ACS Publications. Most Trusted. Most Cited. Most Read
Characterization of the Self-Assembly of meso-Tetra(4-sulfonatophenyl)porphyrin (H2TPPS4–) in Aqueous Solutions
My Activity
    Article

    Characterization of the Self-Assembly of meso-Tetra(4-sulfonatophenyl)porphyrin (H2TPPS4–) in Aqueous Solutions
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry and Macromolecular Studies Group, Louisiana State University, Baton Rouge, Louisiana 70803, United States
    *Tel: 225-578-5729. Fax: 225-578-3458. E-mail: [email protected]
    Other Access OptionsSupporting Information (1)

    Biomacromolecules

    Cite this: Biomacromolecules 2012, 13, 1, 60–72
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bm201078d
    Published October 13, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The aggregation of meso-tetra(4-sulfonatophenyl)porphyrin (H2TPPS4–) in phosphate solutions was investigated as a function of pH, concentration, time, ionic strength, and solution preparation (either from dilution of a freshly prepared 2 mM stock or by direct preparation of μM solution concentrations) using a combination of complementary analytical techniques. UV–vis and fluorescence spectroscopy indicated the formation of staggered, side-by-side (J-type) assemblies. Their size and self-associative behavior were determined using analytical ultracentrifugation and small-angle X-ray scattering. Our results indicate that in neutral and basic solutions of H2TPPS4–, porphyrin dimers and trimers are formed at micromolar concentrations and in the absence of NaCl to screen any ionic interactions. At these low concentrations and pH 4, the protonated H4TPPS2– species self-assembles, leading to the formation of particularly stable aggregates bearing 25 ± 3 macrocycles. At higher concentrations, these structures further organize or reorganize into tubular, rod-like shapes of various lengths, which were imaged by cryogenic and freeze-fracture transmission electron microscopy. Micron-scale fibrillar aggregates were obtained even at micromolar concentrations at pH 4 when prepared from dilution of a 2 mM stock solution, upon addition of NaCl, or both.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Video showing various perspectives on DAMMIF structures derived from SAXS data acquired 24 h and 2 weeks after solution preparation. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 79 publications.

    1. Xiaomin Fu, Zhongyuan Cai, Shengxiang Fu, Huawei Cai, Mufeng Li, Haojie Gu, Rongrong Jin, Chunchao Xia, Su Lui, Bin Song, Qiyong Gong, Hua Ai. Porphyrin-Based Self-Assembled Nanoparticles for PET/MR Imaging of Sentinel Lymph Node Metastasis. ACS Applied Materials & Interfaces 2024, 16 (21) , 27139-27150. https://doi.org/10.1021/acsami.4c03611
    2. Angelo Nicosia, Fabiana Vento, Cristina Satriano, Valentina Villari, Norberto Micali, Lorena Maria Cucci, Vanessa Sanfilippo, Placido Giuseppe Mineo. Light-Triggered Polymeric Nanobombs for Targeted Cell Death. ACS Applied Nano Materials 2020, 3 (2) , 1950-1960. https://doi.org/10.1021/acsanm.9b02552
    3. Zhiliang Li, Charles J. Zeman, IV, Silvano R. Valandro, Jose Paolo O. Bantang, Kirk S. Schanze. Adenosine Triphosphate Templated Self-Assembly of Cationic Porphyrin into Chiral Double Superhelices and Enzyme-Mediated Disassembly. Journal of the American Chemical Society 2019, 141 (32) , 12610-12618. https://doi.org/10.1021/jacs.9b04133
    4. Mohammad Issawi, Stephanie Leroy-Lhez, Vincent Sol, Catherine Riou. Crossing the First Threshold: New Insights into the Influence of the Chemical Structure of Anionic Porphyrins on Plant Cell Wall Interactions and Photodynamic Cell Death Induction. Biochemistry 2019, 58 (16) , 2188-2197. https://doi.org/10.1021/acs.biochem.9b00107
    5. Ursula Mazur, K. W. Hipps. A Systematic Approach toward Designing Functional Ionic Porphyrin Crystalline Materials. The Journal of Physical Chemistry C 2018, 122 (40) , 22803-22820. https://doi.org/10.1021/acs.jpcc.8b03091
    6. Buddhini C. N. Vithanage, Joanna Xiuzhu Xu, Dongmao Zhang. Optical Properties and Kinetics: New Insights to the Porphyrin Assembly and Disassembly by Polarized Resonance Synchronous Spectroscopy. The Journal of Physical Chemistry B 2018, 122 (35) , 8429-8438. https://doi.org/10.1021/acs.jpcb.8b05965
    7. Claudia Díaz, José Catalán-Toledo, Mario E. Flores, Sandra L. Orellana, Héctor Pesenti, Judit Lisoni, and Ignacio Moreno-Villoslada . Dispersion of the Photosensitizer 5,10,15,20-Tetrakis(4-Sulfonatophenyl)-porphyrin by the Amphiphilic Polymer Poly(vinylpirrolidone) in Highly Porous Solid Materials Designed for Photodynamic Therapy. The Journal of Physical Chemistry B 2017, 121 (30) , 7373-7381. https://doi.org/10.1021/acs.jpcb.7b04727
    8. Yan Wan, Anna Stradomska, Jasper Knoester, and Libai Huang . Direct Imaging of Exciton Transport in Tubular Porphyrin Aggregates by Ultrafast Microscopy. Journal of the American Chemical Society 2017, 139 (21) , 7287-7293. https://doi.org/10.1021/jacs.7b01550
    9. Anja Krieger, Juan Pablo Fuenzalida Werner, Giacomo Mariani, and Franziska Gröhn . Functional Supramolecular Porphyrin–Dendrimer Assemblies for Light Harvesting and Photocatalysis. Macromolecules 2017, 50 (9) , 3464-3475. https://doi.org/10.1021/acs.macromol.6b02435
    10. Katrina Brendle, Ulrike Schwarz, Patrick Jäger, Patrick Weis, and Manfred Kappes . Structures of Metalloporphyrin–Oligomer Multianions: Cofacial versus Coplanar Motifs as Resolved by Ion Mobility Spectrometry. The Journal of Physical Chemistry A 2016, 120 (43) , 8716-8724. https://doi.org/10.1021/acs.jpca.6b08062
    11. Brady McMicken, Robert J. Thomas, and Lorenzo Brancaleon . Partial Unfolding of Tubulin Heterodimers Induced by Two-Photon Excitation of Bound meso-Tetrakis(sulfonatophenyl)porphyrin. The Journal of Physical Chemistry B 2016, 120 (15) , 3653-3665. https://doi.org/10.1021/acs.jpcb.6b02055
    12. Alexander F. Stewart, Brandon P. Gagnon, and Gilbert C. Walker . Forming End-to-End Oligomers of Gold Nanorods Using Porphyrins and Phthalocyanines. Langmuir 2015, 31 (24) , 6902-6908. https://doi.org/10.1021/acs.langmuir.5b01323
    13. Yan Wan, Anna Stradomska, Sarah Fong, Zhi Guo, Richard D. Schaller, Gary P. Wiederrecht, Jasper Knoester, and Libai Huang . Exciton Level Structure and Dynamics in Tubular Porphyrin Aggregates. The Journal of Physical Chemistry C 2014, 118 (43) , 24854-24865. https://doi.org/10.1021/jp507435a
    14. Limin Yang, Lei Jiang, Weijing Yao, Junling Liu, and Juan Han . Real-Time Analysis of Porphyrin J-Aggregation on a Plant-Esterase-Functionalized Surface Using Quartz Crystal Microbalance with Dissipation Monitoring. Langmuir 2014, 30 (33) , 9962-9971. https://doi.org/10.1021/la501986e
    15. Ang Li, Lizhi Zhao, Jing Hao, Rujiang Ma, Yingli An, and Linqi Shi . Aggregation Behavior of the Template-Removed 5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrin Chiral Array Directed by Poly(ethylene glycol)-block-poly(l-lysine). Langmuir 2014, 30 (16) , 4797-4805. https://doi.org/10.1021/la500252c
    16. Ulrike Schwarz, Matthias Vonderach, Markus K. Armbruster, Karin Fink, Manfred M. Kappes, and Patrick Weis . Cu(II)- and Mn(III)-Porphyrin-Derived Oligomeric Multianions: Structures and Photoelectron Spectra. The Journal of Physical Chemistry A 2014, 118 (2) , 369-379. https://doi.org/10.1021/jp411149e
    17. Marie Hutin, Johannes K. Sprafke, Barbara Odell, Harry L. Anderson, and Tim D. W. Claridge . A Discrete Three-Layer Stack Aggregate of a Linear Porphyrin Tetramer: Solution-Phase Structure Elucidation by NMR and X-ray Scattering. Journal of the American Chemical Society 2013, 135 (34) , 12798-12807. https://doi.org/10.1021/ja406015r
    18. Kargal L. Gurunatha and Erik Dujardin . Tuning the Optical Coupling between Molecular Dyes and Metal Nanoparticles by the Templated Silica Mineralization of J-Aggregates. The Journal of Physical Chemistry C 2013, 117 (7) , 3489-3496. https://doi.org/10.1021/jp311911f
    19. Ilaria Occhiuto, Giovanna De Luca, Mariachiara Trapani, Luigi Monsù Scolaro, and Robert F. Pasternack . Peripheral Stepwise Degradation of a Porphyrin J-Aggregate. Inorganic Chemistry 2012, 51 (19) , 10074-10076. https://doi.org/10.1021/ic301570p
    20. Kun Zheng, Tianfeng Ma, Yanyan Jia, Huan Wang, Huye Li. Colorimetric and fluorescence dual-signal sensing of L-Arginine based on TSPP-TA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2025, 329 , 125505. https://doi.org/10.1016/j.saa.2024.125505
    21. T. L. C. Jansen, L. M. Günther, J. Knoester, J. Köhler. Electronically excited states in cylindrical molecular aggregates: Exciton delocalization, dynamics, and optical response. Chemical Physics Reviews 2024, 5 (4) https://doi.org/10.1063/5.0225327
    22. Lin Shi, Wuyang Gao, Yanyan Jia, Shenzheng Cui, Tianfeng Ma, Xiaohua Xu, Huan Wang, Yongchang Lu. Fluorescence and colorimetric rapid dual-signal “on–off-on” switching detection of ascorbic acid based on TSPP/DCIP. Microchimica Acta 2024, 191 (11) https://doi.org/10.1007/s00604-024-06716-3
    23. Zhu Shu, Xin Lei, Yeye Ai, Ke Shao, Jianliang Shen, Zhegang Huang, Yongguang Li. ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters 2024, 35 (11) , 109585. https://doi.org/10.1016/j.cclet.2024.109585
    24. Wencheng Mu, Jing Li, Siying Wang, Tianfeng Ma, Lin Shi, Xiaohua Xu, Yongchang Lu, Huan Wang. A signal‐switchable fluorescent probe for detection of HPO 4 2− based on 5,10,15,20‐(4‐sulphonatophenyl)porphyrin (TPPS 4 ). Luminescence 2024, 39 (2) https://doi.org/10.1002/bio.4649
    25. Xiaoyu Li, Chuanyin Tang, Li Zhang, Mingyang Song, Yujie Zhang, Shengjie Wang. Porphyrin-Based Covalent Organic Frameworks: Design, Synthesis, Photoelectric Conversion Mechanism, and Applications. Biomimetics 2023, 8 (2) , 171. https://doi.org/10.3390/biomimetics8020171
    26. Zhiliang Li, Charles J. Zeman, Silvano Valandro, Jose Paolo O. Bantang, Kirk S. Schanze. Phosphates Induced H-Type or J-Type Aggregation of Cationic Porphyrins with Varied Side Chains. Molecules 2023, 28 (10) , 4115. https://doi.org/10.3390/molecules28104115
    27. Changling Liu, Yirong Wang, Siyu Wang, Pengcheng Xu, Renning Liu, Dandan Han, Yen Wei. A Star-Shaped Copolymer with Tetra-Hydroxy-Phenylporphyrin Core and Four PNIPAM-b-PMAGA Arms for Targeted Photodynamic Therapy. Polymers 2023, 15 (3) , 509. https://doi.org/10.3390/polym15030509
    28. Maria Karayianni, Dimitra Koufi, Stergios Pispas. Development of Double Hydrophilic Block Copolymer/Porphyrin Polyion Complex Micelles towards Photofunctional Nanoparticles. Polymers 2022, 14 (23) , 5186. https://doi.org/10.3390/polym14235186
    29. Chisako Kanzaki, Hiroshi Yoneda, Shota Nomura, Takato Maeda, Munenori Numata. Ionic supramolecular polymerization of water-soluble porphyrins: balancing ionic attraction and steric repulsion to govern stacking. RSC Advances 2022, 12 (47) , 30670-30681. https://doi.org/10.1039/D2RA05542B
    30. Yanhui Guo, Shuheng Huang, Han Sun, Zhe Wang, Yutong Shao, Lukun Li, Zhiliang Li, Fengling Song. Tuning the aqueous self-assembly of porphyrins by varying the number of cationic side chains. Journal of Materials Chemistry B 2022, 10 (31) , 5968-5975. https://doi.org/10.1039/D2TB00720G
    31. Ruslan R. Kashapov, Yuliya S. Razuvayeva, Svetlana S. Lukashenko, Syumbelya K. Amerhanova, Anna P. Lyubina, Alexandra D. Voloshina, Victor V. Syakaev, Vadim V. Salnikov, Lucia Y. Zakharova. Supramolecular Self-Assembly of Porphyrin and Metallosurfactant as a Drug Nanocontainer Design. Nanomaterials 2022, 12 (12) , 1986. https://doi.org/10.3390/nano12121986
    32. Fan-Lin Meng, Hai-Long Qian, Xiu-Ping Yan. Conjugation-regulating synthesis of high photosensitizing activity porphyrin-based covalent organic frameworks for photodynamic inactivation of bacteria. Talanta 2021, 233 , 122536. https://doi.org/10.1016/j.talanta.2021.122536
    33. Igor S. Antipin, Mikhail V. Alfimov, Vladimir V. Arslanov, Vladimir A. Burilov, Sergey Z. Vatsadze, Yan Z. Voloshin, Konstantin P. Volcho, Valery V. Gorbatchuk, Yulia G. Gorbunova, Sergey P. Gromov, Semyon V. Dudkin, Sergei Yu. Zaitsev, Lucia Ya. Zakharova, Marat A. Ziganshin, Anna V. Zolotukhina, Maria A. Kalinina, Eduard A. Karakhanov, Ruslan R. Kashapov, Oskar I. Koifman, Alexander I. Konovalov, Vladimir S. Korenev, Anton L. Maksimov, Nugzar Zh. Mamardashvili, Galina M. Mamardashvili, Alexander G. Martynov, Asiya R. Mustafina, Ramil I. Nugmanov, Alexander S. Ovsyannikov, Pavel L. Padnya, Andrei S. Potapov, Sofiya L. Selektor, Maxim N. Sokolov, Svetlana E. Solovieva, Ivan I. Stoikov, Pavel A. Stuzhin, Evgenii V. Suslov, Evgeny N. Ushakov, Vladimir P. Fedin, Svetlana V. Fedorenko, Olga A. Fedorova, Yury V. Fedorov, Sergei N. Chvalun, Aslan Yu. Tsivadze, Sergei N. Shtykov, Dmitriy N. Shurpik, Maxim A. Shcherbina, Luidmila S. Yakimova. Functional supramolecular systems: design and applications. Russian Chemical Reviews 2021, 90 (8) , 895-1107. https://doi.org/10.1070/RCR5011
    34. Fanyi Min, Peng Zhou, Zhandong Huang, Yali Qiao, Changhui Yu, Zhiyuan Qu, Xiaosong Shi, Zheng Li, Lang Jiang, Zhen Zhang, Xuehai Yan, Yanlin Song. A Bubble‐Assisted Approach for Patterning Nanoscale Molecular Aggregates. Angewandte Chemie 2021, 133 (30) , 16683-16689. https://doi.org/10.1002/ange.202103765
    35. Fanyi Min, Peng Zhou, Zhandong Huang, Yali Qiao, Changhui Yu, Zhiyuan Qu, Xiaosong Shi, Zheng Li, Lang Jiang, Zhen Zhang, Xuehai Yan, Yanlin Song. A Bubble‐Assisted Approach for Patterning Nanoscale Molecular Aggregates. Angewandte Chemie International Edition 2021, 60 (30) , 16547-16553. https://doi.org/10.1002/anie.202103765
    36. Roberto Zagami, Andrea Romeo, Maria Angela Castriciano, Luigi Monsù Scolaro. Ion-pairing effects by organic anions on the supramolecular assembling kinetics of sulfonated porphyrins. Journal of Molecular Liquids 2021, 332 , 115801. https://doi.org/10.1016/j.molliq.2021.115801
    37. Nuerguli Kari, Marco Zannotti, Gulgina Mamtmin, Rita Giovannetti, Babak Minofar, David Řeha, Patigu Maimaiti, Buayishamu Kutilike, Abliz Yimit. Substituent Effect on Porphyrin Film-Gas Interaction by Optical Waveguide: Spectrum Analysis and Molecular Dynamic Simulation. Materials 2020, 13 (24) , 5613. https://doi.org/10.3390/ma13245613
    38. Mariachiara Trapani, Antonino Mazzaglia, Anna Piperno, Annalaura Cordaro, Roberto Zagami, Maria Angela Castriciano, Andrea Romeo, Luigi Monsù Scolaro. Novel Nanohybrids Based on Supramolecular Assemblies of Meso-tetrakis-(4-sulfonatophenyl) Porphyrin J-aggregates and Amine-Functionalized Carbon Nanotubes. Nanomaterials 2020, 10 (4) , 669. https://doi.org/10.3390/nano10040669
    39. Fabrizio Caroleo, Sara Nardis, Greta Petrella, Martina Bischetti, Daniel O. Cicero, Damiano Genovese, Liviana Mummolo, Luca Prodi, Rosalba Randazzo, Alessandro D'Urso, Roberto Paolesse. 5,10,15‐Tris(4‐sulfonatophenyl)corrole Synthesis. European Journal of Organic Chemistry 2019, 2019 (38) , 6525-6533. https://doi.org/10.1002/ejoc.201901155
    40. Mariana Hamer, Rolando M. Caraballo, Peter J. Eaton, Craig Medforth. Nanoparticles as template for porphyrin nanostructure growth. Journal of Porphyrins and Phthalocyanines 2019, 23 (04n05) , 526-533. https://doi.org/10.1142/S1088424619500469
    41. Shengjie Wang, Dongxiu Zhang, Xiao Zhang, Daoyong Yu, Xiaofeng Jiang, Zhenyang Wang, Meiwen Cao, Yongqing Xia, Heyuan Liu. Short peptide-regulated aggregation of porphyrins for photoelectric conversion. Sustainable Energy & Fuels 2019, 3 (2) , 529-538. https://doi.org/10.1039/C8SE00523K
    42. Stéphanie Leroy-Lhez, Olivier Rezazgui, Mohammad Issawi, Mourad Elhabiri, Claude Alain Calliste, Catherine Riou. Why are the anionic porphyrins so efficient to induce plant cell death? A structure-activity relationship study to solve the puzzle. Journal of Photochemistry and Photobiology A: Chemistry 2019, 368 , 276-289. https://doi.org/10.1016/j.jphotochem.2018.09.050
    43. A.N. Konstantinova, V.S. Sokolov, I. Jiménez-Munguía, O.A. Finogenova, Yu.A. Ermakov, Yu.G. Gorbunova. Adsorption and photodynamic efficiency of meso-tetrakis(p-sulfonatophenyl)porphyrin on the surface of bilayer lipid membranes. Journal of Photochemistry and Photobiology B: Biology 2018, 189 , 74-80. https://doi.org/10.1016/j.jphotobiol.2018.10.001
    44. Bapi Dey, Sekhar Chakraborty, Santanu Chakraborty, Debajyoti Bhattacharjee, Inamuddin, Anish Khan, Syed Arshad Hussain. Electrical switching behaviour of a metalloporphyrin in Langmuir-Blodgett film. Organic Electronics 2018, 55 , 50-62. https://doi.org/10.1016/j.orgel.2017.12.038
    45. Saeed Zakavi, Samira Ebadi, Mohaddese Javanmard. Nanosized cationic and anionic manganese porphyrins as mesoporous catalysts for the oxidation of olefins: Nano versus bulk aggregates. Applied Organometallic Chemistry 2018, 32 (3) https://doi.org/10.1002/aoc.4175
    46. Mitu Saha, Soma Banik, S.A. Hussain, D. Bhattacharjee. Study of aggregation behavior of water insoluble metalloporphyrin (Zn) in LB film. Materials Today: Proceedings 2018, 5 (1) , 2246-2253. https://doi.org/10.1016/j.matpr.2017.09.226
    47. Bryan Borders, Morteza Adinehnia, Bhaskar Chilukuri, Michael Ruf, K. W. Hipps, Ursula Mazur. Tuning the optoelectronic characteristics of ionic organic crystalline assemblies. Journal of Materials Chemistry C 2018, 6 (15) , 4041-4056. https://doi.org/10.1039/C8TC00416A
    48. Bryan Borders, Morteza Adinehnia, Naomi Rosenkrantz, Marshall van Zijll, K. W. Hipps, Ursula Mazur. Photoconductive behavior of binary porphyrin crystalline assemblies. Journal of Porphyrins and Phthalocyanines 2017, 21 (09) , 569-580. https://doi.org/10.1142/S1088424617500638
    49. Roberto Zagami, Maria A. Castriciano, Andrea Romeo, Mariachiara Trapani, Rolando Pedicini, Luigi Monsù Scolaro. Tuning supramolecular chirality in nano and mesoscopic porphyrin J-aggregates. Dyes and Pigments 2017, 142 , 255-261. https://doi.org/10.1016/j.dyepig.2017.03.047
    50. Kai Liu, Chengqian Yuan, Qianli Zou, Zengchun Xie, Xuehai Yan. Self‐Assembled Zinc/Cystine‐Based Chloroplast Mimics Capable of Photoenzymatic Reactions for Sustainable Fuel Synthesis. Angewandte Chemie 2017, 129 (27) , 7984-7988. https://doi.org/10.1002/ange.201704678
    51. Kai Liu, Chengqian Yuan, Qianli Zou, Zengchun Xie, Xuehai Yan. Self‐Assembled Zinc/Cystine‐Based Chloroplast Mimics Capable of Photoenzymatic Reactions for Sustainable Fuel Synthesis. Angewandte Chemie International Edition 2017, 56 (27) , 7876-7880. https://doi.org/10.1002/anie.201704678
    52. Sarah A Engelberth, Nadine Hempel, Magnus Bergkvist. Cationic dendritic starch as a vehicle for photodynamic therapy and siRNA co-delivery. Journal of Photochemistry and Photobiology B: Biology 2017, 168 , 185-192. https://doi.org/10.1016/j.jphotobiol.2017.02.013
    53. Adrián Zurita, Anna Duran, Josep M. Ribó, Zoubir El-Hachemi, Joaquim Crusats. Hyperporphyrin effects extended into a J-aggregate supramolecular structure in water. RSC Advances 2017, 7 (6) , 3353-3357. https://doi.org/10.1039/C6RA27441B
    54. Shengjie Wang, Mei Li, Avinash J. Patil, Shiyong Sun, Liangfei Tian, Dongxiu Zhang, Meiwen Cao, Stephen Mann. Design and construction of artificial photoresponsive protocells capable of converting day light to chemical energy. Journal of Materials Chemistry A 2017, 5 (47) , 24612-24616. https://doi.org/10.1039/C7TA08999F
    55. SHYAMTANU CHATTORAJ, KANKAN BHATTACHARYYA. Spatial inhomogeneity in spectra and exciton dynamics in porphyrin micro-rods and micro-brushes: Confocal microscopy. Journal of Chemical Sciences 2016, 128 (11) , 1717-1724. https://doi.org/10.1007/s12039-016-1155-4
    56. A. Shil, C. Debnath, S. A. Hussain, D. Bhattacharjee. Formation of J-aggregates in Langmuir-Blodgett films: Effect of stearic acid and nano clay platelets. Molecular Crystals and Liquid Crystals 2016, 638 (1) , 44-59. https://doi.org/10.1080/15421406.2016.1221944
    57. Sabriye Aydinoglu, Tarita Biver, Stefania Figuccia, Tiziana Fiore, Sonia Montanaro, Claudia Pellerito. Studies on DNA interaction of organotin(IV) complexes of meso-tetra(4-sulfonatophenyl)porphine that show cellular activity. Journal of Inorganic Biochemistry 2016, 163 , 311-317. https://doi.org/10.1016/j.jinorgbio.2016.06.030
    58. Zoubir El‐Hachemi, Teodor Silviu Balaban, J. Lourdes Campos, Sergio Cespedes, Joaquim Crusats, Carlos Escudero, Christina S. Kamma‐Lorger, Joan Llorens, Marc Malfois, Geoffrey R. Mitchell, Ana P. Tojeira, Josep M. Ribó. Effect of Hydrodynamic Forces on meso ‐(4‐Sulfonatophenyl)‐Substituted Porphyrin J‐Aggregate Nanoparticles: Elasticity, Plasticity and Breaking. Chemistry – A European Journal 2016, 22 (28) , 9740-9749. https://doi.org/10.1002/chem.201600874
    59. Kai Liu, Yu Kang, Guanghui Ma, Helmuth Möhwald, Xuehai Yan. Molecular and mesoscale mechanism for hierarchical self-assembly of dipeptide and porphyrin light-harvesting system. Physical Chemistry Chemical Physics 2016, 18 (25) , 16738-16747. https://doi.org/10.1039/C6CP01358A
    60. Morteza Adinehnia, Bryan Borders, Michael Ruf, Bhaskar Chilukuri, K. W. Hipps, Ursula Mazur. Comprehensive structure–function correlation of photoactive ionic π-conjugated supermolecular assemblies: an experimental and computational study. Journal of Materials Chemistry C 2016, 4 (43) , 10223-10239. https://doi.org/10.1039/C6TC03957J
    61. Soma Banik, J. Bhattacharjee, S.A. Hussain, D. Bhattacharjee. Clay induced aggregation of a tetra-cationic metalloporphyrin in Layer by Layer self assembled film. Journal of Physics and Chemistry of Solids 2015, 87 , 128-135. https://doi.org/10.1016/j.jpcs.2015.08.008
    62. Artur Vashurin, Anna Filippova, Serafima Znoyko, Alena Voronina, Olga Lefedova, Ilya Kuzmin, Vladimir Maizlish, Oscar Koifman. A new water-soluble sulfonated cobalt(II) phthalocyanines: Synthesis, spectral, coordination and catalytic properties. Journal of Porphyrins and Phthalocyanines 2015, 19 (08) , 983-996. https://doi.org/10.1142/S1088424615500753
    63. J. Bhattacharjee, Soma Banik, S.A. Hussain, D. Bhattacharjee. A study on the interactions of cationic porphyrin with nano clay platelets in Layer-by-Layer (LbL) self assembled films. Chemical Physics Letters 2015, 633 , 82-88. https://doi.org/10.1016/j.cplett.2015.05.021
    64. A. A. Voronina, A. A. Filippova, A. S. Vashurin, S. G. Pukhovskaya, G. P. Shaposhnikov, O. A. Golubchikov. Self-association of sulfo derivatives of cobalt phthalocyaninates in the presence of 1,4-diazabicyclo[2.2.2]octane. Russian Journal of General Chemistry 2015, 85 (7) , 1713-1720. https://doi.org/10.1134/S1070363215070245
    65. Caitlin E. Miron, Anne Petitjean. Sugar Recognition: Designing Artificial Receptors for Applications in Biological Diagnostics and Imaging. ChemBioChem 2015, 16 (3) , 365-379. https://doi.org/10.1002/cbic.201402549
    66. Charles M. Renney, Gaku Fukuhara, Yoshihisa Inoue, Anthony P. Davis. Binding or aggregation? Hazards of interpretation in studies of molecular recognition by porphyrins in water. Chemical Communications 2015, 51 (46) , 9551-9554. https://doi.org/10.1039/C5CC02768C
    67. Zhao Feng, Wang Zhi‐Ming, Huang Ya‐Fei, Dai Xiao‐Hui, Ge Yan‐Ru, Pan Jian‐Ming, Yan Yong‐Sheng, Lin Sun. Synthesis, self‐assembly, and drug release behavior of star‐shaped poly(ε‐caprolactone)‐b‐poly(ethylene oxide) block copolymer with porphyrin core. Journal of Applied Polymer Science 2014, 131 (21) https://doi.org/10.1002/app.40996
    68. Viviana C.P. da Costa, Barrington J. Hwang, Spencer E. Eggen, Megan J. Wallace, Onofrio Annunziata. Formation and thermodynamic stability of (polymer+porphyrin) supramolecular structures in aqueous solutions. The Journal of Chemical Thermodynamics 2014, 75 , 119-127. https://doi.org/10.1016/j.jct.2014.02.025
    69. C. Riou, C. A. Calliste, A. Da Silva, D. Guillaumot, O. Rezazgui, V. Sol, S. Leroy-Lhez. Anionic porphyrin as a new powerful cell death inducer of Tobacco Bright Yellow-2 cells. Photochemical & Photobiological Sciences 2014, 13 (4) , 621-625. https://doi.org/10.1039/c3pp50315a
    70. Patrick Weis, Ulrike Schwarz, Frank Hennrich, Danny Wagner, Stefan Bräse, Manfred Kappes. Azaporphine guest–host complexes in solution and gas-phase: evidence for partially filled nanoprisms and exchange reactions. Phys. Chem. Chem. Phys. 2014, 16 (13) , 6225-6232. https://doi.org/10.1039/C3CP55486D
    71. Xiao-Hui Dai, Zhi-Ming Wang, Ya-fei Huang, Jian-Ming Pan, Yong-sheng Yan, Dong-Ming Liu, Lin Sun. Biomimetic star-shaped poly(ε-caprolactone)-b-glycopolymer block copolymers with porphyrin-core for targeted photodynamic therapy. RSC Adv. 2014, 4 (80) , 42486-42493. https://doi.org/10.1039/C4RA07402E
    72. Judith M. Short, John A. Berriman, Christian Kübel, Zoubir El‐Hachemi, Jean‐Valère Naubron, Teodor Silviu Balaban. Electron Cryo‐Microscopy of TPPS 4 ⋅2HCl Tubes Reveals a Helical Organisation Explaining the Origin of their Chirality. ChemPhysChem 2013, 14 (14) , 3209-3214. https://doi.org/10.1002/cphc.201300606
    73. Greta Varchi, Valentina Benfenati, Assunta Pistone, Marco Ballestri, Giovanna Sotgiu, Andrea Guerrini, Paolo Dambruoso, Andrea Liscio, Barbara Ventura. Core—shell poly-methylmethacrylate nanoparticles as effective carriers of electrostatically loaded anionic porphyrin. Photochemical & Photobiological Sciences 2013, 12 (5) , 760-769. https://doi.org/10.1039/c2pp25393c
    74. Ulrike Schwarz, Matthias Vonderach, Manfred Kappes, Rebecca Kelting, Katrina Brendle, Patrick Weis. Structural characterization of metalloporphyrin-oligomer multianions by mass spectrometry and ion mobility spectrometry—Observation of metastable species. International Journal of Mass Spectrometry 2013, 339-340 , 24-33. https://doi.org/10.1016/j.ijms.2013.02.007
    75. Gustavo A. M. Sáfar, Angelo Malachias, Rogério Magalhães-Paniago, Dayse C. S. Martins, Ynara M. Idemori. Unravelling the molecular structure and packing of a planar molecule by combining nuclear magnetic resonance and scanning tunneling microscopy. Physical Chemistry Chemical Physics 2013, 15 (47) , 20691. https://doi.org/10.1039/c3cp53542h
    76. Mian Hasnain Nawaz, Lei Xu, Feng Liu, Weian Zhang. Continuous fibrils from the self-assembly of monochelic polymeric porphyrin and PEGylated fullerene. RSC Advances 2013, 3 (24) , 9206. https://doi.org/10.1039/c3ra41812j
    77. Suzana M. Andrade, Perumal Raja, Vipin K. Saini, Ana S. Viana, Philippe Serp, Sílvia M. B. Costa. Polyelectrolyte‐Assisted Noncovalent Functionalization of Carbon Nanotubes with Ordered Self‐Assemblies of a Water‐Soluble Porphyrin. ChemPhysChem 2012, 13 (16) , 3622-3631. https://doi.org/10.1002/cphc.201200428
    78. Valentina Villari, Placido Mineo, Emilio Scamporrino, Norberto Micali. Amino acids recognition by water-soluble uncharged porphyrin tweezers: Spectroscopic evidences in high optical density solutions. Chemical Physics 2012, 402 , 118-123. https://doi.org/10.1016/j.chemphys.2012.04.018
    79. Valentina Villari, Placido Mineo, Emilio Scamporrino, Norberto Micali. Role of the hydrogen-bond in porphyrin J-aggregates. RSC Advances 2012, 2 (33) , 12989. https://doi.org/10.1039/c2ra22260d

    Biomacromolecules

    Cite this: Biomacromolecules 2012, 13, 1, 60–72
    Click to copy citationCitation copied!
    https://doi.org/10.1021/bm201078d
    Published October 13, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2801

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.