ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service.

Cite this: J. Chem. Doc. 1965, 5, 2, 107–113
Publication Date (Print):May 1, 1965
https://doi.org/10.1021/c160017a018
    ACS Legacy Archive

    Article Views

    4802

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 906 publications.

    1. Rebekah Duke, Ryan McCoy, Chad Risko, Julia R. S. Bursten. Promises and Perils of Big Data: Philosophical Constraints on Chemical Ontologies. Journal of the American Chemical Society 2024, Article ASAP.
    2. Emma Svensson, Pieter-Jan Hoedt, Sepp Hochreiter, Günter Klambauer. HyperPCM: Robust Task-Conditioned Modeling of Drug–Target Interactions. Journal of Chemical Information and Modeling 2024, 64 (7) , 2539-2553. https://doi.org/10.1021/acs.jcim.3c01417
    3. Xiangwen Wang, Derek Quinn, Thomas S. Moody, Meilan Huang. ALDELE: All-Purpose Deep Learning Toolkits for Predicting the Biocatalytic Activities of Enzymes. Journal of Chemical Information and Modeling 2024, Article ASAP.
    4. Elton Pan, Soonhyoung Kwon, Zach Jensen, Mingrou Xie, Rafael Gómez-Bombarelli, Manuel Moliner, Yuriy Román-Leshkov, Elsa Olivetti. ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters. ACS Central Science 2024, 10 (3) , 729-743. https://doi.org/10.1021/acscentsci.3c01615
    5. Derek P. Metcalf, Zachary L. Glick, Andrea Bortolato, Andy Jiang, Daniel L. Cheney, C. David Sherrill. Directional ΔG Neural Network (DrΔG-Net): A Modular Neural Network Approach to Binding Free Energy Prediction. Journal of Chemical Information and Modeling 2024, 64 (6) , 1907-1918. https://doi.org/10.1021/acs.jcim.3c02054
    6. Sebastian Schieferdecker, Florian Rottach, Esther Vock. In Silico Prediction of Oral Acute Rodent Toxicity Using Consensus Machine Learning. Journal of Chemical Information and Modeling 2024, Article ASAP.
    7. Miguel Gallegos, Bienfait Kabuyaya Isamura, Paul L. A. Popelier, Ángel Martín Pendás. An Unsupervised Machine Learning Approach for the Automatic Construction of Local Chemical Descriptors. Journal of Chemical Information and Modeling 2024, Article ASAP.
    8. Son Gyo Jung, Guwon Jung, Jacqueline M. Cole. Automatic Prediction of Peak Optical Absorption Wavelengths in Molecules Using Convolutional Neural Networks. Journal of Chemical Information and Modeling 2024, 64 (5) , 1486-1501. https://doi.org/10.1021/acs.jcim.3c01792
    9. Sepehr Dehghani-Ghahnaviyeh, Cihan Soylu, Pascal Furet, Camilo Velez-Vega. Dissecting the Interaction Fingerprints and Binding Affinity of BYL719 Analogs Targeting PI3Kα. The Journal of Physical Chemistry B 2024, 128 (8) , 1819-1829. https://doi.org/10.1021/acs.jpcb.3c06766
    10. Yanqiao Zhu, Dingshuo Chen, Yuanqi Du, Yingze Wang, Qiang Liu, Shu Wu. Molecular Contrastive Pretraining with Collaborative Featurizations. Journal of Chemical Information and Modeling 2024, 64 (4) , 1112-1122. https://doi.org/10.1021/acs.jcim.3c01468
    11. Benjamin Kaufman, Edward C. Williams, Carl Underkoffler, Ryan Pederson, Narbe Mardirossian, Ian Watson, John Parkhill. COATI: Multimodal Contrastive Pretraining for Representing and Traversing Chemical Space. Journal of Chemical Information and Modeling 2024, 64 (4) , 1145-1157. https://doi.org/10.1021/acs.jcim.3c01753
    12. Haripriyan Uthayakumar, Rahul Krishna K, Raj Jain, Rajnish Kumar, Tarak K. Patra. QRChEM: A Deep Learning Framework for Materials Property Prediction and Design Using QR Codes. ACS Engineering Au 2024, 4 (1) , 91-98. https://doi.org/10.1021/acsengineeringau.3c00055
    13. Zejun Huang, Shang Lou, Haoqiang Wang, Weihua Li, Guixia Liu, Yun Tang. AttentiveSkin: To Predict Skin Corrosion/Irritation Potentials of Chemicals via Explainable Machine Learning Methods. Chemical Research in Toxicology 2024, 37 (2) , 361-373. https://doi.org/10.1021/acs.chemrestox.3c00332
    14. Agneesh Pratim Das, Puniti Mathur, Subhash M. Agarwal. Machine Learning, Molecular Docking, and Dynamics-Based Computational Identification of Potential Inhibitors against Lung Cancer. ACS Omega 2024, 9 (4) , 4528-4539. https://doi.org/10.1021/acsomega.3c07338
    15. Jawad Chowdhury, Charles Fricke, Olajide Bamidele, Mubarak Bello, Wenqiang Yang, Andreas Heyden, Gabriel Terejanu. Invariant Molecular Representations for Heterogeneous Catalysis. Journal of Chemical Information and Modeling 2024, 64 (2) , 327-339. https://doi.org/10.1021/acs.jcim.3c00594
    16. Varvara Voinarovska, Mikhail Kabeshov, Dmytro Dudenko, Samuel Genheden, Igor V. Tetko. When Yield Prediction Does Not Yield Prediction: An Overview of the Current Challenges. Journal of Chemical Information and Modeling 2024, 64 (1) , 42-56. https://doi.org/10.1021/acs.jcim.3c01524
    17. Esther Heid, Kevin P. Greenman, Yunsie Chung, Shih-Cheng Li, David E. Graff, Florence H. Vermeire, Haoyang Wu, William H. Green, Charles J. McGill. Chemprop: A Machine Learning Package for Chemical Property Prediction. Journal of Chemical Information and Modeling 2024, 64 (1) , 9-17. https://doi.org/10.1021/acs.jcim.3c01250
    18. Shanmuga Priya Baskaran, Ajaya Kumar Sahoo, Nikhil Chivukula, Kishan Kumar, Areejit Samal. Cheminformatics Analysis of the Multitarget Structure–Activity Landscape of Environmental Chemicals Binding to Human Endocrine Receptors. ACS Omega 2023, 8 (51) , 49383-49395. https://doi.org/10.1021/acsomega.3c07920
    19. Chen-Hsuan Huang, Shiang-Tai Lin. MARS Plus: An Improved Molecular Design Tool for Complex Compounds Involving Ionic, Stereo, and Cis–Trans Isomeric Structures. Journal of Chemical Information and Modeling 2023, 63 (24) , 7711-7728. https://doi.org/10.1021/acs.jcim.3c01745
    20. Shu-Sen Chen, Zack Meyer, Brendan Jensen, Alex Kraus, Allison Lambert, Daniel H. Ess. ReaLigands: A Ligand Library Cultivated from Experiment and Intended for Molecular Computational Catalyst Design. Journal of Chemical Information and Modeling 2023, 63 (23) , 7412-7422. https://doi.org/10.1021/acs.jcim.3c01310
    21. Mehdi Paykan Heyrati, Zahra Ghorbanali, Mohammad Akbari, Ghasem Pishgahi, Fatemeh Zare-Mirakabad. BioAct-Het: A Heterogeneous Siamese Neural Network for Bioactivity Prediction Using Novel Bioactivity Representation. ACS Omega 2023, 8 (47) , 44757-44772. https://doi.org/10.1021/acsomega.3c05778
    22. Tanja Stiller, Daniel Merk. Exploring Fatty Acid Mimetics as NR4A Ligands. Journal of Medicinal Chemistry 2023, 66 (22) , 15362-15369. https://doi.org/10.1021/acs.jmedchem.3c01467
    23. A. Nolan Wilson, Peter C. St John, Daniela H. Marin, Caroline B. Hoyt, Erik G. Rognerud, Mark R. Nimlos, Robin M. Cywar, Nicholas A. Rorrer, Kevin M. Shebek, Linda J. Broadbelt, Gregg T. Beckham, Michael F. Crowley. PolyID: Artificial Intelligence for Discovering Performance-Advantaged and Sustainable Polymers. Macromolecules 2023, 56 (21) , 8547-8557. https://doi.org/10.1021/acs.macromol.3c00994
    24. Kei Terayama, Yamato Osaki, Takehiro Fujita, Ryo Tamura, Masanobu Naito, Koji Tsuda, Toru Matsui, Masato Sumita. Koopmans’ Theorem-Compliant Long-Range Corrected (KTLC) Density Functional Mediated by Black-Box Optimization and Data-Driven Prediction for Organic Molecules. Journal of Chemical Theory and Computation 2023, 19 (19) , 6770-6781. https://doi.org/10.1021/acs.jctc.3c00764
    25. Myeonghun Lee, Kyoungmin Min. AmorProt: Amino Acid Molecular Fingerprints Repurposing-Based Protein Fingerprint. Biochemistry 2023, 62 (18) , 2700-2709. https://doi.org/10.1021/acs.biochem.3c00253
    26. Thomas Seidel, Christian Permann, Oliver Wieder, Stefan M. Kohlbacher, Thierry Langer. High-Quality Conformer Generation with CONFORGE: Algorithm and Performance Assessment. Journal of Chemical Information and Modeling 2023, 63 (17) , 5549-5570. https://doi.org/10.1021/acs.jcim.3c00563
    27. Chris Zhang, Mary Pitman, Anjali Dixit, Sumudu Leelananda, Henri Palacci, Meghan Lawler, Svetlana Belyanskaya, LaShadric Grady, Joe Franklin, Nicolas Tilmans, David L. Mobley. Building Block-Based Binding Predictions for DNA-Encoded Libraries. Journal of Chemical Information and Modeling 2023, 63 (16) , 5120-5132. https://doi.org/10.1021/acs.jcim.3c00588
    28. Giuseppe Lamanna, Pietro Delre, Gilles Marcou, Michele Saviano, Alexandre Varnek, Dragos Horvath, Giuseppe Felice Mangiatordi. GENERA: A Combined Genetic/Deep-Learning Algorithm for Multiobjective Target-Oriented De Novo Design. Journal of Chemical Information and Modeling 2023, 63 (16) , 5107-5119. https://doi.org/10.1021/acs.jcim.3c00963
    29. Jessica Lanini, Gianluca Santarossa, Finton Sirockin, Richard Lewis, Nikolas Fechner, Hubert Misztela, Sarah Lewis, Krzysztof Maziarz, Megan Stanley, Marwin Segler, Nikolaus Stiefl, Nadine Schneider. PREFER: A New Predictive Modeling Framework for Molecular Discovery. Journal of Chemical Information and Modeling 2023, 63 (15) , 4497-4504. https://doi.org/10.1021/acs.jcim.3c00523
    30. Xiao-Wei Liu, Tian-Yu Shi, Dong Gao, Cai-Yi Ma, Hao Lin, Dan Yan, Ke-Jun Deng. iPADD: A Computational Tool for Predicting Potential Antidiabetic Drugs Using Machine Learning Algorithms. Journal of Chemical Information and Modeling 2023, 63 (15) , 4960-4969. https://doi.org/10.1021/acs.jcim.3c00564
    31. William K. Weigel, III, Alba L. Montoya, Raphael M. Franzini. Evaluation of the Topology Space of DNA-Encoded Libraries. Journal of Chemical Information and Modeling 2023, 63 (15) , 4641-4653. https://doi.org/10.1021/acs.jcim.3c01008
    32. Marcel Ruth, Dennis Gerbig, Peter R. Schreiner. Machine Learning for Bridging the Gap between Density Functional Theory and Coupled Cluster Energies. Journal of Chemical Theory and Computation 2023, 19 (15) , 4912-4920. https://doi.org/10.1021/acs.jctc.3c00274
    33. Rostislav Fedorov, Ganna Gryn’ova. Unlocking the Potential: Predicting Redox Behavior of Organic Molecules, from Linear Fits to Neural Networks. Journal of Chemical Theory and Computation 2023, 19 (15) , 4796-4814. https://doi.org/10.1021/acs.jctc.3c00355
    34. Michael J. Hartnett, William D. Watson, Jake A. Janssen, Jenna Hua, Jarod Grossman, Qingchu Peng, Prativa Hartnett, Kristin A. Favela. Rapid Screening of Consumer Products by GCxGC-HRT and Machine Learning Assisted Data Processing. Journal of the American Society for Mass Spectrometry 2023, 34 (8) , 1653-1662. https://doi.org/10.1021/jasms.3c00107
    35. Tiffani Hui, Marc L. Descoteaux, Jiayuan Miao, Yu-Shan Lin. Training Neural Network Models Using Molecular Dynamics Simulation Results to Efficiently Predict Cyclic Hexapeptide Structural Ensembles. Journal of Chemical Theory and Computation 2023, 19 (14) , 4757-4769. https://doi.org/10.1021/acs.jctc.3c00154
    36. Alfredo Pereira, Oleksandra S. Trofymchuk. Machine Learning Prediction of High-Yield Cobalt- and Nickel-Catalyzed Borylations. The Journal of Physical Chemistry C 2023, 127 (27) , 12983-12994. https://doi.org/10.1021/acs.jpcc.3c01704
    37. Bozheng Dou, Zailiang Zhu, Ekaterina Merkurjev, Lu Ke, Long Chen, Jian Jiang, Yueying Zhu, Jie Liu, Bengong Zhang, Guo-Wei Wei. Machine Learning Methods for Small Data Challenges in Molecular Science. Chemical Reviews 2023, 123 (13) , 8736-8780. https://doi.org/10.1021/acs.chemrev.3c00189
    38. Mesfin Diro Chaka, Chernet Amente Geffe, Alex Rodriguez, Nicola Seriani, Qin Wu, Yedilfana Setarge Mekonnen. High-Throughput Screening of Promising Redox-Active Molecules with MolGAT. ACS Omega 2023, 8 (27) , 24268-24278. https://doi.org/10.1021/acsomega.3c01295
    39. Philippe Gendreau, Joseph-André Turk, Nicolas Drizard, Vinicius Barros Ribeiro da Silva, Clarisse Descamps, Yann Gaston-Mathé. Molecular Assays Simulator to Unravel Predictors Hacking in Goal-Directed Molecular Generations. Journal of Chemical Information and Modeling 2023, 63 (13) , 3983-3998. https://doi.org/10.1021/acs.jcim.3c00195
    40. Esther Heid, Charles J. McGill, Florence H. Vermeire, William H. Green. Characterizing Uncertainty in Machine Learning for Chemistry. Journal of Chemical Information and Modeling 2023, 63 (13) , 4012-4029. https://doi.org/10.1021/acs.jcim.3c00373
    41. Song Li, Chao Hu, Song Ke, Chenxing Yang, Jun Chen, Yi Xiong, Hao Liu, Liang Hong. LS-MolGen: Ligand-and-Structure Dual-Driven Deep Reinforcement Learning for Target-Specific Molecular Generation Improves Binding Affinity and Novelty. Journal of Chemical Information and Modeling 2023, 63 (13) , 4207-4215. https://doi.org/10.1021/acs.jcim.3c00587
    42. Maxime Langevin, Christoph Grebner, Stefan Güssregen, Susanne Sauer, Yi Li, Hans Matter, Marc Bianciotto. Impact of Applicability Domains to Generative Artificial Intelligence. ACS Omega 2023, 8 (25) , 23148-23167. https://doi.org/10.1021/acsomega.3c00883
    43. Marco Ballarotto, Sabine Willems, Tanja Stiller, Felix Nawa, Julian A. Marschner, Francesca Grisoni, Daniel Merk. De Novo Design of Nurr1 Agonists via Fragment-Augmented Generative Deep Learning in Low-Data Regime. Journal of Medicinal Chemistry 2023, 66 (12) , 8170-8177. https://doi.org/10.1021/acs.jmedchem.3c00485
    44. JonesGrier M.Graduate Teching AssistantStoryBrittanyPostdoctoral AssociateMaroulasVasileiosProfessorVogiatzisKonstantinos D.Associate ProfessorLaura Weiler, Graduate Student, Stanford University. Molecular Representations for Machine Learning. 2023https://doi.org/10.1021/acsinfocus.7e7006
    45. Dries Van Rompaey, Denise Morrison, An Van Den Bergh, Joerg Kurt Wegner. A Symbolic Regression Model for the Prediction of Drug Binding to Human Liver Microsomes. Molecular Pharmaceutics 2023, 20 (5) , 2436-2442. https://doi.org/10.1021/acs.molpharmaceut.2c01048
    46. Ryne C. Johnston, Kun Yao, Zachary Kaplan, Monica Chelliah, Karl Leswing, Sean Seekins, Shawn Watts, David Calkins, Jackson Chief Elk, Steven V. Jerome, Matthew P. Repasky, John C. Shelley. Epik: pKa and Protonation State Prediction through Machine Learning. Journal of Chemical Theory and Computation 2023, 19 (8) , 2380-2388. https://doi.org/10.1021/acs.jctc.3c00044
    47. Claudio N. Cavasotto, Juan I. Di Filippo. The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking. Journal of Chemical Information and Modeling 2023, 63 (8) , 2267-2280. https://doi.org/10.1021/acs.jcim.2c01471
    48. Ademola Soyemi, Tibor Szilvási. Calculated Physicochemical Properties of Glycerol-Derived Solvents to Drive Plastic Waste Recycling. Industrial & Engineering Chemistry Research 2023, 62 (15) , 6322-6337. https://doi.org/10.1021/acs.iecr.2c04567
    49. Ann M. Richard, Ryan Lougee, Matthew Adams, Hannah Hidle, Chihae Yang, James Rathman, Tomasz Magdziarz, Bruno Bienfait, Antony J. Williams, Grace Patlewicz. A New CSRML Structure-Based Fingerprint Method for Profiling and Categorizing Per- and Polyfluoroalkyl Substances (PFAS). Chemical Research in Toxicology 2023, 36 (3) , 508-534. https://doi.org/10.1021/acs.chemrestox.2c00403
    50. Esteban Marques, Stefan de Gendt, Geoffrey Pourtois, Michiel J. van Setten. Improving Accuracy and Transferability of Machine Learning Chemical Activation Energies by Adding Electronic Structure Information. Journal of Chemical Information and Modeling 2023, 63 (5) , 1454-1461. https://doi.org/10.1021/acs.jcim.2c01502
    51. Dmitrij Rappoport, Adrian Jinich. Enzyme Substrate Prediction from Three-Dimensional Feature Representations Using Space-Filling Curves. Journal of Chemical Information and Modeling 2023, 63 (5) , 1637-1648. https://doi.org/10.1021/acs.jcim.3c00005
    52. Elena Di Lascio, Grégori Gerebtzoff, Raquel Rodríguez-Pérez. Systematic Evaluation of Local and Global Machine Learning Models for the Prediction of ADME Properties. Molecular Pharmaceutics 2023, 20 (3) , 1758-1767. https://doi.org/10.1021/acs.molpharmaceut.2c00962
    53. Gabriel Bradford, Jeffrey Lopez, Jurgis Ruza, Michael A. Stolberg, Richard Osterude, Jeremiah A. Johnson, Rafael Gomez-Bombarelli, Yang Shao-Horn. Chemistry-Informed Machine Learning for Polymer Electrolyte Discovery. ACS Central Science 2023, 9 (2) , 206-216. https://doi.org/10.1021/acscentsci.2c01123
    54. Clemens Isert, Jimmy C. Kromann, Nikolaus Stiefl, Gisbert Schneider, Richard A. Lewis. Machine Learning for Fast, Quantum Mechanics-Based Approximation of Drug Lipophilicity. ACS Omega 2023, 8 (2) , 2046-2056. https://doi.org/10.1021/acsomega.2c05607
    55. Teng-Zhi Long, Shao-Hua Shi, Shao Liu, Ai-Ping Lu, Zhao-Qian Liu, Min Li, Ting-Jun Hou, Dong-Sheng Cao. Structural Analysis and Prediction of Hematotoxicity Using Deep Learning Approaches. Journal of Chemical Information and Modeling 2023, 63 (1) , 111-125. https://doi.org/10.1021/acs.jcim.2c01088
    56. Yue Jian, Yuyang Wang, Amir Barati Farimani. Predicting CO2 Absorption in Ionic Liquids with Molecular Descriptors and Explainable Graph Neural Networks. ACS Sustainable Chemistry & Engineering 2022, 10 (50) , 16681-16691. https://doi.org/10.1021/acssuschemeng.2c05985
    57. Andrew F. Zahrt, Yiming Mo, Kakasaheb Y. Nandiwale, Ron Shprints, Esther Heid, Klavs F. Jensen. Machine-Learning-Guided Discovery of Electrochemical Reactions. Journal of the American Chemical Society 2022, 144 (49) , 22599-22610. https://doi.org/10.1021/jacs.2c08997
    58. Janis Müller, Raphael Klein, Olga Tarkhanova, Anastasiia Gryniukova, Petro Borysko, Stefan Merkl, Moritz Ruf, Alexander Neumann, Marcus Gastreich, Yurii S. Moroz, Gerhard Klebe, Serghei Glinca. Magnet for the Needle in Haystack: “Crystal Structure First” Fragment Hits Unlock Active Chemical Matter Using Targeted Exploration of Vast Chemical Spaces. Journal of Medicinal Chemistry 2022, 65 (23) , 15663-15678. https://doi.org/10.1021/acs.jmedchem.2c00813
    59. Joshua L. Lansford, Brian C. Barnes, Betsy M. Rice, Klavs F. Jensen. Building Chemical Property Models for Energetic Materials from Small Datasets Using a Transfer Learning Approach. Journal of Chemical Information and Modeling 2022, 62 (22) , 5397-5410. https://doi.org/10.1021/acs.jcim.2c00841
    60. Evan R. Antoniuk, Peggy Li, Bhavya Kailkhura, Anna M. Hiszpanski. Representing Polymers as Periodic Graphs with Learned Descriptors for Accurate Polymer Property Predictions. Journal of Chemical Information and Modeling 2022, 62 (22) , 5435-5445. https://doi.org/10.1021/acs.jcim.2c00875
    61. Idil Ismail, Raphael Chantreau Majerus, Scott Habershon. Graph-Driven Reaction Discovery: Progress, Challenges, and Future Opportunities. The Journal of Physical Chemistry A 2022, 126 (40) , 7051-7069. https://doi.org/10.1021/acs.jpca.2c06408
    62. TanemuraKiyoto AramisGraduate StudentSierra-CostaDiegoGraduate StudentMerzKenneth M.Jr.University Distinguished Professor & Joseph Zichis Chair in ChemistryAlathea Davies, PhD student, Cornell University, Paul A. Craig, Professor of Biochemistry & Bioinformatics, Rochester Institute of Technology. Python for Chemists. 2022https://doi.org/10.1021/acsinfocus.7e5030
    63. Marcel Ruth, Dennis Gerbig, Peter R. Schreiner. Machine Learning of Coupled Cluster (T)-Energy Corrections via Delta (Δ)-Learning. Journal of Chemical Theory and Computation 2022, 18 (8) , 4846-4855. https://doi.org/10.1021/acs.jctc.2c00501
    64. Kazuhiro J. Fujimoto, Shota Minami, Takeshi Yanai. Machine-Learning- and Knowledge-Based Scoring Functions Incorporating Ligand and Protein Fingerprints. ACS Omega 2022, 7 (22) , 19030-19039. https://doi.org/10.1021/acsomega.2c02822
    65. Raphaël Robidas, Claude Y. Legault. CalcUS: An Open-Source Quantum Chemistry Web Platform. Journal of Chemical Information and Modeling 2022, 62 (5) , 1147-1153. https://doi.org/10.1021/acs.jcim.1c01502
    66. Myeonghun Lee, Kyoungmin Min. A Comparative Study of the Performance for Predicting Biodegradability Classification: The Quantitative Structure–Activity Relationship Model vs the Graph Convolutional Network. ACS Omega 2022, 7 (4) , 3649-3655. https://doi.org/10.1021/acsomega.1c06274
    67. Joel Graef, Christiane Ehrt, Konrad Diedrich, Martin Poppinga, Norbert Ritter, Matthias Rarey. Searching Geometric Patterns in Protein Binding Sites and Their Application to Data Mining in Protein Kinase Structures. Journal of Medicinal Chemistry 2022, 65 (2) , 1384-1395. https://doi.org/10.1021/acs.jmedchem.1c01046
    68. Baochen Li, Haibin Sun, Haonian Shu, Xiaoxue Wang. Applying Neuromorphic Computing Simulation in Band Gap Prediction and Chemical Reaction Classification. ACS Omega 2022, 7 (1) , 168-175. https://doi.org/10.1021/acsomega.1c04287
    69. Esther Heid, Jiannan Liu, Andrea Aude, William H. Green. Influence of Template Size, Canonicalization, and Exclusivity for Retrosynthesis and Reaction Prediction Applications. Journal of Chemical Information and Modeling 2022, 62 (1) , 16-26. https://doi.org/10.1021/acs.jcim.1c01192
    70. Leonid Komissarov, Toon Verstraelen. Improving the Silicon Interactions of GFN-xTB. Journal of Chemical Information and Modeling 2021, 61 (12) , 5931-5937. https://doi.org/10.1021/acs.jcim.1c01170
    71. Armi Tiihonen, Sarah J. Cox-Vazquez, Qiaohao Liang, Mohamed Ragab, Zekun Ren, Noor Titan Putri Hartono, Zhe Liu, Shijing Sun, Cheng Zhou, Nathan C. Incandela, Jakkarin Limwongyut, Alex S. Moreland, Senthilnath Jayavelu, Guillermo C. Bazan, Tonio Buonassisi. Predicting Antimicrobial Activity of Conjugated Oligoelectrolyte Molecules via Machine Learning. Journal of the American Chemical Society 2021, 143 (45) , 18917-18931. https://doi.org/10.1021/jacs.1c05055
    72. Hamid Safizadeh, Scott W. Simpkins, Justin Nelson, Sheena C. Li, Jeff S. Piotrowski, Mami Yoshimura, Yoko Yashiroda, Hiroyuki Hirano, Hiroyuki Osada, Minoru Yoshida, Charles Boone, Chad L. Myers. Improving Measures of Chemical Structural Similarity Using Machine Learning on Chemical–Genetic Interactions. Journal of Chemical Information and Modeling 2021, 61 (9) , 4156-4172. https://doi.org/10.1021/acs.jcim.0c00993
    73. Jason E. Sanchez, Govinda B. KC, Julian Franco, William J. Allen, Jesus David Garcia, Suman Sirimulla. BiasNet: A Model to Predict Ligand Bias Toward GPCR Signaling. Journal of Chemical Information and Modeling 2021, 61 (9) , 4190-4199. https://doi.org/10.1021/acs.jcim.1c00317
    74. Dominique Sydow Jaime Rodríguez-Guerra Andrea Volkamer . Teaching Computer-Aided Drug Design Using TeachOpenCADD. , 135-158. https://doi.org/10.1021/bk-2021-1387.ch010
    75. Andrei Buin, Hung Yi Chiang, S. Andrew Gadsden, Faraz A. Alderson. Permutationally Invariant Deep Learning Approach to Molecular Fingerprinting with Application to Compound Mixtures. Journal of Chemical Information and Modeling 2021, 61 (2) , 631-640. https://doi.org/10.1021/acs.jcim.0c01097
    76. Hehuan Ma, Weizhi An, Yuhong Wang, Hongmao Sun, Ruili Huang, Junzhou Huang. Deep Graph Learning with Property Augmentation for Predicting Drug-Induced Liver Injury. Chemical Research in Toxicology 2021, 34 (2) , 495-506. https://doi.org/10.1021/acs.chemrestox.0c00322
    77. Minsup Kim, Kichul Park, Wonsang Kim, Sangwon Jung, Art E. Cho. Target-Specific Drug Design Method Combining Deep Learning and Water Pharmacophore. Journal of Chemical Information and Modeling 2021, 61 (1) , 36-45. https://doi.org/10.1021/acs.jcim.0c00757
    78. Somesh Mohapatra, Nina Hartrampf, Mackenzie Poskus, Andrei Loas, Rafael Gómez-Bombarelli, Bradley L. Pentelute. Deep Learning for Prediction and Optimization of Fast-Flow Peptide Synthesis. ACS Central Science 2020, 6 (12) , 2277-2286. https://doi.org/10.1021/acscentsci.0c00979
    79. Andrew J. Wedlake, Timothy E. H. Allen, Jonathan M. Goodman, Steve Gutsell, Predrag Kukic, Paul J. Russell. Confidence in Inactive and Active Predictions from Structural Alerts. Chemical Research in Toxicology 2020, 33 (12) , 3010-3022. https://doi.org/10.1021/acs.chemrestox.0c00332
    80. Todd J. Wills, Dmitrii A. Polshakov, Matthew C. Robinson, Alpha A. Lee. Impact of Chemist-In-The-Loop Molecular Representations on Machine Learning Outcomes. Journal of Chemical Information and Modeling 2020, 60 (10) , 4449-4456. https://doi.org/10.1021/acs.jcim.0c00193
    81. Lewis H. Mervin, Avid M. Afzal, Ola Engkvist, Andreas Bender. Comparison of Scaling Methods to Obtain Calibrated Probabilities of Activity for Protein–Ligand Predictions. Journal of Chemical Information and Modeling 2020, 60 (10) , 4546-4559. https://doi.org/10.1021/acs.jcim.0c00476
    82. Zoe Cournia, Bryce K. Allen, Thijs Beuming, David A. Pearlman, Brian K. Radak, Woody Sherman. Rigorous Free Energy Simulations in Virtual Screening. Journal of Chemical Information and Modeling 2020, 60 (9) , 4153-4169. https://doi.org/10.1021/acs.jcim.0c00116
    83. Stanisław Jastrzębski, Maciej Szymczak, Agnieszka Pocha, Stefan Mordalski, Jacek Tabor, Andrzej J. Bojarski, Sabina Podlewska. Emulating Docking Results Using a Deep Neural Network: A New Perspective for Virtual Screening. Journal of Chemical Information and Modeling 2020, 60 (9) , 4246-4262. https://doi.org/10.1021/acs.jcim.9b01202
    84. Trevor W. Sleight, Vikas Khanna, Leanne M. Gilbertson, Carla A. Ng. Network Analysis for Prioritizing Biodegradation Metabolites of Polycyclic Aromatic Hydrocarbons. Environmental Science & Technology 2020, 54 (17) , 10735-10744. https://doi.org/10.1021/acs.est.0c02217
    85. Kevin Maik Jablonka, Daniele Ongari, Seyed Mohamad Moosavi, Berend Smit. Big-Data Science in Porous Materials: Materials Genomics and Machine Learning. Chemical Reviews 2020, 120 (16) , 8066-8129. https://doi.org/10.1021/acs.chemrev.0c00004
    86. Michael E. Fortunato, Connor W. Coley, Brian C. Barnes, Klavs F. Jensen. Data Augmentation and Pretraining for Template-Based Retrosynthetic Prediction in Computer-Aided Synthesis Planning. Journal of Chemical Information and Modeling 2020, 60 (7) , 3398-3407. https://doi.org/10.1021/acs.jcim.0c00403
    87. Vigneshwari Subramanian, Ekaterina Ratkova, David Palmer, Ola Engkvist, Maxim Fedorov, Antonio Llinas. Multisolvent Models for Solvation Free Energy Predictions Using 3D-RISM Hydration Thermodynamic Descriptors. Journal of Chemical Information and Modeling 2020, 60 (6) , 2977-2988. https://doi.org/10.1021/acs.jcim.0c00065
    88. Lena Hefke, Kerstin Hiesinger, W. Felix Zhu, Jan S. Kramer, Ewgenij Proschak. Computer-Aided Fragment Growing Strategies to Design Dual Inhibitors of Soluble Epoxide Hydrolase and LTA4 Hydrolase. ACS Medicinal Chemistry Letters 2020, 11 (6) , 1244-1249. https://doi.org/10.1021/acsmedchemlett.0c00102
    89. JanetJon PaulResearcherKulikHeather J.Associate Professor in the Department of Chemical EngineeringYamilee Morency, Chemistry majors, Fordham University, Mary Kate Caucci, Chemistry major, Fordham University. Machine Learning in Chemistry. 2020https://doi.org/10.1021/acs.infocus.7e4001
    90. Ece Asilar, Jennifer Hemmerich, Gerhard F. Ecker. Image Based Liver Toxicity Prediction. Journal of Chemical Information and Modeling 2020, 60 (3) , 1111-1121. https://doi.org/10.1021/acs.jcim.9b00713
    91. Jacqueline M. Cole. A Design-to-Device Pipeline for Data-Driven Materials Discovery. Accounts of Chemical Research 2020, 53 (3) , 599-610. https://doi.org/10.1021/acs.accounts.9b00470
    92. Seung Hwan Hong, Seongok Ryu, Jaechang Lim, Woo Youn Kim. Molecular Generative Model Based on an Adversarially Regularized Autoencoder. Journal of Chemical Information and Modeling 2020, 60 (1) , 29-36. https://doi.org/10.1021/acs.jcim.9b00694
    93. Damian Leśniak, Sabina Podlewska, Stanisław Jastrzębski, Igor Sieradzki, Andrzej J. Bojarski, Jacek Tabor. Development of New Methods Needs Proper Evaluation—Benchmarking Sets for Machine Learning Experiments for Class A GPCRs. Journal of Chemical Information and Modeling 2019, 59 (12) , 4974-4992. https://doi.org/10.1021/acs.jcim.9b00689
    94. Eachan O. Johnson, Deborah T. Hung. A Point of Inflection and Reflection on Systems Chemical Biology. ACS Chemical Biology 2019, 14 (12) , 2497-2511. https://doi.org/10.1021/acschembio.9b00714
    95. Yipin Lu, Shankara Anand, William Shirley, Peter Gedeck, Brian P. Kelley, Suzanne Skolnik, Stephane Rodde, Mai Nguyen, Mika Lindvall, Weiping Jia. Prediction of pKa Using Machine Learning Methods with Rooted Topological Torsion Fingerprints: Application to Aliphatic Amines. Journal of Chemical Information and Modeling 2019, 59 (11) , 4706-4719. https://doi.org/10.1021/acs.jcim.9b00498
    96. Louis Bellmann, Patrick Penner, Matthias Rarey. Connected Subgraph Fingerprints: Representing Molecules Using Exhaustive Subgraph Enumeration. Journal of Chemical Information and Modeling 2019, 59 (11) , 4625-4635. https://doi.org/10.1021/acs.jcim.9b00571
    97. Sule Atahan-Evrenk, F. Betul Atalay. Prediction of Intramolecular Reorganization Energy Using Machine Learning. The Journal of Physical Chemistry A 2019, 123 (36) , 7855-7863. https://doi.org/10.1021/acs.jpca.9b02733
    98. Ramil I. Nugmanov, Ravil N. Mukhametgaleev, Tagir Akhmetshin, Timur R. Gimadiev, Valentina A. Afonina, Timur I. Madzhidov, Alexandre Varnek. CGRtools: Python Library for Molecule, Reaction, and Condensed Graph of Reaction Processing. Journal of Chemical Information and Modeling 2019, 59 (6) , 2516-2521. https://doi.org/10.1021/acs.jcim.9b00102
    99. Hongchao Ji, Yamei Xu, Hongmei Lu, Zhimin Zhang. Deep MS/MS-Aided Structural-Similarity Scoring for Unknown Metabolite Identification. Analytical Chemistry 2019, 91 (9) , 5629-5637. https://doi.org/10.1021/acs.analchem.8b05405
    100. Thomas Blaschke, Filip Miljković, Jürgen Bajorath. Prediction of Different Classes of Promiscuous and Nonpromiscuous Compounds Using Machine Learning and Nearest Neighbor Analysis. ACS Omega 2019, 4 (4) , 6883-6890. https://doi.org/10.1021/acsomega.9b00492
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect