ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Partition analysis and concept of net rate constants as tools in enzyme kinetics

Cite this: Biochemistry 1975, 14, 14, 3220–3224
Publication Date (Print):July 15, 1975
https://doi.org/10.1021/bi00685a029
    ACS Legacy Archive

    Article Views

    2579

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 229 publications.

    1. Gemma Fisher, Ennio Pečaver, Benjamin J. Read, Susannah K. Leese, Erin Laing, Alison L. Dickson, Clarissa M. Czekster, Rafael G. da Silva. Catalytic Cycle of the Bifunctional Enzyme Phosphoribosyl-ATP Pyrophosphohydrolase/Phosphoribosyl-AMP Cyclohydrolase. ACS Catalysis 2023, 13 (11) , 7669-7679. https://doi.org/10.1021/acscatal.3c01111
    2. Daniel Ouedraogo, Michael Souffrant, Xin-Qiu Yao, Donald Hamelberg, Giovanni Gadda. Non-active Site Residue in Loop L4 Alters Substrate Capture and Product Release in d-Arginine Dehydrogenase. Biochemistry 2023, 62 (5) , 1070-1081. https://doi.org/10.1021/acs.biochem.2c00697
    3. Chiwook Park. Visual Interpretation of the Meaning of kcat/KM in Enzyme Kinetics. Journal of Chemical Education 2022, 99 (7) , 2556-2562. https://doi.org/10.1021/acs.jchemed.1c01268
    4. PalfeyBruce A.Associate Professor, Biological Chemistry & Associate Director, Program in Chemical BiologySwitzerRebecca L.Assistant Professor of ChemistryRumin Zhang, VP, Head of Biochemistry, Volastra Therapeutics, Lauren Parr, PhD Candidate, Department of Chemistry, University of Iowa. Kinetics of Enzyme Catalysis. 2022https://doi.org/10.1021/acsinfocus.7e5015
    5. Mark W. Ruszczycky, Hung-wen Liu. Distinguishing Concerted versus Stepwise Mechanisms Using Isotope Effects on Isotope Effects. Biochemistry 2021, 60 (46) , 3416-3418. https://doi.org/10.1021/acs.biochem.1c00325
    6. Alessandra Stefan, Fabrizio Dal Piaz, Antonio Girella, Alejandro Hochkoeppler. Substrate Activation of the Low-Molecular Weight Protein Tyrosine Phosphatase from Mycobacterium tuberculosis. Biochemistry 2020, 59 (11) , 1137-1148. https://doi.org/10.1021/acs.biochem.0c00059
    7. Mark W. Ruszczycky, Hung-wen Liu. Measurement of Net Rate Constants from Enzyme Progress Curves without Curve Fitting. Biochemistry 2019, 58 (49) , 4950-4956. https://doi.org/10.1021/acs.biochem.9b00762
    8. Kate L. Henderson, Claire E. Evensen, Cristen M. Molzahn, Lindsey C. Felth, Sarah Dyke, Guanyu Liao, Irina A. Shkel, M. Thomas Record, Jr.. RNA Polymerase: Step-by-Step Kinetics and Mechanism of Transcription Initiation. Biochemistry 2019, 58 (18) , 2339-2352. https://doi.org/10.1021/acs.biochem.9b00049
    9. Richiro Ushimaru, Mark W. Ruszczycky, Hung-wen Liu. Changes in Regioselectivity of H Atom Abstraction during the Hydroxylation and Cyclization Reactions Catalyzed by Hyoscyamine 6β-Hydroxylase. Journal of the American Chemical Society 2019, 141 (2) , 1062-1066. https://doi.org/10.1021/jacs.8b11585
    10. Li Chen, Nathchar Naowarojna, Bin Chen, Meiling Xu, Melissa Quill, Jiangyun Wang, Zixin Deng, Changming Zhao, Pinghua Liu. Mechanistic Studies of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis Using a Tyrosine Analogue, 2-Amino-3-(4-hydroxy-3-(methoxyl) phenyl) Propanoic Acid (MeOTyr). ACS Catalysis 2019, 9 (1) , 253-258. https://doi.org/10.1021/acscatal.8b03903
    11. Giovanni Gadda, Pablo Sobrado. Kinetic Solvent Viscosity Effects as Probes for Studying the Mechanisms of Enzyme Action. Biochemistry 2018, 57 (25) , 3445-3453. https://doi.org/10.1021/acs.biochem.8b00232
    12. Xiang Zhai, Thomas D. Meek. Catalytic Mechanism of Cruzain from Trypanosoma cruzi As Determined from Solvent Kinetic Isotope Effects of Steady-State and Pre-Steady-State Kinetics. Biochemistry 2018, 57 (22) , 3176-3190. https://doi.org/10.1021/acs.biochem.7b01250
    13. Jaydeep Yadav, Ken Korzekwa, Swati Nagar. Improved Predictions of Drug–Drug Interactions Mediated by Time-Dependent Inhibition of CYP3A. Molecular Pharmaceutics 2018, 15 (5) , 1979-1995. https://doi.org/10.1021/acs.molpharmaceut.8b00129
    14. Carlo Barnaba, Jaydeep Yadav, Swati Nagar, Ken Korzekwa, and Jeffrey P. Jones . Mechanism-Based Inhibition of CYP3A4 by Podophyllotoxin: Aging of an Intermediate Is Important for in Vitro/in Vivo Correlations. Molecular Pharmaceutics 2016, 13 (8) , 2833-2843. https://doi.org/10.1021/acs.molpharmaceut.6b00436
    15. Jessica L. Feldman, Kristin E. Dittenhafer-Reed, Norio Kudo, Julie N. Thelen, Akihiro Ito, Minoru Yoshida, and John M. Denu . Kinetic and Structural Basis for Acyl-Group Selectivity and NAD+ Dependence in Sirtuin-Catalyzed Deacylation. Biochemistry 2015, 54 (19) , 3037-3050. https://doi.org/10.1021/acs.biochem.5b00150
    16. Debra Dunaway-Mariano, Hazel M. Holden, and Frank M. Raushel . W. W. “Mo” Cleland: A Catalytic Life. Biochemistry 2013, 52 (51) , 9092-9096. https://doi.org/10.1021/bi4015709
    17. Ashley K. Casey, Erica L. Schwalm, Brittani N. Hays, and Patrick A. Frantom . V-Type Allosteric Inhibition Is Described by a Shift in the Rate-Determining Step for α-Isopropylmalate Synthase from Mycobacterium tuberculosis. Biochemistry 2013, 52 (39) , 6737-6739. https://doi.org/10.1021/bi401186v
    18. Michael D. Toney . Common Enzymological Experiments Allow Free Energy Profile Determination. Biochemistry 2013, 52 (34) , 5952-5965. https://doi.org/10.1021/bi400696j
    19. Anand Balakrishnan, Natalia S. Nemeria, Sumit Chakraborty, Lazaros Kakalis, and Frank Jordan . Determination of Pre-Steady-State Rate Constants on the Escherichia coli Pyruvate Dehydrogenase Complex Reveals That Loop Movement Controls the Rate-Limiting Step. Journal of the American Chemical Society 2012, 134 (45) , 18644-18655. https://doi.org/10.1021/ja3062375
    20. Linlin Yang, Gengjie Lin, Renae S. Nelson, Yajun Jian, Joshua Telser, and Lei Li . Mechanistic Studies of the Spore Photoproduct Lyase via a Single Cysteine Mutation. Biochemistry 2012, 51 (36) , 7173-7188. https://doi.org/10.1021/bi3010945
    21. Juan Liu and Andrew S. Murkin . Pre-Steady-State Kinetic Analysis of 1-Deoxy-d-xylulose-5-phosphate Reductoisomerase from Mycobacterium tuberculosis Reveals Partially Rate-Limiting Product Release by Parallel Pathways. Biochemistry 2012, 51 (26) , 5307-5319. https://doi.org/10.1021/bi300513r
    22. Fan Fan, Howard J. Williams, Joseph G. Boyer, Taylor L. Graham, Huizhen Zhao, Ruth Lehr, Hongwei Qi, Benjamin Schwartz, Frank M. Raushel, and Thomas D. Meek . On the Catalytic Mechanism of Human ATP Citrate Lyase. Biochemistry 2012, 51 (25) , 5198-5211. https://doi.org/10.1021/bi300611s
    23. Arnab Mukherjee, Alfredo M. Angeles-Boza, Gregory S. Huff, and Justine P. Roth. Catalytic Mechanism of a Heme and Tyrosyl Radical-Containing Fatty Acid α-(Di)oxygenase. Journal of the American Chemical Society 2011, 133 (2) , 227-238. https://doi.org/10.1021/ja104180v
    24. Jessica L. Schneck, Jacques Briand, Stephanie Chen, Ruth Lehr, Patrick McDevitt, Baoguang Zhao, Angela Smallwood, Nestor Concha, Khyati Oza, Robert Kirkpatrick, Kang Yan, James P. Villa, Thomas D. Meek and Sara H. Thrall . Kinetic Mechanism and Rate-Limiting Steps of Focal Adhesion Kinase-1. Biochemistry 2010, 49 (33) , 7151-7163. https://doi.org/10.1021/bi100824v
    25. Min Liu, Eleni Girma, Marcie A. Glicksman and Ross L. Stein . Kinetic Mechanistic Studies of Cdk5/p25-Catalyzed H1P Phosphorylation: Metal Effect and Solvent Kinetic Isotope Effect. Biochemistry 2010, 49 (23) , 4921-4929. https://doi.org/10.1021/bi100244j
    26. Meihao Sun and Thomas S. Leyh. The Human Estrogen Sulfotransferase: A Half-Site Reactive Enzyme. Biochemistry 2010, 49 (23) , 4779-4785. https://doi.org/10.1021/bi902190r
    27. Jeerus Sucharitakul, Thanyaporn Wongnate and Pimchai Chaiyen . Kinetic Isotope Effects on the Noncovalent Flavin Mutant Protein of Pyranose 2-Oxidase Reveal Insights into the Flavin Reduction Mechanism. Biochemistry 2010, 49 (17) , 3753-3765. https://doi.org/10.1021/bi100187b
    28. Kevin P. McCusker and Judith P. Klinman. An Active-Site Phenylalanine Directs Substrate Binding and C−H Cleavage in the α-Ketoglutarate-Dependent Dioxygenase TauD. Journal of the American Chemical Society 2010, 132 (14) , 5114-5120. https://doi.org/10.1021/ja909416z
    29. Moon N. Lee, Desire Takawira, Andriana P. Nikolova, David P. Ballou, Vivek C. Furtado, Ngoc L. Phung, Brady R. Still, Melissa K. Thorstad, John J. Tanner and Elizabeth E. Trimmer . Functional Role for the Conformationally Mobile Phenylalanine 223 in the Reaction of Methylenetetrahydrofolate Reductase from Escherichia coli. Biochemistry 2009, 48 (32) , 7673-7685. https://doi.org/10.1021/bi9007325
    30. Marc Bruning, Marco Berheide, Danilo Meyer, Ralph Golbik, Hans Bartunik, Andreas Liese and Kai Tittmann. Structural and Kinetic Studies on Native Intermediates and an Intermediate Analogue in Benzoylformate Decarboxylase Reveal a Least Motion Mechanism with an Unprecedented Short-Lived Predecarboxylation Intermediate. Biochemistry 2009, 48 (15) , 3258-3268. https://doi.org/10.1021/bi801957d
    31. Kevin Francis and Giovanni Gadda. Inflated Kinetic Isotope Effects in the Branched Mechanism of Neurospora crassa 2-Nitropropane Dioxygenase. Biochemistry 2009, 48 (11) , 2403-2410. https://doi.org/10.1021/bi802238j
    32. Jessica L. Schneck, James P. Villa, Patrick McDevitt, Michael S. McQueney, Sara H. Thrall and Thomas D. Meek . Chemical Mechanism of a Cysteine Protease, Cathepsin C, As Revealed by Integration of both Steady-State and Pre-Steady-State Solvent Kinetic Isotope Effects. Biochemistry 2008, 47 (33) , 8697-8710. https://doi.org/10.1021/bi8007627
    33. Ronald Kluger and Kai Tittmann. Thiamin Diphosphate Catalysis: Enzymic and Nonenzymic Covalent Intermediates. Chemical Reviews 2008, 108 (6) , 1797-1833. https://doi.org/10.1021/cr068444m
    34. Brian C. Smith and, John M. Denu. Mechanism-Based Inhibition of Sir2 Deacetylases by Thioacetyl-Lysine Peptide. Biochemistry 2007, 46 (50) , 14478-14486. https://doi.org/10.1021/bi7013294
    35. K. Sudhindra Rao,, Mark Albro,, Timothy M. Dwyer, and, Frank E. Frerman. Kinetic Mechanism of Glutaryl-CoA Dehydrogenase. Biochemistry 2006, 45 (51) , 15853-15861. https://doi.org/10.1021/bi0609016
    36. Kevin Francis and, Giovanni Gadda. Probing the Chemical Steps of Nitroalkane Oxidation Catalyzed by 2-Nitropropane Dioxygenase with Solvent Viscosity, pH, and Substrate Kinetic Isotope Effects. Biochemistry 2006, 45 (46) , 13889-13898. https://doi.org/10.1021/bi060566l
    37. Lei Li and, E. Neil G. Marsh. Deuterium Isotope Effects in the Unusual Addition of Toluene to Fumarate Catalyzed by Benzylsuccinate Synthase. Biochemistry 2006, 45 (46) , 13932-13938. https://doi.org/10.1021/bi061117o
    38. Rebecca E. Taurog,, Hieronim Jakubowski, and, Rowena G. Matthews. Synergistic, Random Sequential Binding of Substrates in Cobalamin-Independent Methionine Synthase. Biochemistry 2006, 45 (16) , 5083-5091. https://doi.org/10.1021/bi060051u
    39. Elizabeth E. Trimmer,, David P. Ballou,, Lara J. Galloway,, Sara A. Scannell,, Danielle R. Brinker, and, Katie R. Casas. Aspartate 120 of Escherichia coli Methylenetetrahydrofolate Reductase:  Evidence for Major Roles in Folate Binding and Catalysis and a Minor Role in Flavin Reactivity,. Biochemistry 2005, 44 (18) , 6809-6822. https://doi.org/10.1021/bi0477236
    40. Tim B. McAnaney,, Wei Zeng,, Camille F. E. Doe,, Nina Bhanji,, Stuart Wakelin,, David S. Pearson,, Paul Abbyad,, Xinghua Shi,, Steven G. Boxer, and, Clive R. Bagshaw. Protonation, Photobleaching, and Photoactivation of Yellow Fluorescent Protein (YFP 10C):  A Unifying Mechanism. Biochemistry 2005, 44 (14) , 5510-5524. https://doi.org/10.1021/bi047581f
    41. Wendy J. Houck and, Ralph M. Pollack. Temperature Effects on the Catalytic Activity of the D38E Mutant of 3-Oxo-Δ5-Steroid Isomerase:  Favorable Enthalpies and Entropies of Activation Relative to the Nonenzymatic Reaction Catalyzed by Acetate Ion. Journal of the American Chemical Society 2004, 126 (50) , 16416-16425. https://doi.org/10.1021/ja046819k
    42. Brian G. Fox,, Karen S. Lyle, and, Corina E. Rogge. Reactions of the Diiron Enzyme Stearoyl-Acyl Carrier Protein Desaturase. Accounts of Chemical Research 2004, 37 (7) , 421-429. https://doi.org/10.1021/ar030186h
    43. M. Ashley Spies,, Joshua J. Woodward,, Mitchell R. Watnik, and, Michael D. Toney. Alanine Racemase Free Energy Profiles from Global Analyses of Progress Curves. Journal of the American Chemical Society 2004, 126 (24) , 7464-7475. https://doi.org/10.1021/ja049579h
    44. Chiwook Park and, Ronald T. Raines. Quantitative Analysis of the Effect of Salt Concentration on Enzymatic Catalysis. Journal of the American Chemical Society 2001, 123 (46) , 11472-11479. https://doi.org/10.1021/ja0164834
    45. Jeffery R. Mathis and, C. Dale Poulter. Yeast Protein Farnesyltransferase:  A Pre-Steady-State Kinetic Analysis. Biochemistry 1997, 36 (21) , 6367-6376. https://doi.org/10.1021/bi9629182
    46. Ronald A. Siegel. Notes on the Use of Kirchhoff’s Laws in Pharmacokinetics. The AAPS Journal 2024, 26 (1) https://doi.org/10.1208/s12248-023-00875-6
    47. Prathamesh M. Datar, Soumil Y. Joshi, Sanket A. Deshmukh, E. Neil G. Marsh. Probing the role of protein conformational changes in the mechanism of prenylated-FMN-dependent phenazine-1-carboxylic acid decarboxylase. Journal of Biological Chemistry 2024, 300 (2) , 105621. https://doi.org/10.1016/j.jbc.2023.105621
    48. Valerie Vaissier Welborn. Electric Fields in Enzyme Catalysis. 2024, 755-766. https://doi.org/10.1016/B978-0-12-821978-2.00018-0
    49. Sahar Foroutannejad, Lydia L. Good, Changfan Lin, Zachariah I. Carter, Mahlet G. Tadesse, Aaron L. Lucius, Brian R. Crane, Rodrigo A. Maillard. The cofactor-dependent folding mechanism of Drosophila cryptochrome revealed by single-molecule pulling experiments. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36701-y
    50. Shuo Lu, Miranda Montoya, Liya Hu, Neetu Neetu, Banumathi Sankaran, B.V. Venkataram Prasad, Timothy Palzkill. Mutagenesis and structural analysis reveal the CTX-M β-lactamase active site is optimized for cephalosporin catalysis and drug resistance. Journal of Biological Chemistry 2023, 299 (5) , 104630. https://doi.org/10.1016/j.jbc.2023.104630
    51. Ken Korzekwa, Swati Nagar. Process and System Clearances in Pharmacokinetic Models: Our Basic Clearance Concepts Are Correct. Drug Metabolism and Disposition 2023, 51 (4) , 532-542. https://doi.org/10.1124/dmd.122.001060
    52. . ENZYME REACTIONS WITH MULTIPLE SUBSTRATES. 2023, 401-417. https://doi.org/10.1002/9781119793304.ch13
    53. Kazuhiro Yamada, Johnny Mendoza, Markos Koutmos. 5-Formyltetrahydrofolate promotes conformational remodeling in a methylenetetrahydrofolate reductase active site and inhibits its activity. Journal of Biological Chemistry 2023, 299 (2) , 102855. https://doi.org/10.1016/j.jbc.2022.102855
    54. Ken Korzekwa, Jaydeep Yadav, Swati Nagar. Using partition analysis as a facile method to derive net clearances. Clinical and Translational Science 2022, 15 (8) , 1867-1879. https://doi.org/10.1111/cts.13310
    55. Thomas D. Meek. An Overview of Steady-State Enzyme Kinetics. 2022, 65-117. https://doi.org/10.1016/B978-0-12-820472-6.00124-9
    56. Zeyuan Wang, Erickson M. Paragas, Swati Nagar, Ken Korzekwa. Complex Cytochrome P450 Kinetics Due to Multisubstrate Binding and Sequential Metabolism. Part 1. Theoretical Considerations. Drug Metabolism and Disposition 2021, 49 (12) , 1090-1099. https://doi.org/10.1124/dmd.121.000553
    57. C. J. Markin, D. A. Mokhtari, F. Sunden, M. J. Appel, E. Akiva, S. A. Longwell, C. Sabatti, D. Herschlag, P. M. Fordyce. Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics. Science 2021, 373 (6553) https://doi.org/10.1126/science.abf8761
    58. Drake Jensen, Eric A. Galburt, . The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. Journal of Bacteriology 2021, 203 (8) https://doi.org/10.1128/JB.00512-20
    59. Francisco Bozinovic, Grisel Cavieres, Sebastián I. Martel, José M. Alruiz, Andrés N. Molina, Hannetz Roschzttardtz, Enrico L. Rezende. Thermal effects vary predictably across levels of organization: empirical results and theoretical basis. Proceedings of the Royal Society B: Biological Sciences 2020, 287 (1938) , 20202508. https://doi.org/10.1098/rspb.2020.2508
    60. Chuong Pham, Swati Nagar, Ken Korzekwa. Numerical analysis of time-dependent inhibition kinetics: comparison between rat liver microsomes and rat hepatocyte data for mechanistic model fitting. Xenobiotica 2020, 50 (11) , 1301-1310. https://doi.org/10.1080/00498254.2017.1345020
    61. Mario Klimacek, Alexander Sigg, Bernd Nidetzky. On the donor substrate dependence of group‐transfer reactions by hydrolytic enzymes: Insight from kinetic analysis of sucrose phosphorylase‐catalyzed transglycosylation. Biotechnology and Bioengineering 2020, 117 (10) , 2933-2943. https://doi.org/10.1002/bit.27471
    62. Michael J. Espiritu, Justin Chen, Jaydeep Yadav, Michael Larkin, Robert D. Pelletier, Jeannine M. Chan, Jeevan B. GC, Senthil Natesan, John P. Harrelson. Mechanisms of Herb-Drug Interactions Involving Cinnamon and CYP2A6: Focus on Time-Dependent Inhibition by Cinnamaldehyde and 2-Methoxycinnamaldehyde. Drug Metabolism and Disposition 2020, 48 (10) , 1028-1043. https://doi.org/10.1124/dmd.120.000087
    63. Jordan Douglas, Richard Kingston, Alexei J. Drummond, . Bayesian inference and comparison of stochastic transcription elongation models. PLOS Computational Biology 2020, 16 (2) , e1006717. https://doi.org/10.1371/journal.pcbi.1006717
    64. Jaydeep Yadav, Erickson Paragas, Ken Korzekwa, Swati Nagar. Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions. Pharmacology & Therapeutics 2020, 206 , 107449. https://doi.org/10.1016/j.pharmthera.2019.107449
    65. Kristina V. Goncharenko, Sebastian Flückiger, Cangsong Liao, David Lim, Anja R. Stampfli, Florian P. Seebeck. Selenocysteine as a Substrate, an Inhibitor and a Mechanistic Probe for Bacterial and Fungal Iron‐Dependent Sulfoxide Synthases. Chemistry – A European Journal 2020, 26 (6) , 1328-1334. https://doi.org/10.1002/chem.201903898
    66. Frank Jordan, Natalia S. Nemeria, Anand Balakrishnan, Joydeep Chakraborty, Elena Guevara, Pradeep Nareddy, Hetal Patel, Da Jeong Shim, Junjie Wang, Luying Yang, Xu Zhang, Jieyu Zhou. An Update on Developments in the Field of Thiamin Diphosphate-Dependent Enzymes. 2020, 58-110. https://doi.org/10.1016/B978-0-12-409547-2.14833-4
    67. John T. Rodgers, Jeffrey P. Jones. Numerical Analysis of Time-Dependent Inhibition by MDMA. Drug Metabolism and Disposition 2020, 48 (1) , 1-7. https://doi.org/10.1124/dmd.119.089268
    68. Jaydeep Yadav, Ken Korzekwa, Swati Nagar. Impact of Lipid Partitioning on the Design, Analysis, and Interpretation of Microsomal Time-Dependent Inactivation. Drug Metabolism and Disposition 2019, 47 (7) , 732-742. https://doi.org/10.1124/dmd.118.085969
    69. Alexandra Zoi Andreou, Ulf Harms, Dagmar Klostermeier. Single-stranded regions modulate conformational dynamics and ATPase activity of eIF4A to optimize 5′-UTR unwinding. Nucleic Acids Research 2019, 47 (10) , 5260-5275. https://doi.org/10.1093/nar/gkz254
    70. Yu‐Lu Wang, Yuan‐Yuan Zhang, Chang Lu, Wenhao Zhang, Haiteng Deng, Jia‐Wei Wu, Jue Wang, Zhi‐Xin Wang. Kinetic and mechanistic studies of p38α MAP kinase phosphorylation by MKK 6. The FEBS Journal 2019, 286 (5) , 1030-1052. https://doi.org/10.1111/febs.14762
    71. Rani Zananiri, Omri Malik, Sergei Rudnizky, Vera Gaydar, Roman Kreiserman, Arnon Henn, Ariel Kaplan. Synergy between RecBCD subunits is essential for efficient DNA unwinding. eLife 2019, 8 https://doi.org/10.7554/eLife.40836
    72. Heng Song, Nathchar Naowarojna, Ronghai Cheng, Juan Lopez, Pinghua Liu. Non-heme iron enzyme-catalyzed complex transformations. 2019, 1-61. https://doi.org/10.1016/bs.apcsb.2019.06.002
    73. Eric A. Galburt. The calculation of transcript flux ratios reveals single regulatory mechanisms capable of activation and repression. Proceedings of the National Academy of Sciences 2018, 115 (50) https://doi.org/10.1073/pnas.1809454115
    74. Felix Wong, Annwesha Dutta, Debashish Chowdhury, Jeremy Gunawardena. Structural conditions on complex networks for the Michaelis–Menten input–output response. Proceedings of the National Academy of Sciences 2018, 115 (39) , 9738-9743. https://doi.org/10.1073/pnas.1808053115
    75. John M. Robbins, Andreas S. Bommarius, Giovanni Gadda. Mechanistic studies of formate oxidase from Aspergillus oryzae : A novel member of the glucose-Methanol-choline oxidoreductase enzyme superfamily that oxidizes carbon acids. Archives of Biochemistry and Biophysics 2018, 643 , 24-31. https://doi.org/10.1016/j.abb.2018.02.007
    76. Chong Zuo, Amber L. Jolly, Andriana P. Nikolova, David I. Satzer, Sirui Cao, Jeremy S. Sanchez, David P. Ballou, Elizabeth E. Trimmer. A role for glutamine 183 in the folate oxidative half-reaction of methylenetetrahydrofolate reductase from Escherichia coli. Archives of Biochemistry and Biophysics 2018, 642 , 63-74. https://doi.org/10.1016/j.abb.2018.01.014
    77. N. S. Punekar. More Complex Rate Expressions. 2018, 177-191. https://doi.org/10.1007/978-981-13-0785-0_16
    78. Omri Malik, Hadeel Khamis, Sergei Rudnizky, Ariel Kaplan. The mechano-chemistry of a monomeric reverse transcriptase. Nucleic Acids Research 2017, 45 (22) , 12954-12962. https://doi.org/10.1093/nar/gkx1168
    79. Rajesh K. Harijan, Ioanna Zoi, Dimitri Antoniou, Steven D. Schwartz, Vern L. Schramm. Catalytic-site design for inverse heavy-enzyme isotope effects in human purine nucleoside phosphorylase. Proceedings of the National Academy of Sciences 2017, 114 (25) , 6456-6461. https://doi.org/10.1073/pnas.1704786114
    80. Annwesha Dutta, Debashish Chowdhury. A Generalized Michaelis–Menten Equation in Protein Synthesis: Effects of Mis-Charged Cognate tRNA and Mis-Reading of Codon. Bulletin of Mathematical Biology 2017, 79 (5) , 1005-1027. https://doi.org/10.1007/s11538-017-0266-5
    81. Masayuki Okuyama, Kana Matsunaga, Ken‐ichi Watanabe, Keitaro Yamashita, Takayoshi Tagami, Asako Kikuchi, Min Ma, Patcharapa Klahan, Haruhide Mori, Min Yao, Atsuo Kimura. Efficient synthesis of α‐galactosyl oligosaccharides using a mutant Bacteroides thetaiotaomicron retaining α‐galactosidase ( Bt GH 97b). The FEBS Journal 2017, 284 (5) , 766-783. https://doi.org/10.1111/febs.14018
    82. Mark W. Ruszczycky, Hung-wen Liu. Theory and Application of the Relationship Between Steady-State Isotope Effects on Enzyme Intermediate Concentrations and Net Rate Constants. 2017, 459-499. https://doi.org/10.1016/bs.mie.2017.07.022
    83. Mohammad Hekmatnejad, Sara Conwell, Stephen M. Lok, Alan Kutach, David Shaw, Eric Fang, David C. Swinney. Insights into kinetic mechanism of Janus kinase 3 and its inhibition by tofacitinib. Archives of Biochemistry and Biophysics 2016, 612 , 22-34. https://doi.org/10.1016/j.abb.2016.08.012
    84. L.R. Ritter, C.A. Chrestensen, J.C. Salerno. A mathematical model of endothelial nitric oxide synthase activation with time delay exhibiting Hopf bifurcation and oscillations. Mathematical Biosciences 2016, 281 , 62-73. https://doi.org/10.1016/j.mbs.2016.09.003
    85. Nicholas F. Polizzi, Michael J. Therien, David N. Beratan. Mean First‐Passage Times in Biology. Israel Journal of Chemistry 2016, 56 (9-10) , 816-824. https://doi.org/10.1002/ijch.201600040
    86. Bahareh Shakiba, Maryam Dayeri, Farshid Mohammad-Rafiee. Modeling of ribosome dynamics on a ds-mRNA under an external load. The Journal of Chemical Physics 2016, 145 (2) https://doi.org/10.1063/1.4958321
    87. L. Zhang, H. Jiang, F.K. Sheong, F. Pardo-Avila, P.P.-H. Cheung, X. Huang. Constructing Kinetic Network Models to Elucidate Mechanisms of Functional Conformational Changes of Enzymes and Their Recognition with Ligands. 2016, 343-371. https://doi.org/10.1016/bs.mie.2016.05.026
    88. Said A. Hassounah, Yannan Liu, Peter K. Quashie, Maureen Oliveira, Daniela Moisi, Bluma G. Brenner, Paul A. Sandstrom, Thibault Mesplède, Mark A. Wainberg, . Characterization of the Drug Resistance Profiles of Integrase Strand Transfer Inhibitors in Simian Immunodeficiency Virus SIVmac239. Journal of Virology 2015, 89 (23) , 12002-12013. https://doi.org/10.1128/JVI.02131-15
    89. Kai Deng, Taichi E. Takasuka, Christopher M. Bianchetti, Lai F. Bergeman, Paul D. Adams, Trent R. Northen, Brian G. Fox. Use of Nanostructure-Initiator Mass Spectrometry to Deduce Selectivity of Reaction in Glycoside Hydrolases. Frontiers in Bioengineering and Biotechnology 2015, 3 https://doi.org/10.3389/fbioe.2015.00165
    90. Andrew S. Murkin. Commentary: Ohm's law as an analogy for enzyme kinetics. Biochemistry and Molecular Biology Education 2015, 43 (3) , 139-141. https://doi.org/10.1002/bmb.20850
    91. Mark W. Ruszczycky, Hung‐wen Liu. Mechanistic Enzymology of the Radical SAM Enzyme DesII. Israel Journal of Chemistry 2015, 55 (3-4) , 315-324. https://doi.org/10.1002/ijch.201400130
    92. Yara X. Mejia, Evgeny Nudler, Carlos Bustamante. Trigger loop folding determines transcription rate of Escherichia coli’s RNA polymerase. Proceedings of the National Academy of Sciences 2015, 112 (3) , 743-748. https://doi.org/10.1073/pnas.1421067112
    93. Jonathan L. Daka, Ikechukwu Achilonu, Heini W. Dirr. The Isomerization of Δ5-Androstene-3,17-dione by the Human Glutathione Transferase A3-3 Proceeds via a Conjugated Heteroannular Diene Intermediate. Journal of Biological Chemistry 2014, 289 (46) , 32243-32252. https://doi.org/10.1074/jbc.M114.601609
    94. Ting Wang, Ian Cook, Charles N. Falany, Thomas S. Leyh. Paradigms of Sulfotransferase Catalysis. Journal of Biological Chemistry 2014, 289 (38) , 26474-26480. https://doi.org/10.1074/jbc.M114.573501
    95. Kevin Francis, Amnon Kohen. Standards for the reporting of kinetic isotope effects in enzymology. Perspectives in Science 2014, 1 (1-6) , 110-120. https://doi.org/10.1016/j.pisc.2014.02.009
    96. Supreecha Rimratchada, Tom C.B. McLeish, Sheena E. Radford, Emanuele Paci. The Role of High-Dimensional Diffusive Search, Stabilization, and Frustration in Protein Folding. Biophysical Journal 2014, 106 (8) , 1729-1740. https://doi.org/10.1016/j.bpj.2014.01.051
    97. William C. Merrick, Michael E. Harris. Control not at initiation? Bah, humbug!. The EMBO Journal 2014, 33 (1) , 3-4. https://doi.org/10.1002/embj.201387388
    98. Judith P. Klinman. The power of integrating kinetic isotope effects into the formalism of the M ichaelis– M enten equation. The FEBS Journal 2014, 281 (2) , 489-497. https://doi.org/10.1111/febs.12477
    99. Peter K. Quashie, Thibault Mesplède, Ying-Shan Han, Tamar Veres, Nathan Osman, Said Hassounah, Richard D. Sloan, Hong-Tao Xu, Mark A. Wainberg. Biochemical Analysis of the Role of G118R-Linked Dolutegravir Drug Resistance Substitutions in HIV-1 Integrase. Antimicrobial Agents and Chemotherapy 2013, 57 (12) , 6223-6235. https://doi.org/10.1128/AAC.01835-13
    100. Manchuta Dangkulwanich, Toyotaka Ishibashi, Shixin Liu, Maria L Kireeva, Lucyna Lubkowska, Mikhail Kashlev, Carlos J Bustamante. Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism. eLife 2013, 2 https://doi.org/10.7554/eLife.00971
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect