motifs for Metallophosphatase Inhibition. Journal of the American Chemical Society 1997, 119 (13) , 3163-3164. https://doi.org/10.1021/ja960952y
    47. Pascale Coric,, Serge Turcaud,, Hervé Meudal,, Bernard Pierre Roques, and, Marie-Claude Fournie-Zaluski. Optimal Recognition of Neutral Endopeptidase and Angiotensin-Converting Enzyme Active Sites by Mercaptoacyldipeptides as a Means To Design Potent Dual Inhibitors. Journal of Medicinal Chemistry 1996, 39 (6) , 1210-1219. https://doi.org/10.1021/jm950590p
    48. Regine Bohacek,, Stéphane De Lombaert,, Colin McMartin,, John Priestle, and, Markus Grütter. Three-Dimensional Models of ACE and NEP Inhibitors and Their Use in the Design of Potent Dual ACE/NEP Inhibitors. Journal of the American Chemical Society 1996, 118 (35) , 8231-8249. https://doi.org/10.1021/ja950818y
    49. Marie-Claude Fournie-Zaluski,, Pascale Coric,, Vincent Thery,, Walter Gonzalez,, Hervé Meudal,, Serge Turcaud,, Jean-Baptiste Michel, and, Bernard P. Roques. Design of Orally Active Dual Inhibitors of Neutral Endopeptidase and Angiotensin-Converting Enzyme with Long Duration of Action. Journal of Medicinal Chemistry 1996, 39 (13) , 2594-2608. https://doi.org/10.1021/jm950783c
    50. Patrick Foran, Clifford C. Shone, and J. Oliver Dolly. Differences in the Protease Activities of Tetanus and Botulinum B Toxins Revealed by the Cleavage of Vesicle-Associated Membrane Protein and Various Sized Fragments. Biochemistry 1994, 33 (51) , 15365-15374. https://doi.org/10.1021/bi00255a017
    51. Mario R. W. Ehlers and James F. Riordan. Angiotensin-converting enzyme: zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes. Biochemistry 1991, 30 (29) , 7118-7126. https://doi.org/10.1021/bi00243a012
    52. Mario R. W. Ehlers and James F. Riordan. Angiotensin-converting enzyme: new concepts concerning its biological role. Biochemistry 1989, 28 (13) , 5311-5318. https://doi.org/10.1021/bi00439a001
    53. S. L. Roderick, M. C. Fournie-Zaluski, B. P. Roques, and B. W. Matthews. Thiorphan and retro-thiorphan display equivalent interactions when bound to crystalline thermolysin. Biochemistry 1989, 28 (4) , 1493-1497. https://doi.org/10.1021/bi00430a011
    54. Brian W. Matthews. Structural basis of the action of thermolysin and related zinc peptidases. Accounts of Chemical Research 1988, 21 (9) , 333-340. https://doi.org/10.1021/ar00153a003
    55. Maria DiGregorio, Darryl S. Pickering, and William W. C. Chan. Multiple sites and synergism in the binding of inhibitors to microsomal aminopeptidase. Biochemistry 1988, 27 (10) , 3613-3617. https://doi.org/10.1021/bi00410a013
    56. Marian Orlowski, Charlene Michaud, and Christopher J. Molineaux. Substrate-related potent inhibitors of brain metalloendopeptidase. Biochemistry 1988, 27 (2) , 597-602. https://doi.org/10.1021/bi00402a015
    57. Roy Bicknell, Barton Holmquist, Frank S. Lee, Mark T. Martin, and James F. Riordan. Electronic spectroscopy of cobalt angiotensin converting enzyme and its inhibitor complexes. Biochemistry 1987, 26 (23) , 7291-7297. https://doi.org/10.1021/bi00397a014
    58. William M. Moore and Curtis A. Spilburg. Purification of human collagenases with a hydroxamic acid affinity column. Biochemistry 1986, 25 (18) , 5189-5195. https://doi.org/10.1021/bi00366a031
    59. Damian Grobelny and Richard E. Galardy. Inhibition of angiotensin converting enzyme by aldehyde and ketone substrate analogs. Biochemistry 1986, 25 (5) , 1072-1078. https://doi.org/10.1021/bi00353a019
    60. Charles F. Vencill, David Rasnick, Katherine V. Crumley, Norikazu Nishino, and James C. Powers. Clostridium histolyticum collagenase: development of new thio ester, fluorogenic, and depsipeptide substrates and new inhibitors. Biochemistry 1985, 24 (13) , 3149-3157. https://doi.org/10.1021/bi00334a012
    61. Claude Gros, Bruno Giros, and Jean Charles Schwartz. Identification of aminopeptidase M as an enkephalin-inactivating enzyme in rat cerebral membranes. Biochemistry 1985, 24 (9) , 2179-2185. https://doi.org/10.1021/bi00330a011
    62. Toshimasa. Toyooka and Kazuhiro. Imai. New fluorogenic reagent having halogenobenzofurazan structure for thiols: 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole. Analytical Chemistry 1984, 56 (13) , 2461-2464. https://doi.org/10.1021/ac00277a044
    63. A. F. Monzingo and B. W. Matthews. Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by x-ray crystallography: a novel class of transition-state analogs for zinc peptidases. Biochemistry 1984, 23 (24) , 5724-5729. https://doi.org/10.1021/bi00319a010
    64. Robert Shapiro and James F. Riordan. Inhibition of angiotensin converting enzyme: mechanism and substrate dependence. Biochemistry 1984, 23 (22) , 5225-5233. https://doi.org/10.1021/bi00317a021
    65. Michael W. Pantoliano, Barton Holmquist, and James F. Riordan. Affinity chromatographic purification of angiotensin converting enzyme. Biochemistry 1984, 23 (5) , 1037-1042. https://doi.org/10.1021/bi00300a036
    66. Richard E. Galardy and Damian Grobelny. Inhibition of the collagenase from Clostridium histolyticum by phosphoric and phosphonic amides. Biochemistry 1983, 22 (19) , 4556-4561. https://doi.org/10.1021/bi00288a032
    67. John O. Baker, Stella H. Wilkes, Mary E. Bayliss, and John M. Prescott. Hydroxamates and aliphatic boronic acids: marker inhibitors for aminopeptidase. Biochemistry 1983, 22 (9) , 2098-2103. https://doi.org/10.1021/bi00278a009
    68. Richard E. Galardy, Voula Kontoyiannidou-Ostrem, and Zbigniew P. Kortylewicz. Inhibition of angiotensin converting enzyme by phosphonic amides and phosphonic acids. Biochemistry 1983, 22 (8) , 1990-1995. https://doi.org/10.1021/bi00277a039
    69. Richard E. Galardy. Inhibition of angiotensin-converting enzyme by phosphoramidates and polyphosphates. Biochemistry 1982, 21 (23) , 5777-5781. https://doi.org/10.1021/bi00266a008
    70. Allen R. Palmer, Paul D. Ellis, and Richard Wolfenden. Extreme state of ionization of benzylsuccinate bound by carboxypeptidase A. Biochemistry 1982, 21 (20) , 5056-5059. https://doi.org/10.1021/bi00263a032
    71. A. F. Monzingo and B. W. Matthews. Structure of a mercaptan-thermolysin complex illustrates mode of inhibition of zinc proteases by substrate-analog mercaptans. Biochemistry 1982, 21 (14) , 3390-3394. https://doi.org/10.1021/bi00257a022
    72. Dallas L. Rabenstein and Anvarhusein A. Isab. Conformational and acid-base equilibriums of captopril in aqueous solution. Analytical Chemistry 1982, 54 (3) , 526-529. https://doi.org/10.1021/ac00240a039
    73. K. L. Koller and H. C. Dorn. Acid-catalyzed reactions of 2,2,2-trifluorodiazoethane for analysis of functional groups by fluorine-19 nuclear magnetic resonance spectrometry. Analytical Chemistry 1982, 54 (3) , 529-533. https://doi.org/10.1021/ac00240a040
    74. Phillip T. Funke, Eugene. Ivashkiv, Mary F. Malley, and Allen I. Cohen. Gas chromatography/selected ion monitoring mass spectrometric determination of captopril in human blood. Analytical Chemistry 1980, 52 (7) , 1086-1089. https://doi.org/10.1021/ac50057a021
    75. Norikazu Nishino and James C. Powers. Design of potent reversible inhibitors for thermolysin. Peptides containing zinc coordinating ligands and their use in affinity chromatography. Biochemistry 1979, 18 (20) , 4340-4347. https://doi.org/10.1021/bi00587a012
    76. Miguel A. Ondetti, Michael E. Condon, Joyce Reid, Emily F. Sabo, Hong S. Cheung, and David W. Cushman. Design of potent and specific inhibitors of carboxypeptidases A and B. Biochemistry 1979, 18 (8) , 1427-1430. https://doi.org/10.1021/bi00575a006
    77. Simon Kramer, Charan Kotapati, Yuanzhao Cao, Bryan G. Fry, Nathan J. Palpant, Glenn F. King, Fernanda C. Cardoso. High-content fluorescence bioassay investigates pore formation, ion channel modulation and cell membrane lysis induced by venoms. Toxicon: X 2024, 21 , 100184. https://doi.org/10.1016/j.toxcx.2024.100184
    78. Diana L. Silva-Velasco, Luz G. Cervantes-Pérez, Alicia Sánchez-Mendoza. ACE inhibitors and their interaction with systems and molecules involved in metabolism. Heliyon 2024, 10 (2) , e24655. https://doi.org/10.1016/j.heliyon.2024.e24655
    79. Babak Sokouti, Maryam Hamzeh-Mivehroud. 6D-QSAR for predicting biological activity of human aldose reductase inhibitors using quasar receptor surface modeling. BMC Chemistry 2023, 17 (1) https://doi.org/10.1186/s13065-023-00970-x
    80. Veronika Khairullina, Yuliya Martynova. Quantitative Structure–Activity Relationship in the Series of 5-Ethyluridine, N2-Guanine, and 6-Oxopurine Derivatives with Pronounced Anti-Herpetic Activity. Molecules 2023, 28 (23) , 7715. https://doi.org/10.3390/molecules28237715
    81. Eugene Futai, Hajime Kawasaki, Shinichi Sato, Khadija Daoudi, Masafumi Hidaka, Taisuke Tomita, Tomohisa Ogawa. A Metalloproteinase Cocktail from the Venom of Protobothrops flavoviridis Cleaves Amyloid Beta Peptides at the α-Cleavage Site. Toxins 2023, 15 (8) , 500. https://doi.org/10.3390/toxins15080500
    82. Henrique G. Riva, Angela R. Amarillo-S.. A systematic review of the bioprospecting potential of Lonomia spp. (Lepidoptera: Saturniidae). Toxin Reviews 2023, 42 (3) , 583-598. https://doi.org/10.1080/15569543.2023.2204348
    83. Tábata de Paula Facioli, Stella Vieira Philbois, Jens Tank, Ada Clarice Gastaldi, Bruno Augusto Aguilar, Ana Catarine da Veiga Oliveira, Lucas Dalvit Ferreira, Hugo Celso Dutra de Souza. Aerobic Physical Exercise is Essential for Cardiac Autonomic Regulation in Hypertensive Patients Undergoing Chronic Treatment with Renin- Angiotensin System Inhibitors. Current Vascular Pharmacology 2023, 21 (4) , 274-284. https://doi.org/10.2174/1570161121666230522105458
    84. Parminder Kaur, Vimal Arora. Significance of Molecular Docking in Developing Potent Antimicrobial 1,3,4-Thiadiazole Derivatives. Letters in Organic Chemistry 2023, 20 (5) , 423-437. https://doi.org/10.2174/1570178619666220930144853
    85. Pedro D. García-Fernández, Juan M. Coto-Cid, Gonzalo de Gonzalo. Green Oxidative Catalytic Processes for the Preparation of APIs and Precursors. Catalysts 2023, 13 (3) , 638. https://doi.org/10.3390/catal13030638
    86. Mainak Chatterjee, Kunal Roy. Quantitative structure-activity relationships (QSARs) in medicinal chemistry. 2023, 3-38. https://doi.org/10.1016/B978-0-443-18638-7.00029-3
    87. Gabriela de Oliveira Almeida, Isadora Sousa de Oliveira, Eliane Candiani Arantes, Suely Vilela Sampaio. Snake venom disintegrins update: insights about new findings. Journal of Venomous Animals and Toxins including Tropical Diseases 2023, 29 https://doi.org/10.1590/1678-9199-jvatitd-2023-0039
    88. Nhung Thi Phuong Nong, Christoper Caesar Yudho Sutopo, Wei-Ting Hung, Ping-Hsun Wu, Jue-Liang Hsu. The Molecular Docking and Inhibition Kinetics of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Soft-Shelled Turtle Yolk. Applied Sciences 2022, 12 (23) , 12340. https://doi.org/10.3390/app122312340
    89. Seto Windarto, Meng-Chou Lee, Happy Nursyam, Jue-Liang Hsu. First Report of Screening of Novel Angiotensin-I Converting Enzyme Inhibitory Peptides Derived from the Red Alga Acrochaetium sp.. Marine Biotechnology 2022, 24 (5) , 882-894. https://doi.org/10.1007/s10126-022-10152-w
    90. Félix A. Urra, Ramiro Araya-Maturana. Putting the brakes on tumorigenesis with snake venom toxins: New molecular insights for cancer drug discovery. Seminars in Cancer Biology 2022, 80 , 195-204. https://doi.org/10.1016/j.semcancer.2020.05.006
    91. Armin Mirzapour-Kouhdasht, Marco Garcia-Vaquero. Cardioprotective Peptides from Milk Processing and Dairy Products: From Bioactivity to Final Products including Commercialization and Legislation. Foods 2022, 11 (9) , 1270. https://doi.org/10.3390/foods11091270
    92. Wasana Wongngam, Sittiruk Roytrakul, Takakazu Mitani, Shigeru Katayama, Soichiro Nakamura, Jirawat Yongsawatdigul. Isolation, identification, and in vivo evaluation of the novel antihypertensive peptide, VSKRLNGDA, derived from chicken blood cells. Process Biochemistry 2022, 115 , 169-177. https://doi.org/10.1016/j.procbio.2022.02.011
    93. Bhupinder Kumar, Pooja A. Chawla, Viney Chawla. Computer Aided Drug Design. 2022, 505-541. https://doi.org/10.1007/978-981-16-5180-9_16
    94. Jie Wang, Zhuoxian Cao, Fang Wang, Pan Wang, Jianxiong An, Xiaozhong Fu, Ting Liu, Yan Li, Yongjun Li, Yonglong Zhao, Hening Lin, Bin He. Cysteine derivatives as acetyl lysine mimics to inhibit zinc-dependent histone deacetylases for treating cancer. European Journal of Medicinal Chemistry 2021, 225 , 113799. https://doi.org/10.1016/j.ejmech.2021.113799
    95. Nikoleta Kircheva, Stefan Dobrev, Boryana Yakimova, Ivanka Stoineva, Silvia Angelova. Molecular insights into the interaction of angiotensin I-converting enzyme (ACE) inhibitors and HEXXH motif. Biophysical Chemistry 2021, 276 , 106626. https://doi.org/10.1016/j.bpc.2021.106626
    96. Juan J. Perez. Exploiting Knowledge on Structure–Activity Relationships for Designing Peptidomimetics of Endogenous Peptides. Biomedicines 2021, 9 (6) , 651. https://doi.org/10.3390/biomedicines9060651
    97. Thomas D. Meek. Enzymes as Drug Targets. 2021, 1-51. https://doi.org/10.1002/0471266949.bmc260
    98. Edward W. Petrillo. Angiotensin‐Converting Enzyme Inhibitors. 2021, 1-37. https://doi.org/10.1002/0471266949.bmc174.pub2
    99. Eun-Ho Lee, Shin Hyub Hong, Hye-Jin Park, Byung-Oh Kim, Hee-Young Jung, In-Kyu Kang, Young-Je Cho. Inhibitory activity against biological enzyme and anti-microbial activity of phenolics from Sambucus sieboldiana var. pendula Leaves. Journal of Applied Biological Chemistry 2021, 64 (1) , 5-11. https://doi.org/10.3839/jabc.2021.002
    100. Xiaoting Liu, Zheren Wang, Yawen Gao, Chunlei Liu, Ji Wang, Li Fang, Weihong Min, Ji-Long Zhang. Molecular dynamics investigation on the interaction of human angiotensin-converting enzyme with tetrapeptide inhibitors. Physical Chemistry Chemical Physics 2021, 23 (11) , 6685-6694. https://doi.org/10.1039/D1CP00172H
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect