ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

pHlameleons: A Family of FRET-Based Protein Sensors for Quantitative pH Imaging

View Author Information
Laboratory for Molecular and Cellular Systems, Department of Neuro- and Sensory Physiology, University Medicine Göttingen, Humboldtalee 23, 37073 Göttingen, Germany
†F.S.W. is member of, and financed by, the “Molecular Microscopy” section and the Excellence Cluster 171 “Microscopy on the Nanometer Scale” of the DFG-funded (German Research Council) Center for Molecular Physiology of the Brain (CMPB). Additional financing from the German Federal Ministry for Education and Research (BMBF) for the project “FLI-Cam” in the Biophotonik III program is acknowledged. M.G. is funded by the Fritz Thyssen Foundation.
* To whom correspondence should be addressed. Phone: +44-1223-334193. Fax: +44-1223-334796. E-mail: [email protected]
‡Present address: Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, U.K.
§Present address: Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
Cite this: Biochemistry 2008, 47, 49, 13115–13126
Publication Date (Web):November 13, 2008
https://doi.org/10.1021/bi8009482
Copyright © 2008 American Chemical Society

    Article Views

    2450

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (883 KB)
    Supporting Info (1)»

    Abstract

    Abstract Image

    Intracellular pH is an important indicator for cellular metabolism and pathogenesis. pH sensing in living cells has been achieved using a number of synthetic organic dyes and genetically expressible sensor proteins, even allowing the specific targeting of intracellular organelles. Ideally, a class of genetically encodeable sensors need to cover relevant cellular pH ranges. We present a FRET-based pH sensor platform, based on the pH modulation of YFP acceptor fluorophores in a fusion construct with ECFP. The concurrent loss of the overlap integral upon acidification results in a proportionally reduced FRET coupling. The readout of FRET over the sensitized YFP fluorescence lifetime yields a highly sensitive and robust pH measurement that is self-calibrated. The principle is demonstrated in the existing high-efficiency FRET fusion Cy11.5, and tunability of the platform design is demonstrated by genetic alteration of the pH sensitivity of the acceptor moiety.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Morphological changes typical for necrosis induced by N-dodecyl (C12) imidazole (Figure 1). This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 67 publications.

    1. Reshma Bano, Mohd Mohsin, Mohammad Zeyaullah, Mohammad Suhail Khan. Real-Time Monitoring of Selenium in Living Cells by Fluorescence Resonance Energy Transfer-Based Genetically Encoded Ratiometric Nanosensors. ACS Omega 2023, 8 (9) , 8625-8633. https://doi.org/10.1021/acsomega.2c07809
    2. Andreas Steinegger, Otto S. Wolfbeis, Sergey M. Borisov. Optical Sensing and Imaging of pH Values: Spectroscopies, Materials, and Applications. Chemical Reviews 2020, 120 (22) , 12357-12489. https://doi.org/10.1021/acs.chemrev.0c00451
    3. Pedro J. Pacheco-Liñán, Iván Bravo, María L. Nueda, José Albaladejo, Andrés Garzón-Ruiz. Functionalized CdSe/ZnS Quantum Dots for Intracellular pH Measurements by Fluorescence Lifetime Imaging Microscopy. ACS Sensors 2020, 5 (7) , 2106-2117. https://doi.org/10.1021/acssensors.0c00719
    4. Joe Chin-Hun Kuo, Marc C. Goudge, Ann E. Metzloff, Ling-Ting Huang, Marshall J. Colville, Sangwoo Park, Warren R. Zipfel, Matthew J. Paszek. Litmus-Body: A Molecularly Targeted Sensor for Cell-Surface pH Measurements. ACS Sensors 2020, 5 (6) , 1555-1566. https://doi.org/10.1021/acssensors.9b02080
    5. Emily P. Haynes, Megha Rajendran, Chace K. Henning, Abhipri Mishra, Angeline M. Lyon, Mathew Tantama. Quantifying Acute Fuel and Respiration Dependent pH Homeostasis in Live Cells Using the mCherryTYG Mutant as a Fluorescence Lifetime Sensor. Analytical Chemistry 2019, 91 (13) , 8466-8475. https://doi.org/10.1021/acs.analchem.9b01562
    6. Sandra Burgstaller, Helmut Bischof, Thomas Gensch, Sarah Stryeck, Benjamin Gottschalk, Jeta Ramadani-Muja, Emrah Eroglu, Rene Rost, Sabine Balfanz, Arnd Baumann, Markus Waldeck-Weiermair, Jesse C. Hay, Tobias Madl, Wolfgang F. Graier, Roland Malli. pH-Lemon, a Fluorescent Protein-Based pH Reporter for Acidic Compartments. ACS Sensors 2019, 4 (4) , 883-891. https://doi.org/10.1021/acssensors.8b01599
    7. Lydia A. Perkins, Qi Yan, Brigitte F. Schmidt, Dmytro Kolodieznyi, Saumya Saurabh, Mads Breum Larsen, Simon C. Watkins, Laura Kremer, and Marcel P. Bruchez . Genetically Targeted Ratiometric and Activated pH Indicator Complexes (TRApHIC) for Receptor Trafficking. Biochemistry 2018, 57 (5) , 861-871. https://doi.org/10.1021/acs.biochem.7b01135
    8. Jingfang Shangguan, Dinggeng He, Xiaoxiao He, Kemin Wang, Fengzhou Xu, Jinquan Liu, Jinlu Tang, Xue Yang, and Jin Huang . Label-Free Carbon-Dots-Based Ratiometric Fluorescence pH Nanoprobes for Intracellular pH Sensing. Analytical Chemistry 2016, 88 (15) , 7837-7843. https://doi.org/10.1021/acs.analchem.6b01932
    9. Luyuan Zhang, Fang Xu, Zhixing Chen, Xinxin Zhu, and Wei Min . Bioluminescence Assisted Switching and Fluorescence Imaging (BASFI). The Journal of Physical Chemistry Letters 2013, 4 (22) , 3897-3902. https://doi.org/10.1021/jz402128j
    10. Angel Orte, Jose M. Alvarez-Pez, and Maria J. Ruedas-Rama . Fluorescence Lifetime Imaging Microscopy for the Detection of Intracellular pH with Quantum Dot Nanosensors. ACS Nano 2013, 7 (7) , 6387-6395. https://doi.org/10.1021/nn402581q
    11. Mathew Tantama, Yin Pun Hung, and Gary Yellen . Imaging Intracellular pH in Live Cells with a Genetically Encoded Red Fluorescent Protein Sensor. Journal of the American Chemical Society 2011, 133 (26) , 10034-10037. https://doi.org/10.1021/ja202902d
    12. Binila K Korah, Aiswarya Murali, Bony K John, Neenamol John, Beena Mathew. Carbon dots as a sustainable nanoplatform. Biomass Conversion and Biorefinery 2023, 126 https://doi.org/10.1007/s13399-023-04650-7
    13. Mark C. Leake, Steven D. Quinn. A guide to small fluorescent probes for single-molecule biophysics. Chemical Physics Reviews 2023, 4 (1) https://doi.org/10.1063/5.0131663
    14. Sergi Padilla‐Parra. Time‐resolved single virus tracking and spectral imaging to understand HIV‐1 entry and fusion. Biology of the Cell 2023, 115 (3) https://doi.org/10.1111/boc.202200082
    15. Dipak Kumar Rana, Subhash Chandra Bhattacharya. Implication toward a simple strategy to generate pH tunable FRET-based biosensing. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 282 , 121687. https://doi.org/10.1016/j.saa.2022.121687
    16. Lennard Karsten, Lukas Goett-Zink, Julian Schmitz, Raimund Hoffrogge, Alexander Grünberger, Tilman Kottke, Kristian M. Müller. Genetically Encoded Ratiometric pH Sensors for the Measurement of Intra- and Extracellular pH and Internalization Rates. Biosensors 2022, 12 (5) , 271. https://doi.org/10.3390/bios12050271
    17. Sandra Burgstaller, Helmut Bischof, Lucas Matt, Robert Lukowski. Assessing K+ ions and K+ channel functions in cancer cell metabolism using fluorescent biosensors. Free Radical Biology and Medicine 2022, 181 , 43-51. https://doi.org/10.1016/j.freeradbiomed.2022.01.026
    18. Heejung Kim, Jihye Seong. Fluorescent Protein-Based Autophagy Biosensors. Materials 2021, 14 (11) , 3019. https://doi.org/10.3390/ma14113019
    19. T.P. Gerasimova, T.I. Burganov, S.A. Katsyuba, A.A. Kalinin, L.N. Islamova, G.M. Fazleeva, B.S. Ahmadeev, A.R. Mustafina, A. Monari, X. Assfeld, O.G. Sinyashin. Halochromic luminescent quinoxalinones as a basis for pH-sensing in organic and aqueous solutions. Dyes and Pigments 2021, 186 , 108958. https://doi.org/10.1016/j.dyepig.2020.108958
    20. Shaomei Xu, Xu He, Yibing Huang, Xin Liu, Lihe Zhao, Xinghua Wang, Ying Sun, Pinyi Ma, Daqian Song. Lysosome-targeted ratiometric fluorescent sensor for monitoring pH in living cells based on one-pot-synthesized carbon dots. Microchimica Acta 2020, 187 (8) https://doi.org/10.1007/s00604-020-04462-w
    21. Consuelo Ripoll, Mar Roldan, Rafael Contreras-Montoya, Juan J. Diaz-Mochon, Miguel Martin, Maria J. Ruedas-Rama, Angel Orte. Mitochondrial pH Nanosensors for Metabolic Profiling of Breast Cancer Cell Lines. International Journal of Molecular Sciences 2020, 21 (10) , 3731. https://doi.org/10.3390/ijms21103731
    22. Hamide Ehtesabi, Zahra Hallaji, Shima Najafi Nobar, Zeinab Bagheri. Carbon dots with pH-responsive fluorescence: a review on synthesis and cell biological applications. Microchimica Acta 2020, 187 (2) https://doi.org/10.1007/s00604-019-4091-4
    23. Sunaina Surana, David Villarroel‐Campos, Oscar M. Lazo, Edoardo Moretto, Andrew P. Tosolini, Elena R. Rhymes, Sandy Richter, James N. Sleigh, Giampietro Schiavo. The evolution of the axonal transport toolkit. Traffic 2020, 21 (1) , 13-33. https://doi.org/10.1111/tra.12710
    24. Samira Bagheri, Amin TermehYousefi, Javad Mehrmashhadi. Carbon dot-based fluorometric optical sensors: an overview. Reviews in Inorganic Chemistry 2019, 39 (4) , 179-197. https://doi.org/10.1515/revic-2019-0002
    25. Maria R. Depaoli, Helmut Bischof, Emrah Eroglu, Sandra Burgstaller, Jeta Ramadani-Muja, Thomas Rauter, Maximilian Schinagl, Markus Waldeck-Weiermair, Jesse C. Hay, Wolfgang F. Graier, Roland Malli. Live cell imaging of signaling and metabolic activities. Pharmacology & Therapeutics 2019, 202 , 98-119. https://doi.org/10.1016/j.pharmthera.2019.06.003
    26. Qin Wang, Haitao Yang, Qiang Zhang, Hongguang Ge, Shengrui Zhang, Zhiyin Wang, Xiaohui Ji. Strong acid-assisted preparation of green-emissive carbon dots for fluorometric imaging of pH variation in living cells. Microchimica Acta 2019, 186 (7) https://doi.org/10.1007/s00604-019-3569-4
    27. Alejandro Arce‐Rodríguez, Daniel C. Volke, Sarina Bense, Susanne Häussler, Pablo I. Nikel. Non‐invasive, ratiometric determination of intracellular pH in Pseudomonas species using a novel genetically encoded indicator. Microbial Biotechnology 2019, 12 (4) , 799-813. https://doi.org/10.1111/1751-7915.13439
    28. Vladimir I. Martynov, Alexey A. Pakhomov, Igor E. Deyev, Alexander G. Petrenko. Genetically encoded fluorescent indicators for live cell pH imaging. Biochimica et Biophysica Acta (BBA) - General Subjects 2018, 1862 (12) , 2924-2939. https://doi.org/10.1016/j.bbagen.2018.09.013
    29. Christian Rupprecht, Marcus Wingen, Janko Potzkei, Thomas Gensch, Karl-Erich Jaeger, Thomas Drepper. A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH. Journal of Biotechnology 2017, 258 , 25-32. https://doi.org/10.1016/j.jbiotec.2017.05.006
    30. James R.W. Conway, Sean C. Warren, Paul Timpson. Context-dependent intravital imaging of therapeutic response using intramolecular FRET biosensors. Methods 2017, 128 , 78-94. https://doi.org/10.1016/j.ymeth.2017.04.014
    31. Haijun Yu, Chao Chen, Xiaodan Cao, Yueling Liu, Shengmin Zhou, Ping Wang. Ratiometric fluorescent pH nanoprobes based on in situ assembling of fluorescence resonance energy transfer between fluorescent proteins. Analytical and Bioanalytical Chemistry 2017, 409 (21) , 5073-5080. https://doi.org/10.1007/s00216-017-0453-0
    32. Fred S. Wouters. F örster Resonance Energy Transfer and Fluorescence Lifetime Imaging. 2017, 405-451. https://doi.org/10.1002/9783527687732.ch13
    33. MAG de Castro, G Bunt, FS Wouters. Cathepsin B launches an apoptotic exit effort upon cell death-associated disruption of lysosomes. Cell Death Discovery 2016, 2 (1) https://doi.org/10.1038/cddiscovery.2016.12
    34. M.G. Guillén, F. Gámez, T. Lopes-Costa, J. Cabanillas-González, J.M. Pedrosa. A fluorescence gas sensor based on Förster Resonance Energy Transfer between polyfluorene and bromocresol green assembled in thin films. Sensors and Actuators B: Chemical 2016, 236 , 136-143. https://doi.org/10.1016/j.snb.2016.06.011
    35. Bryce Bajar, Emily Wang, Shu Zhang, Michael Lin, Jun Chu. A Guide to Fluorescent Protein FRET Pairs. Sensors 2016, 16 (9) , 1488. https://doi.org/10.3390/s16091488
    36. Dahdjim-Benoît Betolngar, Marie Erard, Hélène Pasquier, Yasmina Bousmah, Awa Diop-Sy, Elvire Guiot, Pierre Vincent, Fabienne Mérola. pH sensitivity of FRET reporters based on cyan and yellow fluorescent proteins. Analytical and Bioanalytical Chemistry 2015, 407 (14) , 4183-4193. https://doi.org/10.1007/s00216-015-8636-z
    37. Dana Meyen, Katsiaryna Tarbashevich, Torsten U Banisch, Carolina Wittwer, Michal Reichman-Fried, Benoît Maugis, Cecilia Grimaldi, Esther-Maria Messerschmidt, Erez Raz. Dynamic filopodia are required for chemokine-dependent intracellular polarization during guided cell migration in vivo. eLife 2015, 4 https://doi.org/10.7554/eLife.05279
    38. Katsiaryna Tarbashevich, Michal Reichman-Fried, Cecilia Grimaldi, Erez Raz. Chemokine-Dependent pH Elevation at the Cell Front Sustains Polarity in Directionally Migrating Zebrafish Germ Cells. Current Biology 2015, 25 (8) , 1096-1103. https://doi.org/10.1016/j.cub.2015.02.071
    39. Darpan Malhotra, Joseph R Casey. Intracellular p H Measurement. 2015, 1-7. https://doi.org/10.1002/9780470015902.a0002643.pub3
    40. Taichiro Tomida. Visualization of the spatial and temporal dynamics of MAPK signaling using fluorescence imaging techniques. The Journal of Physiological Sciences 2015, 65 (1) , 37-49. https://doi.org/10.1007/s12576-014-0332-9
    41. Robert J. Meier, Johann M. B. Simbürger, Tero Soukka, Michael Schäferling. A FRET based pH probe with a broad working range applicable to referenced ratiometric dual wavelength and luminescence lifetime read out. Chemical Communications 2015, 51 (28) , 6145-6148. https://doi.org/10.1039/C5CC00144G
    42. Chi Chen, Pengfei Zhang, Li Zhang, Duyang Gao, Guanhui Gao, Yong Yang, Wenjun Li, Ping Gong, Lintao Cai. Long-decay near-infrared-emitting doped quantum dots for lifetime-based in vivo pH imaging. Chemical Communications 2015, 51 (56) , 11162-11165. https://doi.org/10.1039/C5CC03046C
    43. Christoph Biskup, Thomas Gensch. Fluorescence lifetime imaging of ions in biological tissues. 2014, 497-534. https://doi.org/10.1201/b17018-30
    44. Michal Stawarski, Izabela Rutkowska-Wlodarczyk, André Zeug, Monika Bijata, Hubert Madej, Leszek Kaczmarek, Jakub Wlodarczyk. Genetically encoded FRET-based biosensor for imaging MMP-9 activity. Biomaterials 2014, 35 (5) , 1402-1410. https://doi.org/10.1016/j.biomaterials.2013.11.033
    45. Maria J. Ruedas-Rama, Jose M. Alvarez-Pez, Luis Crovetto, Jose M. Paredes, Angel Orte. FLIM Strategies for Intracellular Sensing. 2014, 191-223. https://doi.org/10.1007/4243_2014_67
    46. D. Aigner, R. I. Dmitriev, S. M. Borisov, D. B. Papkovsky, I. Klimant. pH-sensitive perylene bisimide probes for live cell fluorescence lifetime imaging. J. Mater. Chem. B 2014, 2 (39) , 6792-6801. https://doi.org/10.1039/C4TB01006J
    47. Alice G. Byrne, Matthew M. Byrne, George Coker III, Kelly B. Gemmill, Christopher Spillmann, Igor Medintz, Seth L. Sloan, B. Wieb van der Meer. Data. 2013, 655-755. https://doi.org/10.1002/9783527656028.ch14
    48. Fred S. Wouters. Förster Resonance Energy Transfer and Fluorescence Lifetime Imaging. 2013, 245-291. https://doi.org/10.1002/9783527671595.ch7
    49. Marie Erard, Asma Fredj, Hélène Pasquier, Dahdjim-Benoît Beltolngar, Yasmina Bousmah, Valérie Derrien, Pierre Vincent, Fabienne Merola. Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging. Mol. BioSyst. 2013, 9 (2) , 258-267. https://doi.org/10.1039/C2MB25303H
    50. Spencer C. Alford, Jiahui Wu, Yongxin Zhao, Robert E. Campbell, Thomas Knöpfel. Optogenetic reporters. Biology of the Cell 2013, 105 (1) , 14-29. https://doi.org/10.1111/boc.201200054
    51. Janko Potzkei, Martin Kunze, Thomas Drepper, Thomas Gensch, Karl-Erich Jaeger, Jochen Büchs. Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor. BMC Biology 2012, 10 (1) https://doi.org/10.1186/1741-7007-10-28
    52. Maria J. Ruedas-Rama, Jamie D. Walters, Angel Orte, Elizabeth A.H. Hall. Fluorescent nanoparticles for intracellular sensing: A review. Analytica Chimica Acta 2012, 751 , 1-23. https://doi.org/10.1016/j.aca.2012.09.025
    53. Jithesh V. Veetil, Sha Jin, Kaiming Ye. Fluorescence Lifetime Imaging Microscopy of Intracellular Glucose Dynamics. Journal of Diabetes Science and Technology 2012, 6 (6) , 1276-1285. https://doi.org/10.1177/193229681200600606
    54. Sergi Padilla-Parra, Pedro M. Matos, Naoyuki Kondo, Mariana Marin, Nuno C. Santos, Gregory B. Melikyan. Quantitative imaging of endosome acidification and single retrovirus fusion with distinct pools of early endosomes. Proceedings of the National Academy of Sciences 2012, 109 (43) , 17627-17632. https://doi.org/10.1073/pnas.1211714109
    55. Elena Kardash, Jan Bandemer, Erez Raz. Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors. Nature Protocols 2011, 6 (12) , 1835-1846. https://doi.org/10.1038/nprot.2011.395
    56. Clara Bermejo, Farzad Haerizadeh, Hitomi Takanaga, Diane Chermak, Wolf B Frommer. Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nature Protocols 2011, 6 (11) , 1806-1817. https://doi.org/10.1038/nprot.2011.391
    57. Gilbert O. Fruhwirth, Luis P. Fernandes, Gregory Weitsman, Gargi Patel, Muireann Kelleher, Katherine Lawler, Adrian Brock, Simon P. Poland, Daniel R. Matthews, György Kéri, Paul R. Barber, Borivoj Vojnovic, Simon M. Ameer‐Beg, Anthony C. C. Coolen, Franca Fraternali, Tony Ng. How Förster Resonance Energy Transfer Imaging Improves the Understanding of Protein Interaction Networks in Cancer Biology. ChemPhysChem 2011, 12 (3) , 442-461. https://doi.org/10.1002/cphc.201000866
    58. Alessandro Esposito, Arjen N. Bader, Simon C. Schlachter, Dave J. van den Heuvel, Gabriele S. Kaminski Schierle, Ashok R. Venkitaraman, Clemens F. Kaminski, Hans C. Gerritsen. Design and application of a confocal microscope for spectrally resolved anisotropy imaging. Optics Express 2011, 19 (3) , 2546. https://doi.org/10.1364/OE.19.002546
    59. Fred S. Wouters. Imaging Molecular Physiology in Cells Using FRET-Based Fluorescent Nanosensors. 2011, 131-152. https://doi.org/10.1007/978-3-642-15175-0_8
    60. Jan Willem Borst, Antonie J W G Visser. Fluorescence lifetime imaging microscopy in life sciences. Measurement Science and Technology 2010, 21 (10) , 102002. https://doi.org/10.1088/0957-0233/21/10/102002
    61. Johannes T. Wessels, Kensuke Yamauchi, Robert M. Hoffman, Fred S. Wouters. Advances in cellular, subcellular, and nanoscale imaging in vitro and in vivo. Cytometry Part A 2010, 77A (7) , 667-676. https://doi.org/10.1002/cyto.a.20931
    62. Marleen Forkink, Jan A.M. Smeitink, Roland Brock, Peter H.G.M. Willems, Werner J.H. Koopman. Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2010, 1797 (6-7) , 1034-1044. https://doi.org/10.1016/j.bbabio.2010.01.022
    63. Fred Wouters, Gertrude Bunt. Molecular Resolution of Cellular Biochemistry and Physiology by FRET/FLIM. 2010, 12-1-12-26. https://doi.org/10.1201/9781420078893-c12
    64. Andreas Ibraheem, Robert E Campbell. Designs and applications of fluorescent protein-based biosensors. Current Opinion in Chemical Biology 2010, 14 (1) , 30-36. https://doi.org/10.1016/j.cbpa.2009.09.033
    65. A. J. W. G. Visser, S. P. Laptenok, N. V. Visser, A. van Hoek, D. J. S. Birch, J.-C. Brochon, J. W. Borst. Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs. European Biophysics Journal 2010, 39 (2) , 241-253. https://doi.org/10.1007/s00249-009-0528-8
    66. Hélène A. Benink, Mark G. McDougall, Dieter H. Klaubert, Georgyi V. Los. Direct pH measurements by using subcellular targeting of 5(and 6-) carboxyseminaphthorhodafluor in mammalian cells. BioTechniques 2009, 47 (3) , 769-774. https://doi.org/10.2144/000113220
    67. Alessandro Esposito, Simon Schlachter, Gabriele S. Kaminski Schierle, Alan D. Elder, Alberto Diaspro, Fred S. Wouters, Clemens F. Kaminski, Asparouh I. Iliev. Quantitative Fluorescence Microscopy Techniques. 2009, 117-142. https://doi.org/10.1007/978-1-60761-376-3_6

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect