The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service.Click to copy article linkArticle link copied!
Note: In lieu of an abstract, this is the article's first page.
Cited By
This article is cited by 1036 publications.
- Gufeng Yu, Xi Wang, Yichong Luo, Guanlin Li, Rui Ding, Runhan Shi, Xiaohong Huo, Yang Yang. Machine Learning for Reaction Performance Prediction in Allylic Substitution Enhanced by Automatic Extraction of a Substrate-Aware Descriptor. Journal of Chemical Information and Modeling 2025, 65
(1)
, 312-325. https://doi.org/10.1021/acs.jcim.4c02120
- Son Gyo Jung, Guwon Jung, Jacqueline M. Cole. Automatic Prediction of Molecular Properties Using Substructure Vector Embeddings within a Feature Selection Workflow. Journal of Chemical Information and Modeling 2025, 65
(1)
, 133-152. https://doi.org/10.1021/acs.jcim.4c01862
- Leonardo R. de Almeida, Antônio S. N. Aguiar, Alex B. R. M. da Anunciação, Giulio D. C. d’Oliveira, Wesley F. Vaz, Jean M. F. Custódio, Caridad N. Pérez, Hamilton B. Napolitano. Three Dihydroquinolin-4-one Derivatives as Potential Biodiesel Additives: From the Molecular Structure to Machine Learning Approach. ACS Omega 2024, 9
(50)
, 49188-49204. https://doi.org/10.1021/acsomega.4c05742
- Rinta Kawagoe, Tatsuhito Ando, Nobuyuki N. Matsuzawa, Hiroyuki Maeshima, Hiromasa Kaneko. Exploring Molecular Descriptors and Acquisition Functions in Bayesian Optimization for Designing Molecules with Low Hole Reorganization Energy. ACS Omega 2024, 9
(49)
, 48844-48854. https://doi.org/10.1021/acsomega.4c09124
- Myeonghun Lee, Taehyun Park, Kyoungmin Min. Matini-Net: Versatile Material Informatics Research Framework for Feature Engineering and Deep Neural Network Design. Journal of Chemical Information and Modeling 2024, 64
(23)
, 8770-8783. https://doi.org/10.1021/acs.jcim.4c01676
- Runqi Zhang, Yu Wang, Wenguang Zhu, Leilei Xin, Jianguang Qi, Yinglong Wang, Zhaoyou Zhu, Peizhe Cui. Insight into the Mechanism of Machine Learning Models for Predicting Ionic Liquids Toxicity Based on Molecular Structure Descriptors. ACS Sustainable Chemistry & Engineering 2024, 12
(49)
, 17749-17760. https://doi.org/10.1021/acssuschemeng.4c06546
- Benjamin Ries, Richard J. Gowers, Hannah M. Baumann, David W. H. Swenson, Michael M. Henry, James R. B. Eastwood, Irfan Alibay, David Mobley. Konnektor: A Framework for Using Graph Theory to Plan Networks for Free Energy Calculations. Journal of Chemical Information and Modeling 2024, 64
(22)
, 8396-8403. https://doi.org/10.1021/acs.jcim.4c01710
- Matteo Simone, Marianna Iorio, Paolo Monciardini, Massimo Santini, Niccolò Cantù, Arianna Tocchetti, Stefania Serina, Cristina Brunati, Thomas Vernay, Andrea Gentile, Mattia Aracne, Marco Cozzi, Justin J. J. van der Hooft, Margherita Sosio, Stefano Donadio, Sonia I. Maffioli. The Molecules Gateway: A Homogeneous, Searchable Database of 150k Annotated Molecules from Actinomycetes. Journal of Natural Products 2024, 87
(11)
, 2615-2628. https://doi.org/10.1021/acs.jnatprod.4c00857
- Fabrice Camilleri, Joanna M. Wenda, Claire Pecoraro-Mercier, Jean-Paul Comet, David Rouquié. Cell Painting and Chemical Structure Read-Across Can Complement Each Other for Rat Acute Oral Toxicity Prediction in Chemical Early Derisking. Chemical Research in Toxicology 2024, 37
(11)
, 1851-1866. https://doi.org/10.1021/acs.chemrestox.4c00169
- Daniel P. Devore, Kevin L. Shuford. Data and Molecular Fingerprint-Driven Machine Learning Approaches to Halogen Bonding. Journal of Chemical Information and Modeling 2024, 64
(21)
, 8201-8214. https://doi.org/10.1021/acs.jcim.4c01427
- Lu Chen, Bing Xia, Yu Wang, Xia Huang, Yucheng Gu, Wenlin Wu, Yan Zhou. CMSSP: A Contrastive Mass Spectra-Structure Pretraining Model for Metabolite Identification. Analytical Chemistry 2024, 96
(42)
, 16871-16881. https://doi.org/10.1021/acs.analchem.4c03724
- Kevin A. Spiekermann, Xiaorui Dong, Angiras Menon, William H. Green, Mark Pfeifle, Frederik Sandfort, Oliver Welz, Maike Bergeler. Accurately Predicting Barrier Heights for Radical Reactions in Solution Using Deep Graph Networks. The Journal of Physical Chemistry A 2024, 128
(39)
, 8384-8403. https://doi.org/10.1021/acs.jpca.4c04121
- Yifei Zhu, Jiawei Peng, Chao Xu, Zhenggang Lan. Unsupervised Machine Learning in the Analysis of Nonadiabatic Molecular Dynamics Simulation. The Journal of Physical Chemistry Letters 2024, 15
(38)
, 9601-9619. https://doi.org/10.1021/acs.jpclett.4c01751
- Felix Nawa, Minh Sai, Jan Vietor, Roman Schwarzenbach, Anesa Bitić, Sina Wolff, Niklas Ildefeld, Jörg Pabel, Thomas Wein, Julian A. Marschner, Jan Heering, Daniel Merk. Tuning RXR Modulators for PGC1α Recruitment. Journal of Medicinal Chemistry 2024, 67
(18)
, 16338-16354. https://doi.org/10.1021/acs.jmedchem.4c01231
- Zachary T.P. Fried, Brett A. McGuire. Automated Mixture Analysis via Structural Evaluation. The Journal of Physical Chemistry A 2024, 128
(38)
, 8254-8264. https://doi.org/10.1021/acs.jpca.4c03580
- Emily C. Hank, Minh Sai, Till Kasch, Isabelle Meijer, Julian A. Marschner, Daniel Merk. Development of Tailless Homologue Receptor (TLX) Agonist Chemical Tools. Journal of Medicinal Chemistry 2024, 67
(18)
, 16598-16611. https://doi.org/10.1021/acs.jmedchem.4c01443
- Hannes H. Loeffler, Shunzhou Wan, Marco Klähn, Agastya P. Bhati, Peter V. Coveney. Optimal Molecular Design: Generative Active Learning Combining REINVENT with Precise Binding Free Energy Ranking Simulations. Journal of Chemical Theory and Computation 2024, 20
(18)
, 8308-8328. https://doi.org/10.1021/acs.jctc.4c00576
- Jiaojiao Fang, Yan Tang, Changda Gong, Zejun Huang, Yanjun Feng, Guixia Liu, Yun Tang, Weihua Li. Prediction of Cytochrome P450 Substrates Using the Explainable Multitask Deep Learning Models. Chemical Research in Toxicology 2024, 37
(9)
, 1535-1548. https://doi.org/10.1021/acs.chemrestox.4c00199
- Frazier N. Baker, Ziqi Chen, Daniel Adu-Ampratwum, Xia Ning. RLSynC: Offline–Online Reinforcement Learning for Synthon Completion. Journal of Chemical Information and Modeling 2024, 64
(17)
, 6723-6735. https://doi.org/10.1021/acs.jcim.4c00554
- Jesse C. Hearn, Betsy M. Rice, Brian C. Barnes, Peter W. Chung. Predicting Hydrocarbon Strain Energy via a Group Equivalent Machine Learning Approach. The Journal of Physical Chemistry A 2024, 128
(35)
, 7489-7497. https://doi.org/10.1021/acs.jpca.4c03867
- Gary Tom, Stefan P. Schmid, Sterling G. Baird, Yang Cao, Kourosh Darvish, Han Hao, Stanley Lo, Sergio Pablo-García, Ella M. Rajaonson, Marta Skreta, Naruki Yoshikawa, Samantha Corapi, Gun Deniz Akkoc, Felix Strieth-Kalthoff, Martin Seifrid, Alán Aspuru-Guzik. Self-Driving Laboratories for Chemistry and Materials Science. Chemical Reviews 2024, 124
(16)
, 9633-9732. https://doi.org/10.1021/acs.chemrev.4c00055
- Xu Li, Haoliang Zhong, Haoyu Yang, Lin Li, Qingji Wang. High-Throughput Screening and Prediction of Nucleophilicity of Amines Using Machine Learning and DFT Calculations. Journal of Chemical Information and Modeling 2024, 64
(16)
, 6361-6368. https://doi.org/10.1021/acs.jcim.4c00724
- Matthew Adrian, Yunsie Chung, Alan C. Cheng. Denoising Drug Discovery Data for Improved Absorption, Distribution, Metabolism, Excretion, and Toxicity Property Prediction. Journal of Chemical Information and Modeling 2024, 64
(16)
, 6324-6337. https://doi.org/10.1021/acs.jcim.4c00639
- Gayane Chilingaryan, Hovhannes Tamoyan, Ani Tevosyan, Nelly Babayan, Karen Hambardzumyan, Zaven Navoyan, Armen Aghajanyan, Hrant Khachatrian, Lusine Khondkaryan. BartSmiles: Generative Masked Language Models for Molecular Representations. Journal of Chemical Information and Modeling 2024, 64
(15)
, 5832-5843. https://doi.org/10.1021/acs.jcim.4c00512
- Hongle An, Xuyang Liu, Wensheng Cai, Xueguang Shao. AttenGpKa: A Universal Predictor of Solvation Acidity Using Graph Neural Network and Molecular Topology. Journal of Chemical Information and Modeling 2024, 64
(14)
, 5480-5491. https://doi.org/10.1021/acs.jcim.4c00449
- Gökhan Tahıl, Fabien Delorme, Daniel Le Berre, Éric Monflier, Adlane Sayede, Sébastien Tilloy. Stereoisomers Are Not Machine Learning’s Best Friends. Journal of Chemical Information and Modeling 2024, 64
(14)
, 5451-5469. https://doi.org/10.1021/acs.jcim.4c00318
- Shiwei Su, Tsukuru Masuda, Madoka Takai. Explainable Prediction of Hydrophilic/Hydrophobic Property of Polymer Brush Surfaces by Chemical Modeling and Machine Learning. The Journal of Physical Chemistry B 2024, 128
(27)
, 6589-6597. https://doi.org/10.1021/acs.jpcb.3c08422
- Jungwoo Kim, Woojae Chang, Hyunjun Ji, InSuk Joung. Quantum-Informed Molecular Representation Learning Enhancing ADMET Property Prediction. Journal of Chemical Information and Modeling 2024, 64
(13)
, 5028-5040. https://doi.org/10.1021/acs.jcim.4c00772
- Josef Kehrein, Alex Bunker, Robert Luxenhofer. POxload: Machine Learning Estimates Drug Loadings of Polymeric Micelles. Molecular Pharmaceutics 2024, 21
(7)
, 3356-3374. https://doi.org/10.1021/acs.molpharmaceut.4c00086
- Hongyi Zhou, Jeffrey Skolnick. Utility of the Morgan Fingerprint in Structure-Based Virtual Ligand Screening. The Journal of Physical Chemistry B 2024, 128
(22)
, 5363-5370. https://doi.org/10.1021/acs.jpcb.4c01875
- Oliver Pereira, Marcel Ruth, Dennis Gerbig, Raffael C. Wende, Peter R. Schreiner. Leveraging Limited Experimental Data with Machine Learning: Differentiating a Methyl from an Ethyl Group in the Corey–Bakshi–Shibata Reduction. Journal of the American Chemical Society 2024, 146
(21)
, 14576-14586. https://doi.org/10.1021/jacs.4c01286
- Ning Cheng, Li Wang, Yiping Liu, Bosheng Song, Changsong Ding. HANSynergy: Heterogeneous Graph Attention Network for Drug Synergy Prediction. Journal of Chemical Information and Modeling 2024, 64
(10)
, 4334-4347. https://doi.org/10.1021/acs.jcim.4c00003
- Renxiu Song, Kaifeng Liu, Qizheng He, Fei He, Weiwei Han. Exploring Bitter and Sweet: The Application of Large Language Models in Molecular Taste Prediction. Journal of Chemical Information and Modeling 2024, 64
(10)
, 4102-4111. https://doi.org/10.1021/acs.jcim.4c00681
- Xin-Yu Lu, Hao-Ping Wu, Hao Ma, Hui Li, Jia Li, Yan-Ti Liu, Zheng-Yan Pan, Yi Xie, Lei Wang, Bin Ren, Guo-Kun Liu. Deep Learning-Assisted Spectrum–Structure Correlation: State-of-the-Art and Perspectives. Analytical Chemistry 2024, 96
(20)
, 7959-7975. https://doi.org/10.1021/acs.analchem.4c01639
- Yu-Ao Huang, Gong Cheng, Ming Lei, Ming-Lei Yang, De Chen, Xing-Gui Zhou, Yi-An Zhu. Decoding the Kinetic Complexity of Pt-Catalyzed n-Butane Dehydrogenation by Machine Learning and Microkinetic Analysis. ACS Catalysis 2024, 14
(10)
, 7978-7995. https://doi.org/10.1021/acscatal.4c00864
- V. Vigna, T. F. G. G. Cova, S. C. C. Nunes, A. A. C. C. Pais, E. Sicilia. Machine Learning-Based Prediction of Reduction Potentials for PtIV Complexes. Journal of Chemical Information and Modeling 2024, 64
(9)
, 3733-3743. https://doi.org/10.1021/acs.jcim.4c00315
- Rebekah Duke, Ryan McCoy, Chad Risko, Julia R. S. Bursten. Promises and Perils of Big Data: Philosophical Constraints on Chemical Ontologies. Journal of the American Chemical Society 2024, 146
(17)
, 11579-11591. https://doi.org/10.1021/jacs.3c11399
- Sebastian Schieferdecker, Florian Rottach, Esther Vock. In Silico Prediction of Oral Acute Rodent Toxicity Using Consensus Machine Learning. Journal of Chemical Information and Modeling 2024, 64
(8)
, 3114-3122. https://doi.org/10.1021/acs.jcim.4c00056
- Xiangwen Wang, Derek Quinn, Thomas S. Moody, Meilan Huang. ALDELE: All-Purpose Deep Learning Toolkits for Predicting the Biocatalytic Activities of Enzymes. Journal of Chemical Information and Modeling 2024, 64
(8)
, 3123-3139. https://doi.org/10.1021/acs.jcim.4c00058
- Miguel Gallegos, Bienfait Kabuyaya Isamura, Paul L. A. Popelier, Ángel Martín Pendás. An Unsupervised Machine Learning Approach for the Automatic Construction of Local Chemical Descriptors. Journal of Chemical Information and Modeling 2024, 64
(8)
, 3059-3079. https://doi.org/10.1021/acs.jcim.3c01906
- Emma Svensson, Pieter-Jan Hoedt, Sepp Hochreiter, Günter Klambauer. HyperPCM: Robust Task-Conditioned Modeling of Drug–Target Interactions. Journal of Chemical Information and Modeling 2024, 64
(7)
, 2539-2553. https://doi.org/10.1021/acs.jcim.3c01417
- Elton Pan, Soonhyoung Kwon, Zach Jensen, Mingrou Xie, Rafael Gómez-Bombarelli, Manuel Moliner, Yuriy Román-Leshkov, Elsa Olivetti. ZeoSyn: A Comprehensive Zeolite Synthesis Dataset Enabling Machine-Learning Rationalization of Hydrothermal Parameters. ACS Central Science 2024, 10
(3)
, 729-743. https://doi.org/10.1021/acscentsci.3c01615
- Derek P. Metcalf, Zachary L. Glick, Andrea Bortolato, Andy Jiang, Daniel L. Cheney, C. David Sherrill. Directional ΔG Neural Network (DrΔG-Net): A Modular Neural Network Approach to Binding Free Energy Prediction. Journal of Chemical Information and Modeling 2024, 64
(6)
, 1907-1918. https://doi.org/10.1021/acs.jcim.3c02054
- Son Gyo Jung, Guwon Jung, Jacqueline M. Cole. Automatic Prediction of Peak Optical Absorption Wavelengths in Molecules Using Convolutional Neural Networks. Journal of Chemical Information and Modeling 2024, 64
(5)
, 1486-1501. https://doi.org/10.1021/acs.jcim.3c01792
- Sepehr Dehghani-Ghahnaviyeh, Cihan Soylu, Pascal Furet, Camilo Velez-Vega. Dissecting the Interaction Fingerprints and Binding Affinity of BYL719 Analogs Targeting PI3Kα. The Journal of Physical Chemistry B 2024, 128
(8)
, 1819-1829. https://doi.org/10.1021/acs.jpcb.3c06766
- Yanqiao Zhu, Dingshuo Chen, Yuanqi Du, Yingze Wang, Qiang Liu, Shu Wu. Molecular Contrastive Pretraining with Collaborative Featurizations. Journal of Chemical Information and Modeling 2024, 64
(4)
, 1112-1122. https://doi.org/10.1021/acs.jcim.3c01468
- Benjamin Kaufman, Edward C. Williams, Carl Underkoffler, Ryan Pederson, Narbe Mardirossian, Ian Watson, John Parkhill. COATI: Multimodal Contrastive Pretraining for Representing and Traversing Chemical Space. Journal of Chemical Information and Modeling 2024, 64
(4)
, 1145-1157. https://doi.org/10.1021/acs.jcim.3c01753
- Haripriyan Uthayakumar, Rahul Krishna K, Raj Jain, Rajnish Kumar, Tarak K. Patra. QRChEM: A Deep Learning Framework for Materials Property Prediction and Design Using QR Codes. ACS Engineering Au 2024, 4
(1)
, 91-98. https://doi.org/10.1021/acsengineeringau.3c00055
- Zejun Huang, Shang Lou, Haoqiang Wang, Weihua Li, Guixia Liu, Yun Tang. AttentiveSkin: To Predict Skin Corrosion/Irritation Potentials of Chemicals via Explainable Machine Learning Methods. Chemical Research in Toxicology 2024, 37
(2)
, 361-373. https://doi.org/10.1021/acs.chemrestox.3c00332
- Agneesh Pratim Das, Puniti Mathur, Subhash M. Agarwal. Machine Learning, Molecular Docking, and Dynamics-Based Computational Identification of Potential Inhibitors against Lung Cancer. ACS Omega 2024, 9
(4)
, 4528-4539. https://doi.org/10.1021/acsomega.3c07338
- Jawad Chowdhury, Charles Fricke, Olajide Bamidele, Mubarak Bello, Wenqiang Yang, Andreas Heyden, Gabriel Terejanu. Invariant Molecular Representations for Heterogeneous Catalysis. Journal of Chemical Information and Modeling 2024, 64
(2)
, 327-339. https://doi.org/10.1021/acs.jcim.3c00594
- Esther Heid, Kevin P. Greenman, Yunsie Chung, Shih-Cheng Li, David E. Graff, Florence H. Vermeire, Haoyang Wu, William H. Green, Charles J. McGill. Chemprop: A Machine Learning Package for Chemical Property Prediction. Journal of Chemical Information and Modeling 2024, 64
(1)
, 9-17. https://doi.org/10.1021/acs.jcim.3c01250
- Varvara Voinarovska, Mikhail Kabeshov, Dmytro Dudenko, Samuel Genheden, Igor V. Tetko. When Yield Prediction Does Not Yield Prediction: An Overview of the Current Challenges. Journal of Chemical Information and Modeling 2024, 64
(1)
, 42-56. https://doi.org/10.1021/acs.jcim.3c01524
- Shanmuga Priya Baskaran, Ajaya Kumar Sahoo, Nikhil Chivukula, Kishan Kumar, Areejit Samal. Cheminformatics Analysis of the Multitarget Structure–Activity Landscape of Environmental Chemicals Binding to Human Endocrine Receptors. ACS Omega 2023, 8
(51)
, 49383-49395. https://doi.org/10.1021/acsomega.3c07920
- Chen-Hsuan Huang, Shiang-Tai Lin. MARS Plus: An Improved Molecular Design Tool for Complex Compounds Involving Ionic, Stereo, and Cis–Trans Isomeric Structures. Journal of Chemical Information and Modeling 2023, 63
(24)
, 7711-7728. https://doi.org/10.1021/acs.jcim.3c01745
- Shu-Sen Chen, Zack Meyer, Brendan Jensen, Alex Kraus, Allison Lambert, Daniel H. Ess. ReaLigands: A Ligand Library Cultivated from Experiment and Intended for Molecular Computational Catalyst Design. Journal of Chemical Information and Modeling 2023, 63
(23)
, 7412-7422. https://doi.org/10.1021/acs.jcim.3c01310
- Mehdi Paykan Heyrati, Zahra Ghorbanali, Mohammad Akbari, Ghasem Pishgahi, Fatemeh Zare-Mirakabad. BioAct-Het: A Heterogeneous Siamese Neural Network for Bioactivity Prediction Using Novel Bioactivity Representation. ACS Omega 2023, 8
(47)
, 44757-44772. https://doi.org/10.1021/acsomega.3c05778
- Tanja Stiller, Daniel Merk. Exploring Fatty Acid Mimetics as NR4A Ligands. Journal of Medicinal Chemistry 2023, 66
(22)
, 15362-15369. https://doi.org/10.1021/acs.jmedchem.3c01467
- A. Nolan Wilson, Peter C. St John, Daniela H. Marin, Caroline B. Hoyt, Erik G. Rognerud, Mark R. Nimlos, Robin M. Cywar, Nicholas A. Rorrer, Kevin M. Shebek, Linda J. Broadbelt, Gregg T. Beckham, Michael F. Crowley. PolyID: Artificial Intelligence for Discovering Performance-Advantaged and Sustainable Polymers. Macromolecules 2023, 56
(21)
, 8547-8557. https://doi.org/10.1021/acs.macromol.3c00994
- Kei Terayama, Yamato Osaki, Takehiro Fujita, Ryo Tamura, Masanobu Naito, Koji Tsuda, Toru Matsui, Masato Sumita. Koopmans’ Theorem-Compliant Long-Range Corrected (KTLC) Density Functional Mediated by Black-Box Optimization and Data-Driven Prediction for Organic Molecules. Journal of Chemical Theory and Computation 2023, 19
(19)
, 6770-6781. https://doi.org/10.1021/acs.jctc.3c00764
- Myeonghun Lee, Kyoungmin Min. AmorProt: Amino Acid Molecular Fingerprints Repurposing-Based Protein Fingerprint. Biochemistry 2023, 62
(18)
, 2700-2709. https://doi.org/10.1021/acs.biochem.3c00253
- Thomas Seidel, Christian Permann, Oliver Wieder, Stefan M. Kohlbacher, Thierry Langer. High-Quality Conformer Generation with CONFORGE: Algorithm and Performance Assessment. Journal of Chemical Information and Modeling 2023, 63
(17)
, 5549-5570. https://doi.org/10.1021/acs.jcim.3c00563
- Chris Zhang, Mary Pitman, Anjali Dixit, Sumudu Leelananda, Henri Palacci, Meghan Lawler, Svetlana Belyanskaya, LaShadric Grady, Joe Franklin, Nicolas Tilmans, David L. Mobley. Building Block-Based Binding Predictions for DNA-Encoded Libraries. Journal of Chemical Information and Modeling 2023, 63
(16)
, 5120-5132. https://doi.org/10.1021/acs.jcim.3c00588
- Giuseppe Lamanna, Pietro Delre, Gilles Marcou, Michele Saviano, Alexandre Varnek, Dragos Horvath, Giuseppe Felice Mangiatordi. GENERA: A Combined Genetic/Deep-Learning Algorithm for Multiobjective Target-Oriented De Novo Design. Journal of Chemical Information and Modeling 2023, 63
(16)
, 5107-5119. https://doi.org/10.1021/acs.jcim.3c00963
- Jessica Lanini, Gianluca Santarossa, Finton Sirockin, Richard Lewis, Nikolas Fechner, Hubert Misztela, Sarah Lewis, Krzysztof Maziarz, Megan Stanley, Marwin Segler, Nikolaus Stiefl, Nadine Schneider. PREFER: A New Predictive Modeling Framework for Molecular Discovery. Journal of Chemical Information and Modeling 2023, 63
(15)
, 4497-4504. https://doi.org/10.1021/acs.jcim.3c00523
- Xiao-Wei Liu, Tian-Yu Shi, Dong Gao, Cai-Yi Ma, Hao Lin, Dan Yan, Ke-Jun Deng. iPADD: A Computational Tool for Predicting Potential Antidiabetic Drugs Using Machine Learning Algorithms. Journal of Chemical Information and Modeling 2023, 63
(15)
, 4960-4969. https://doi.org/10.1021/acs.jcim.3c00564
- William K. Weigel, III, Alba L. Montoya, Raphael M. Franzini. Evaluation of the Topology Space of DNA-Encoded Libraries. Journal of Chemical Information and Modeling 2023, 63
(15)
, 4641-4653. https://doi.org/10.1021/acs.jcim.3c01008
- Marcel Ruth, Dennis Gerbig, Peter R. Schreiner. Machine Learning for Bridging the Gap between Density Functional Theory and Coupled Cluster Energies. Journal of Chemical Theory and Computation 2023, 19
(15)
, 4912-4920. https://doi.org/10.1021/acs.jctc.3c00274
- Rostislav Fedorov, Ganna Gryn’ova. Unlocking the Potential: Predicting Redox Behavior of Organic Molecules, from Linear Fits to Neural Networks. Journal of Chemical Theory and Computation 2023, 19
(15)
, 4796-4814. https://doi.org/10.1021/acs.jctc.3c00355
- Michael J. Hartnett, William D. Watson, Jake A. Janssen, Jenna Hua, Jarod Grossman, Qingchu Peng, Prativa Hartnett, Kristin A. Favela. Rapid Screening of Consumer Products by GCxGC-HRT and Machine Learning Assisted Data Processing. Journal of the American Society for Mass Spectrometry 2023, 34
(8)
, 1653-1662. https://doi.org/10.1021/jasms.3c00107
- Tiffani Hui, Marc L. Descoteaux, Jiayuan Miao, Yu-Shan Lin. Training Neural Network Models Using Molecular Dynamics Simulation Results to Efficiently Predict Cyclic Hexapeptide Structural Ensembles. Journal of Chemical Theory and Computation 2023, 19
(14)
, 4757-4769. https://doi.org/10.1021/acs.jctc.3c00154
- Alfredo Pereira, Oleksandra S. Trofymchuk. Machine Learning Prediction of High-Yield Cobalt- and Nickel-Catalyzed Borylations. The Journal of Physical Chemistry C 2023, 127
(27)
, 12983-12994. https://doi.org/10.1021/acs.jpcc.3c01704
- Bozheng Dou, Zailiang Zhu, Ekaterina Merkurjev, Lu Ke, Long Chen, Jian Jiang, Yueying Zhu, Jie Liu, Bengong Zhang, Guo-Wei Wei. Machine Learning Methods for Small Data Challenges in Molecular Science. Chemical Reviews 2023, 123
(13)
, 8736-8780. https://doi.org/10.1021/acs.chemrev.3c00189
- Mesfin Diro Chaka, Chernet Amente Geffe, Alex Rodriguez, Nicola Seriani, Qin Wu, Yedilfana Setarge Mekonnen. High-Throughput Screening of Promising Redox-Active Molecules with MolGAT. ACS Omega 2023, 8
(27)
, 24268-24278. https://doi.org/10.1021/acsomega.3c01295
- Philippe Gendreau, Joseph-André Turk, Nicolas Drizard, Vinicius Barros Ribeiro da Silva, Clarisse Descamps, Yann Gaston-Mathé. Molecular Assays Simulator to Unravel Predictors Hacking in Goal-Directed Molecular Generations. Journal of Chemical Information and Modeling 2023, 63
(13)
, 3983-3998. https://doi.org/10.1021/acs.jcim.3c00195
- Esther Heid, Charles J. McGill, Florence H. Vermeire, William H. Green. Characterizing Uncertainty in Machine Learning for Chemistry. Journal of Chemical Information and Modeling 2023, 63
(13)
, 4012-4029. https://doi.org/10.1021/acs.jcim.3c00373
- Song Li, Chao Hu, Song Ke, Chenxing Yang, Jun Chen, Yi Xiong, Hao Liu, Liang Hong. LS-MolGen: Ligand-and-Structure Dual-Driven Deep Reinforcement Learning for Target-Specific Molecular Generation Improves Binding Affinity and Novelty. Journal of Chemical Information and Modeling 2023, 63
(13)
, 4207-4215. https://doi.org/10.1021/acs.jcim.3c00587
- Maxime Langevin, Christoph Grebner, Stefan Güssregen, Susanne Sauer, Yi Li, Hans Matter, Marc Bianciotto. Impact of Applicability Domains to Generative Artificial Intelligence. ACS Omega 2023, 8
(25)
, 23148-23167. https://doi.org/10.1021/acsomega.3c00883
- Marco Ballarotto, Sabine Willems, Tanja Stiller, Felix Nawa, Julian A. Marschner, Francesca Grisoni, Daniel Merk. De Novo Design of Nurr1 Agonists via Fragment-Augmented Generative Deep Learning in Low-Data Regime. Journal of Medicinal Chemistry 2023, 66
(12)
, 8170-8177. https://doi.org/10.1021/acs.jmedchem.3c00485
- JonesGrier M.Graduate Teching Assistantgjones39@vols.
utk. eduStoryBrittanyPostdoctoral Associatebri. m. story@gmail. comMaroulasVasileiosProfessorvasileios. maroulas@utk. eduVogiatzisKonstantinos D.Associate Professorkvogiatz@utk. eduLaura Weiler, Graduate Student, Stanford University. Molecular Representations for Machine Learning. 2023https://doi.org/10.1021/acsinfocus.7e7006 - Dries Van Rompaey, Denise Morrison, An Van Den Bergh, Joerg Kurt Wegner. A Symbolic Regression Model for the Prediction of Drug Binding to Human Liver Microsomes. Molecular Pharmaceutics 2023, 20
(5)
, 2436-2442. https://doi.org/10.1021/acs.molpharmaceut.2c01048
- Ryne C. Johnston, Kun Yao, Zachary Kaplan, Monica Chelliah, Karl Leswing, Sean Seekins, Shawn Watts, David Calkins, Jackson Chief Elk, Steven V. Jerome, Matthew P. Repasky, John C. Shelley. Epik: pKa and Protonation State Prediction through Machine Learning. Journal of Chemical Theory and Computation 2023, 19
(8)
, 2380-2388. https://doi.org/10.1021/acs.jctc.3c00044
- Claudio N. Cavasotto, Juan I. Di Filippo. The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking. Journal of Chemical Information and Modeling 2023, 63
(8)
, 2267-2280. https://doi.org/10.1021/acs.jcim.2c01471
- Ademola Soyemi, Tibor Szilvási. Calculated Physicochemical Properties of Glycerol-Derived Solvents to Drive Plastic Waste Recycling. Industrial & Engineering Chemistry Research 2023, 62
(15)
, 6322-6337. https://doi.org/10.1021/acs.iecr.2c04567
- Ann M. Richard, Ryan Lougee, Matthew Adams, Hannah Hidle, Chihae Yang, James Rathman, Tomasz Magdziarz, Bruno Bienfait, Antony J. Williams, Grace Patlewicz. A New CSRML Structure-Based Fingerprint Method for Profiling and Categorizing Per- and Polyfluoroalkyl Substances (PFAS). Chemical Research in Toxicology 2023, 36
(3)
, 508-534. https://doi.org/10.1021/acs.chemrestox.2c00403
- Esteban Marques, Stefan de Gendt, Geoffrey Pourtois, Michiel J. van Setten. Improving Accuracy and Transferability of Machine Learning Chemical Activation Energies by Adding Electronic Structure Information. Journal of Chemical Information and Modeling 2023, 63
(5)
, 1454-1461. https://doi.org/10.1021/acs.jcim.2c01502
- Dmitrij Rappoport, Adrian Jinich. Enzyme Substrate Prediction from Three-Dimensional Feature Representations Using Space-Filling Curves. Journal of Chemical Information and Modeling 2023, 63
(5)
, 1637-1648. https://doi.org/10.1021/acs.jcim.3c00005
- Elena Di Lascio, Grégori Gerebtzoff, Raquel Rodríguez-Pérez. Systematic Evaluation of Local and Global Machine Learning Models for the Prediction of ADME Properties. Molecular Pharmaceutics 2023, 20
(3)
, 1758-1767. https://doi.org/10.1021/acs.molpharmaceut.2c00962
- Gabriel Bradford, Jeffrey Lopez, Jurgis Ruza, Michael A. Stolberg, Richard Osterude, Jeremiah A. Johnson, Rafael Gomez-Bombarelli, Yang Shao-Horn. Chemistry-Informed Machine Learning for Polymer Electrolyte Discovery. ACS Central Science 2023, 9
(2)
, 206-216. https://doi.org/10.1021/acscentsci.2c01123
- Clemens Isert, Jimmy C. Kromann, Nikolaus Stiefl, Gisbert Schneider, Richard A. Lewis. Machine Learning for Fast, Quantum Mechanics-Based Approximation of Drug Lipophilicity. ACS Omega 2023, 8
(2)
, 2046-2056. https://doi.org/10.1021/acsomega.2c05607
- Teng-Zhi Long, Shao-Hua Shi, Shao Liu, Ai-Ping Lu, Zhao-Qian Liu, Min Li, Ting-Jun Hou, Dong-Sheng Cao. Structural Analysis and Prediction of Hematotoxicity Using Deep Learning Approaches. Journal of Chemical Information and Modeling 2023, 63
(1)
, 111-125. https://doi.org/10.1021/acs.jcim.2c01088
- Yue Jian, Yuyang Wang, Amir Barati Farimani. Predicting CO2 Absorption in Ionic Liquids with Molecular Descriptors and Explainable Graph Neural Networks. ACS Sustainable Chemistry & Engineering 2022, 10
(50)
, 16681-16691. https://doi.org/10.1021/acssuschemeng.2c05985
- Andrew F. Zahrt, Yiming Mo, Kakasaheb Y. Nandiwale, Ron Shprints, Esther Heid, Klavs F. Jensen. Machine-Learning-Guided Discovery of Electrochemical Reactions. Journal of the American Chemical Society 2022, 144
(49)
, 22599-22610. https://doi.org/10.1021/jacs.2c08997
- Janis Müller, Raphael Klein, Olga Tarkhanova, Anastasiia Gryniukova, Petro Borysko, Stefan Merkl, Moritz Ruf, Alexander Neumann, Marcus Gastreich, Yurii S. Moroz, Gerhard Klebe, Serghei Glinca. Magnet for the Needle in Haystack: “Crystal Structure First” Fragment Hits Unlock Active Chemical Matter Using Targeted Exploration of Vast Chemical Spaces. Journal of Medicinal Chemistry 2022, 65
(23)
, 15663-15678. https://doi.org/10.1021/acs.jmedchem.2c00813
- Joshua L. Lansford, Brian C. Barnes, Betsy M. Rice, Klavs F. Jensen. Building Chemical Property Models for Energetic Materials from Small Datasets Using a Transfer Learning Approach. Journal of Chemical Information and Modeling 2022, 62
(22)
, 5397-5410. https://doi.org/10.1021/acs.jcim.2c00841
- Evan R. Antoniuk, Peggy Li, Bhavya Kailkhura, Anna M. Hiszpanski. Representing Polymers as Periodic Graphs with Learned Descriptors for Accurate Polymer Property Predictions. Journal of Chemical Information and Modeling 2022, 62
(22)
, 5435-5445. https://doi.org/10.1021/acs.jcim.2c00875
- Idil Ismail, Raphael Chantreau Majerus, Scott Habershon. Graph-Driven Reaction Discovery: Progress, Challenges, and Future Opportunities. The Journal of Physical Chemistry A 2022, 126
(40)
, 7051-7069. https://doi.org/10.1021/acs.jpca.2c06408
- TanemuraKiyoto AramisGraduate Studenttanemur1@chemistry.
msu. eduSierra-CostaDiegoGraduate Studentsierraco@chemistry. msu. eduMerzKenneth M.Jr.University Distinguished Professor & Joseph Zichis Chair in Chemistrymerz@chemistry. msu. eduAlathea Davies, PhD student, Cornell University, Paul A. Craig, Professor of Biochemistry & Bioinformatics, Rochester Institute of Technology. Python for Chemists. 2022https://doi.org/10.1021/acsinfocus.7e5030 - Marcel Ruth, Dennis Gerbig, Peter R. Schreiner. Machine Learning of Coupled Cluster (T)-Energy Corrections via Delta (Δ)-Learning. Journal of Chemical Theory and Computation 2022, 18
(8)
, 4846-4855. https://doi.org/10.1021/acs.jctc.2c00501
- Kazuhiro J. Fujimoto, Shota Minami, Takeshi Yanai. Machine-Learning- and Knowledge-Based Scoring Functions Incorporating Ligand and Protein Fingerprints. ACS Omega 2022, 7
(22)
, 19030-19039. https://doi.org/10.1021/acsomega.2c02822
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.