ACS Publications. Most Trusted. Most Cited. Most Read
Arginine-Specific Modification of Proteins with Polyethylene Glycol
My Activity

Figure 1Loading Img
    Article

    Arginine-Specific Modification of Proteins with Polyethylene Glycol
    Click to copy article linkArticle link copied!

    View Author Information
    École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
    * To whom correspondence should be addressed. E-mail: [email protected]
    †Current address: Swiss Federal Institute of Technology Zürich (ETHZ), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Drug Formulation and Delivery, Wolfgang-Pauli Str. 10, HCl J 396.4, 8093 Zürich, Switzerland.
    Other Access OptionsSupporting Information (1)

    Biomacromolecules

    Cite this: Biomacromolecules 2011, 12, 2, 482–493
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bm101272g
    Published December 23, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    In this study, the residue-selective modification of proteins with polymers at arginine residues is reported. The difficulty in modifying arginine residues lies in the fact that they are less reactive than lysine residues. Consequently, typical chemo-selective reactions which employ “kinetic” selectivity (active esters, Michael addition, etc.) cannot be used to target these residues. The chemistry exploited herein relies on “thermodynamic” selectivity to achieve selective modification of arginine residues. ω-Methoxy poly(ethylene glycol) bearing an α-oxo-aldehyde group was synthesized and used to demonstrate the selective modification of lysozyme at arginine residues. In addition, the optimization of reaction conditions for coupling as well as the stability of the formed adduct toward dilution, toward a nucleophilic buffer, and toward acidification are reported. It was concluded that this approach is a convenient, mild, selective, and catalyst-free method for protein modification.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Supplementary synthetic protocols and characterization of compounds (NMR and MALDI TOF spectra). Kinetics, raw chromatograms, and mass spectra for model reactions of methylglyoxal with N-acetyl amino acids. Raw chromatograms for reaction of 69 with HEWL. MS spectra of tryptic digest of conjugates. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 64 publications.

    1. Lyndsey Prosser, Benjamin Emenike, Pinki Sihag, Rajendra Shirke, Monika Raj. Chemical Carbonylation of Arginine in Peptides and Proteins. Journal of the American Chemical Society 2025, Article ASAP.
    2. Mathias B. Bertelsen, Emily Tsang, Johan Palmfeldt, Celine H. Kristoffersen, Marija Nisavic, Kurt V. Gothelf. A Diketopinic Reagent for the Reversible Bioconjugation to Arginine Residues on Native Antibodies. Bioconjugate Chemistry 2024, 35 (11) , 1755-1761. https://doi.org/10.1021/acs.bioconjchem.4c00317
    3. Laura Hillebrand, Xiaojun Julia Liang, Ricardo A. M. Serafim, Matthias Gehringer. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. Journal of Medicinal Chemistry 2024, 67 (10) , 7668-7758. https://doi.org/10.1021/acs.jmedchem.3c01825
    4. Pragalath Sadasivam, Shivashankar Khanapur, Siddesh V. Hartimath, Boominathan Ramasamy, Peter Cheng, Chin Zan Feng, David Green, Christopher Davis, Julian L. Goggi, Edward G. Robins, Ran Yan. Arginine-Selective Bioconjugation Reagent for Effective 18F-labeling of Native Proteins. Journal of Medicinal Chemistry 2024, 67 (6) , 5064-5074. https://doi.org/10.1021/acs.jmedchem.4c00154
    5. Preeti Chauhan, Ragendu V., Mohan Kumar, Rajib Molla, Unnikrishnan V. B., Vishal Rai. Disintegrate (DIN) Theory Enabling Precision Engineering of Proteins. ACS Central Science 2023, 9 (2) , 137-150. https://doi.org/10.1021/acscentsci.2c01455
    6. Ziyang Zhang, Johannes Morstein, Andrew K. Ecker, Keelan Z. Guiley, Kevan M. Shokat. Chemoselective Covalent Modification of K-Ras(G12R) with a Small Molecule Electrophile. Journal of the American Chemical Society 2022, 144 (35) , 15916-15921. https://doi.org/10.1021/jacs.2c05377
    7. Cheng-Ting Shih, Bo-Hong Kuo, Chun-Yi Tsai, Mei-Chun Tseng, Jiun-Jie Shie. Dibenzocyclooctendiones (DBCDOs): Arginine-Selective Chemical Labeling Reagents Obtained through Benzilic Acid Rearrangement. Organic Letters 2022, 24 (25) , 4694-4698. https://doi.org/10.1021/acs.orglett.2c01970
    8. Jesper H. Mikkelsen, Magnus B. F. Gustafsson, Troels Skrydstrup, Kim B. Jensen. Selective N-Terminal Acylation of Peptides and Proteins with Tunable Phenol Esters. Bioconjugate Chemistry 2022, 33 (4) , 625-633. https://doi.org/10.1021/acs.bioconjchem.2c00045
    9. Emma E. Brotherton, Mark J. Smallridge, Steven P. Armes. Aldehyde-Functional Diblock Copolymer Nano-objects via RAFT Aqueous Dispersion Polymerization. Biomacromolecules 2021, 22 (12) , 5382-5389. https://doi.org/10.1021/acs.biomac.1c01327
    10. Napon Nilchan, James M. Alburger, William R. Roush, Christoph Rader. An Engineered Arginine Residue of Unusual pH-Sensitive Reactivity Facilitates Site-Selective Antibody Conjugation. Biochemistry 2021, 60 (14) , 1080-1087. https://doi.org/10.1021/acs.biochem.0c00955
    11. Yuhui Gong, Hoda Soleymani Abyaneh, Nicole Drossis, Andreas Niederquell, Martin Kuentz, Jean-Christophe Leroux, Hendrick W. de Haan, Marc A Gauthier. Ultra-sub-stoichiometric “Dynamic” Bioconjugation Reduces Viscosity by Disrupting Immunoglobulin Oligomerization. Biomacromolecules 2019, 20 (9) , 3557-3565. https://doi.org/10.1021/acs.biomac.9b00867
    12. Yu Zhang, Yujie Liang, Feng Huang, Yue Zhang, Xuechen Li, Jiang Xia. Site-Selective Lysine Reactions Guided by Protein–Peptide Interaction. Biochemistry 2019, 58 (7) , 1010-1018. https://doi.org/10.1021/acs.biochem.8b01223
    13. Yanjing Wang, Chi Wu. Site-Specific Conjugation of Polymers to Proteins. Biomacromolecules 2018, 19 (6) , 1804-1825. https://doi.org/10.1021/acs.biomac.8b00248
    14. Jonas Petersen, Katrine E. Christensen, Mathias T. Nielsen, Kim T. Mortensen, Vitaly V. Komnatnyy, Thomas E. Nielsen, Katrine Qvortrup. Oxidative Modification of Tryptophan-Containing Peptides. ACS Combinatorial Science 2018, 20 (6) , 344-349. https://doi.org/10.1021/acscombsci.8b00014
    15. Sarah C. Shuck, Gerald E. Wuenschell, and John S. Termini . Product Studies and Mechanistic Analysis of the Reaction of Methylglyoxal with Deoxyguanosine. Chemical Research in Toxicology 2018, 31 (2) , 105-115. https://doi.org/10.1021/acs.chemrestox.7b00274
    16. Justine N. deGruyter, Lara R. Malins, and Phil S. Baran . Residue-Specific Peptide Modification: A Chemist’s Guide. Biochemistry 2017, 56 (30) , 3863-3873. https://doi.org/10.1021/acs.biochem.7b00536
    17. Jennifer Collins, Kristian Kempe, Paul Wilson, Claudia A. Blindauer, Michelle P. McIntosh, Thomas P. Davis, Michael R. Whittaker, and David M. Haddleton . Stability Enhancing N-Terminal PEGylation of Oxytocin Exploiting Different Polymer Architectures and Conjugation Approaches. Biomacromolecules 2016, 17 (8) , 2755-2766. https://doi.org/10.1021/acs.biomac.6b00919
    18. Venkataraman Amarnath, Kalyani Amarnath, Joshua Avance, Donald F. Stec, and Paul Voziyan . 5′-O-Alkylpyridoxamines: Lipophilic Analogues of Pyridoxamine Are Potent Scavengers of 1,2-Dicarbonyls. Chemical Research in Toxicology 2015, 28 (7) , 1469-1475. https://doi.org/10.1021/acs.chemrestox.5b00148
    19. Yuhui Gong, Jean-Christophe Leroux, and Marc A. Gauthier . Releasable Conjugation of Polymers to Proteins. Bioconjugate Chemistry 2015, 26 (7) , 1172-1181. https://doi.org/10.1021/bc500611k
    20. Katya V. Petrova, Amy D. Millsap, Donald F. Stec, and Carmelo J. Rizzo . Characterization of the Deoxyguanosine–Lysine Cross-Link of Methylglyoxal. Chemical Research in Toxicology 2014, 27 (6) , 1019-1029. https://doi.org/10.1021/tx500068v
    21. Alice W. Du and Martina H. Stenzel . Drug Carriers for the Delivery of Therapeutic Peptides. Biomacromolecules 2014, 15 (4) , 1097-1114. https://doi.org/10.1021/bm500169p
    22. George Badescu, Penny Bryant, Julia Swierkosz, Farzad Khayrzad, Estera Pawlisz, Monika Farys, Yuehua Cong, Maurizio Muroni, Norbert Rumpf, Steve Brocchini, and Antony Godwin . A New Reagent for Stable Thiol-Specific Conjugation. Bioconjugate Chemistry 2014, 25 (3) , 460-469. https://doi.org/10.1021/bc400245v
    23. Chris Chumsae, Kathreen Gifford, Wei Lian, Hongcheng Liu, Czeslaw H. Radziejewski, and Zhaohui Sunny Zhou . Arginine Modifications by Methylglyoxal: Discovery in a Recombinant Monoclonal Antibody and Contribution to Acidic Species. Analytical Chemistry 2013, 85 (23) , 11401-11409. https://doi.org/10.1021/ac402384y
    24. Vindya K. Thilakarathne, Victoria A. Briand, Rajeswari M. Kasi, and Challa V. Kumar . Tuning Hemoglobin–Poly(acrylic acid) Interactions by Controlled Chemical Modification with Triethylenetetramine. The Journal of Physical Chemistry B 2012, 116 (42) , 12783-12792. https://doi.org/10.1021/jp307206h
    25. Nick Uhlig and Chao-Jun Li . Site-Specific Modification of Amino Acids and Peptides by Aldehyde–Alkyne–Amine Coupling under Ambient Aqueous Conditions. Organic Letters 2012, 14 (12) , 3000-3003. https://doi.org/10.1021/ol301017q
    26. Yuehua Cong, Estera Pawlisz, Penny Bryant, Sibu Balan, Emmanuelle Laurine, Rita Tommasi, Ruchi Singh, Sitara Dubey, Karolina Peciak, Matthew Bird, Amrita Sivasankar, Julia Swierkosz, Maurizio Muroni, Sibylle Heidelberger, Monika Farys, Farzad Khayrzad, Jeff Edwards, George Badescu, Ian Hodgson, Charles Heise, Satyanarayana Somavarapu, John Liddell, Keith Powell, Mire Zloh, Ji-won Choi, Antony Godwin, and Steve Brocchini . Site-Specific PEGylation at Histidine Tags. Bioconjugate Chemistry 2012, 23 (2) , 248-263. https://doi.org/10.1021/bc200530x
    27. Xiaojiao Shang, Deqiang Yu, and Raja Ghosh . Integrated Solid-Phase Synthesis and Purification of PEGylated Protein. Biomacromolecules 2011, 12 (7) , 2772-2779. https://doi.org/10.1021/bm200541r
    28. Peng Chen, Lu Wang, Xuan Wang, Jie Sun, Fengfei Miao, Zuqin Wang, Fang Yang, Menghua Xiang, Mingxi Gu, Shengrong Li, Jianzhong Zhang, Peiyan Yuan, Xiaoyun Lu, Zhi‐Min Zhang, Liqian Gao, Shao Q. Yao. Cell‐Active, Arginine‐Targeting Irreversible Covalent Inhibitors for Non‐Kinases and Kinases. Angewandte Chemie 2025, 56 https://doi.org/10.1002/ange.202422372
    29. Peng Chen, Lu Wang, Xuan Wang, Jie Sun, Fengfei Miao, Zuqin Wang, Fang Yang, Menghua Xiang, Mingxi Gu, Shengrong Li, Jianzhong Zhang, Peiyan Yuan, Xiaoyun Lu, Zhi‐Min Zhang, Liqian Gao, Shao Q. Yao. Cell‐Active, Arginine‐Targeting Irreversible Covalent Inhibitors for Non‐Kinases and Kinases. Angewandte Chemie International Edition 2025, 56 https://doi.org/10.1002/anie.202422372
    30. Preeti Chauhan, Ragendu V., Mohan Kumar, Rajib Molla, Surya Dev Mishra, Sneha Basa, Vishal Rai. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chemical Society Reviews 2024, 53 (1) , 380-449. https://doi.org/10.1039/D3CS00715D
    31. Di Zhang, Shangle Zhang, Yuqing Gao, Xinyu Zhang, Xuanyan He, Zhongguo Jiang, Jiaheng Liu, Hui Zhao. A highly efficient and specific “grafting to” route for stable protein-polymer conjugates based on Spy chemistry. Polymer 2023, 275 , 125916. https://doi.org/10.1016/j.polymer.2023.125916
    32. Ruiqi Zhao, Xin Fang, Zhibiao Mai, Xi Chen, Jing Mo, Yingying Lin, Rui Xiao, Xichen Bao, Xiaocheng Weng, Xiang Zhou. Transcriptome-wide identification of single-stranded RNA binding proteins. Chemical Science 2023, 14 (15) , 4038-4047. https://doi.org/10.1039/D3SC00957B
    33. Deepa Hada, Sara Simorgh, Girdhar Pal Singh, Narendra Singh Chundawat, Narendra Pal Singh Chauhan. Polymer–protein conjugates as therapeutic. 2023, 263-282. https://doi.org/10.1016/B978-0-12-823797-7.00009-5
    34. Nanna L. Kjærsgaard, Thorbjørn B. Nielsen, Kurt V. Gothelf. Chemical Conjugation to Less Targeted Proteinogenic Amino Acids. ChemBioChem 2022, 23 (19) https://doi.org/10.1002/cbic.202200245
    35. Niklas Hauptstein, Paria Pouyan, Kevin Wittwer, Gizem Cinar, Oliver Scherf-Clavel, Martina Raschig, Kai Licha, Tessa Lühmann, Ivo Nischang, Ulrich S. Schubert, Christian K. Pfaller, Rainer Haag, Lorenz Meinel. Polymer selection impacts the pharmaceutical profile of site-specifically conjugated Interferon-α2a. Journal of Controlled Release 2022, 348 , 881-892. https://doi.org/10.1016/j.jconrel.2022.05.060
    36. Aurélie Rondon, Sohaib Mahri, Francisco Morales‐Yanez, Mireille Dumoulin, Rita Vanbever. Protein Engineering Strategies for Improved Pharmacokinetics. Advanced Functional Materials 2021, 31 (44) https://doi.org/10.1002/adfm.202101633
    37. Bo Li, Hong Tang, Aneta Turlik, Zhao Wan, Xiao‐Song Xue, Li Li, Xiaoxiao Yang, Jiuyuan Li, Gang He, Kendall N. Houk, Gong Chen. Cooperative Stapling of Native Peptides at Lysine and Tyrosine or Arginine with Formaldehyde. Angewandte Chemie 2021, 133 (12) , 6720-6726. https://doi.org/10.1002/ange.202016267
    38. Bo Li, Hong Tang, Aneta Turlik, Zhao Wan, Xiao‐Song Xue, Li Li, Xiaoxiao Yang, Jiuyuan Li, Gang He, Kendall N. Houk, Gong Chen. Cooperative Stapling of Native Peptides at Lysine and Tyrosine or Arginine with Formaldehyde. Angewandte Chemie International Edition 2021, 60 (12) , 6646-6652. https://doi.org/10.1002/anie.202016267
    39. Kevin M. Burridge, Richard C. Page, Dominik Konkolewicz. Bioconjugates – From a specialized past to a diverse future. Polymer 2020, 211 , 123062. https://doi.org/10.1016/j.polymer.2020.123062
    40. Neelesh C. Reddy, Mohan Kumar, Rajib Molla, Vishal Rai. Chemical methods for modification of proteins. Organic & Biomolecular Chemistry 2020, 18 (25) , 4669-4691. https://doi.org/10.1039/D0OB00857E
    41. Christina Picken, Sahar Awwad, Mire Zloh, Hanieh Khalili, Steve Brocchini. Protein modification by bis-alkylation. 2020, 351-385. https://doi.org/10.1016/B978-0-444-64081-9.00016-4
    42. Alexander X. Jones, Yong Cao, Yu-Liang Tang, Jian-Hua Wang, Yue-He Ding, Hui Tan, Zhen-Lin Chen, Run-Qian Fang, Jili Yin, Rong-Chang Chen, Xing Zhu, Yang She, Niu Huang, Feng Shao, Keqiong Ye, Rui-Xiang Sun, Si-Min He, Xiaoguang Lei, Meng-Qiu Dong. Improving mass spectrometry analysis of protein structures with arginine-selective chemical cross-linkers. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-11917-z
    43. Iriny Ekladious, Yolonda L. Colson, Mark W. Grinstaff. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nature Reviews Drug Discovery 2019, 18 (4) , 273-294. https://doi.org/10.1038/s41573-018-0005-0
    44. Thaiesha A. Wright, Richard C. Page, Dominik Konkolewicz. Polymer conjugation of proteins as a synthetic post-translational modification to impact their stability and activity. Polymer Chemistry 2019, 10 (4) , 434-454. https://doi.org/10.1039/C8PY01399C
    45. Karolina Peciak, Emmanuelle Laurine, Rita Tommasi, Ji-won Choi, Steve Brocchini. Site-selective protein conjugation at histidine. Chemical Science 2019, 10 (2) , 427-439. https://doi.org/10.1039/C8SC03355B
    46. Deepa Hada, Kavita Rathore, Narendra Pal Singh Chauhan, Kanika Sharma, Masoud Mozafari. Functional protein to polymer surfaces: an attachment. 2019, 191-210. https://doi.org/10.1016/B978-0-12-816349-8.00010-2
    47. Igor Dovgan, Stéphane Erb, Steve Hessmann, Sylvain Ursuegui, Chloé Michel, Christian Muller, Guilhem Chaubet, Sarah Cianférani, Alain Wagner. Arginine-selective bioconjugation with 4-azidophenyl glyoxal: application to the single and dual functionalisation of native antibodies. Organic & Biomolecular Chemistry 2018, 16 (8) , 1305-1311. https://doi.org/10.1039/C7OB02844J
    48. Wing Ho So, Yu Zhang, Wei Kang, Clarence T.T. Wong, Hongyan Sun, Jiang Xia. Site-selective covalent reactions on proteinogenic amino acids. Current Opinion in Biotechnology 2017, 48 , 220-227. https://doi.org/10.1016/j.copbio.2017.06.003
    49. Ramya Raman, Miranda A. Raper, Erik Hahn, Kate F. Schilke. Enhanced capture of bacteria and endotoxin by antimicrobial WLBU2 peptide tethered on polyethylene oxide spacers. Biointerphases 2017, 12 (5) https://doi.org/10.1116/1.4997049
    50. Y. Gong, D. Andina, S. Nahar, J.-C. Leroux, M. A. Gauthier. Releasable and traceless PEGylation of arginine-rich antimicrobial peptides. Chemical Science 2017, 8 (5) , 4082-4086. https://doi.org/10.1039/C7SC00770A
    51. Maheshika S.K. Wanigasekara, Saiful M. Chowdhury. Evaluation of chemical labeling methods for identifying functional arginine residues of proteins by mass spectrometry. Analytica Chimica Acta 2016, 935 , 197-206. https://doi.org/10.1016/j.aca.2016.06.051
    52. Darren A. Thompson, Raymond Ng, Philip E. Dawson. Arginine selective reagents for ligation to peptides and proteins. Journal of Peptide Science 2016, 22 (5) , 311-319. https://doi.org/10.1002/psc.2867
    53. Morten Borre Hansen, František Hubálek, Troels Skrydstrup, Thomas Hoeg‐Jensen. Chemo‐ and Regioselective Ethynylation of Tryptophan‐Containing Peptides and Proteins. Chemistry – A European Journal 2016, 22 (5) , 1572-1576. https://doi.org/10.1002/chem.201504462
    54. Anne C. Conibear, Karine Farbiarz, Rupert L. Mayer, Maria Matveenko, Hanspeter Kählig, Christian F. W. Becker. Arginine side-chain modification that occurs during copper-catalysed azide–alkyne click reactions resembles an advanced glycation end product. Organic & Biomolecular Chemistry 2016, 14 (26) , 6205-6211. https://doi.org/10.1039/C6OB00932H
    55. Marianela González, Victoria A. Vaillard, Santiago E. Vaillard. Reagents for the Covalent Attachment of mPEG to Peptides and Proteins. 2015, 51-99. https://doi.org/10.1002/9781119041375.ch3
    56. Nadine Hammer, Ferdinand P. Brandl, Susanne Kirchhof, Viktoria Messmann, Achim M. Goepferich. Protein Compatibility of Selected Cross‐linking Reactions for Hydrogels. Macromolecular Bioscience 2015, 15 (3) , 405-413. https://doi.org/10.1002/mabi.201400379
    57. Oleksandr Koniev, Alain Wagner. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 2015, 44 (15) , 5495-5551. https://doi.org/10.1039/C5CS00048C
    58. Claire Ginn, Hanieh Khalili, Rebecca Lever, Steve Brocchini. Pegylation and Its Impact on the Design of New Protein-Based Medicines. Future Medicinal Chemistry 2014, 6 (16) , 1829-1846. https://doi.org/10.4155/fmc.14.125
    59. Craig S. McKay, M.G. Finn. Click Chemistry in Complex Mixtures: Bioorthogonal Bioconjugation. Chemistry & Biology 2014, 21 (9) , 1075-1101. https://doi.org/10.1016/j.chembiol.2014.09.002
    60. Monika Farys, Claire L. Ginn, George O. Badescu, Karolina Peciak, Estera M. Pawlisz, Hanieh Khalili, Steve J. Brocchini. Chemical and Genetic Modification. 2013, 1-52. https://doi.org/10.1002/9780470571224.pse508
    61. Maharajan Sivasubramanian, Thavasyappan Thambi, Jae Hyung Park. Mineralized cyclodextrin nanoparticles for sustained protein delivery. Carbohydrate Polymers 2013, 97 (2) , 643-649. https://doi.org/10.1016/j.carbpol.2013.05.018
    62. Björn Jung, Patrick Theato. Chemical Strategies for the Synthesis of Protein–Polymer Conjugates. 2012, 37-70. https://doi.org/10.1007/12_2012_169
    63. Vamsi K. Mudhivarthi, Kyle S. Cole, Marc J. Novak, Westley Kipphut, Inoka K. Deshapriya, Yuxiang Zhou, Rajeswari M. Kasi, Challa V. Kumar. Ultra-stable hemoglobin–poly(acrylic acid) conjugates. Journal of Materials Chemistry 2012, 22 (38) , 20423. https://doi.org/10.1039/c2jm34434c
    64. Marc A. Gauthier, Maxime Ayer, Justyna Kowal, Frederik R. Wurm, Harm-Anton Klok. Arginine-specific protein modification using α-oxo-aldehyde functional polymers prepared by atom transfer radical polymerization. Polymer Chemistry 2011, 2 (7) , 1490. https://doi.org/10.1039/c0py00422g

    Biomacromolecules

    Cite this: Biomacromolecules 2011, 12, 2, 482–493
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bm101272g
    Published December 23, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    3540

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.