ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A Chemically Induced Vaccine Strategy for Prostate Cancer

View Author Information
Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
§ Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
Cite this: ACS Chem. Biol. 2011, 6, 11, 1223–1231
Publication Date (Web):September 21, 2011
https://doi.org/10.1021/cb200222s
Copyright © 2011 American Chemical Society

    Article Views

    3805

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (14)»

    Abstract

    Abstract Image

    Here we report the design and evaluation of a bifunctional, small molecule switch that induces a targeted immune response against tumors in vivo. A high affinity ligand for prostate specific membrane antigen (PSMA) was conjugated to a hapten that binds dinitrophenyl (DNP)-specific antibodies. When introduced into hu-PBL-NOD/SCID mice previously immunized with a KLH-DNP immunogen, this conjugate induced a targeted antibody-dependent cellular cytotoxicity (ADCC) response to PSMA-expressing tumor cells in a mouse xenograft model. The ability to create a small molecule inducible antibody response against self-antigens using endogenous non-autoreactive antibodies may provide advantages over the autologous immune response generated by conventional vaccines in certain therapeutic settings.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Supplementary figures and extended experimental procedures. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 39 publications.

    1. Brianna E. Dalesandro, Marcos M. Pires. Immunotargeting of Gram-Positive Pathogens via a Cell Wall Binding Tick Antifreeze Protein. Journal of Medicinal Chemistry 2023, 66 (1) , 503-515. https://doi.org/10.1021/acs.jmedchem.2c01464
    2. Harrison M. McCann, Benjamin P.M. Lake, Kyle S. Hoffman, Maria E. Davola, Karen L. Mossman, Anthony F. Rullo. Covalent Immune Proximity-Induction Strategy Using SuFEx-Engineered Bifunctional Viral Peptides. ACS Chemical Biology 2022, 17 (5) , 1269-1281. https://doi.org/10.1021/acschembio.2c00233
    3. Xin Liu, Weichuan Luo, Boning Zhang, Yong Gu Lee, Imrul Shahriar, Madduri Srinivasarao, Philip S. Low. Design of Neuraminidase-Targeted Imaging and Therapeutic Agents for the Diagnosis and Treatment of Influenza Virus Infections. Bioconjugate Chemistry 2021, 32 (8) , 1548-1553. https://doi.org/10.1021/acs.bioconjchem.1c00255
    4. Stephanie M. Rathmann, Afaf R. Genady, Nancy Janzen, Varun Anipindi, Shannon Czorny, Anthony F. Rullo, Saman Sadeghi, John F. Valliant. A Versatile Platform for the Development of Radiolabeled Antibody-Recruiting Small Molecules. Molecular Pharmaceutics 2021, 18 (7) , 2647-2656. https://doi.org/10.1021/acs.molpharmaceut.1c00187
    5. Eden Kapcan, Benjamin Lake, Zi Yang, Ali Zhang, Matthew S. Miller, Anthony F. Rullo. Covalent Stabilization of Antibody Recruitment Enhances Immune Recognition of Cancer Targets. Biochemistry 2021, 60 (19) , 1447-1458. https://doi.org/10.1021/acs.biochem.1c00127
    6. Brianna E. Dalesandro, Marcos M. Pires. Induction of Endogenous Antibody Recruitment to the Surface of the Pathogen Enterococcus faecium. ACS Infectious Diseases 2021, 7 (5) , 1116-1125. https://doi.org/10.1021/acsinfecdis.0c00547
    7. Benjamin Lake, Nickolas Serniuck, Eden Kapcan, Alex Wang, Anthony F. Rullo. Covalent Immune Recruiters: Tools to Gain Chemical Control Over Immune Recognition. ACS Chemical Biology 2020, 15 (4) , 1089-1095. https://doi.org/10.1021/acschembio.0c00112
    8. Janessa Wehr, Eden L. Sikorski, Elizabeth Bloch, Mary S. Feigman, Noel J. Ferraro, Trevor R. Baybutt, Adam E. Snook, Marcos M. Pires, Damien Thévenin. pH-Dependent Grafting of Cancer Cells with Antigenic Epitopes Promotes Selective Antibody-Mediated Cytotoxicity. Journal of Medicinal Chemistry 2020, 63 (7) , 3713-3722. https://doi.org/10.1021/acs.jmedchem.0c00016
    9. Ruben De Coen, Lutz Nuhn, Chamani Perera, Maria Arista-Romero, Martijn D. P. Risseeuw, Alec Freyn, Raffael Nachbagauer, Lorenzo Albertazzi, Serge Van Calenbergh, David A. Spiegel, Blake R. Peterson, Bruno G. De Geest. Synthetic Rhamnose Glycopolymer Cell-Surface Receptor for Endogenous Antibody Recruitment. Biomacromolecules 2020, 21 (2) , 793-802. https://doi.org/10.1021/acs.biomac.9b01483
    10. Todd M. Doran, Mohosin Sarkar, and Thomas Kodadek . Chemical Tools To Monitor and Manipulate Adaptive Immune Responses. Journal of the American Chemical Society 2016, 138 (19) , 6076-6094. https://doi.org/10.1021/jacs.6b02954
    11. Jonathan M. Fura, Sean E. Pidgeon, Morgan Birabaharan, and Marcos M. Pires . Dipeptide-Based Metabolic Labeling of Bacterial Cells for Endogenous Antibody Recruitment. ACS Infectious Diseases 2016, 2 (4) , 302-309. https://doi.org/10.1021/acsinfecdis.6b00007
    12. Afaf R. Genady, Nancy Janzen, Laura Banevicius, Mahmoud El-Gamal, Mohamed E. El-Zaria, and John F. Valliant . Preparation and Evaluation of Radiolabeled Antibody Recruiting Small Molecules That Target Prostate-Specific Membrane Antigen for Combined Radiotherapy and Immunotherapy. Journal of Medicinal Chemistry 2016, 59 (6) , 2660-2673. https://doi.org/10.1021/acs.jmedchem.5b01881
    13. Yi An, Jacob W. G. Bloom, and Steven E. Wheeler . Quantifying the π-Stacking Interactions in Nitroarene Binding Sites of Proteins. The Journal of Physical Chemistry B 2015, 119 (45) , 14441-14450. https://doi.org/10.1021/acs.jpcb.5b08126
    14. Paul M. Levine, Michael J. Garabedian, and Kent Kirshenbaum . Targeting the Androgen Receptor with Steroid Conjugates. Journal of Medicinal Chemistry 2014, 57 (20) , 8224-8237. https://doi.org/10.1021/jm500101h
    15. Christopher P. Ptak, Ching-Lin Hsieh, Gregory A. Weiland, and Robert E. Oswald . Role of Stoichiometry in the Dimer-Stabilizing Effect of AMPA Receptor Allosteric Modulators. ACS Chemical Biology 2014, 9 (1) , 128-133. https://doi.org/10.1021/cb4007166
    16. Eugene F. Douglass, Jr., Chad J. Miller, Gerson Sparer, Harold Shapiro, and David A. Spiegel . A Comprehensive Mathematical Model for Three-Body Binding Equilibria. Journal of the American Chemical Society 2013, 135 (16) , 6092-6099. https://doi.org/10.1021/ja311795d
    17. Paul M. Levine, Eugine Lee, Alex Greenfield, Richard Bonneau, Susan K. Logan, Michael J. Garabedian, and Kent Kirshenbaum . Androgen Receptor Antagonism by Divalent Ethisterone Conjugates in Castrate-Resistant Prostate Cancer Cells. ACS Chemical Biology 2012, 7 (10) , 1693-1701. https://doi.org/10.1021/cb300332w
    18. Maciej A. Walczak and Samuel J. Danishefsky . Solving the Convergence Problem in the Synthesis of Triantennary N-Glycan Relevant to Prostate-Specific Membrane Antigen (PSMA). Journal of the American Chemical Society 2012, 134 (39) , 16430-16433. https://doi.org/10.1021/ja307628w
    19. Patrick J. McEnaney, Christopher G. Parker, Andrew X. Zhang, and David A. Spiegel . Antibody-Recruiting Molecules: An Emerging Paradigm for Engaging Immune Function in Treating Human Disease. ACS Chemical Biology 2012, 7 (7) , 1139-1151. https://doi.org/10.1021/cb300119g
    20. Charles E. Jakobsche, Patrick J. McEnaney, Andrew X. Zhang, and David A. Spiegel . Reprogramming Urokinase into an Antibody-Recruiting Anticancer Agent. ACS Chemical Biology 2012, 7 (2) , 316-321. https://doi.org/10.1021/cb200374e
    21. Anh-Vy Le, Muyun Xu, Tianyi Yang, Luke Barrows, Devon F.A. Fontaine, Shuanghong Huo, Charles E. Jakobsche. Contrasting solution-state properties within a family of amyloid-binding molecular tools. Tetrahedron 2022, 116 , 132817. https://doi.org/10.1016/j.tet.2022.132817
    22. Koichi Sasaki, Kyohei Muguruma, Rento Osawa, Akane Fukuda, Atsuhiko Taniguchi, Akihiro Kishimura, Yoshio Hayashi, Takeshi Mori, Yoshiki Katayama. Synthesis and biological evaluation of a monocyclic Fc-binding antibody-recruiting molecule for cancer immunotherapy. RSC Medicinal Chemistry 2021, 12 (3) , 406-409. https://doi.org/10.1039/D0MD00337A
    23. Koichi Sasaki, Minori Harada, Takuma Yoshikawa, Hiroshi Tagawa, Yui Harada, Yoshikazu Yonemitsu, Takaaki Ryujin, Akihiro Kishimura, Takeshi Mori, Yoshiki Katayama. Fc‐Binding Antibody‐Recruiting Molecules Targeting Prostate‐Specific Membrane Antigen: Defucosylation of Antibody for Efficacy Improvement**. ChemBioChem 2021, 22 (3) , 496-500. https://doi.org/10.1002/cbic.202000577
    24. Alberto Dal Corso. Targeted Small‐Molecule Conjugates: The Future is Now. ChemBioChem 2020, 21 (23) , 3321-3322. https://doi.org/10.1002/cbic.202000507
    25. Xin Liu, Boning Zhang, Yingcai Wang, Hanan S. Haymour, Fenghua Zhang, Le-cun Xu, Madduri Srinivasarao, Philip S. Low. A universal dual mechanism immunotherapy for the treatment of influenza virus infections. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19386-5
    26. Koichi Sasaki, Minori Harada, Yoshiki Miyashita, Hiroshi Tagawa, Akihiro Kishimura, Takeshi Mori, Yoshiki Katayama. Fc-binding antibody-recruiting molecules exploit endogenous antibodies for anti-tumor immune responses. Chemical Science 2020, 11 (12) , 3208-3214. https://doi.org/10.1039/D0SC00017E
    27. Hongmok Kwon, Sang‐Hyun Son, Youngjoo Byun. Prostate‐Specific Membrane Antigen (PSMA)‐Targeted Radionuclide Probes for Imaging and Therapy of Prostate Cancer. Asian Journal of Organic Chemistry 2019, 8 (9) , 1588-1600. https://doi.org/10.1002/ajoc.201900329
    28. James T. Patterson, Jason Isaacson, Lisa Kerwin, Ghazi Atassi, Rohit Duggal, Damien Bresson, Tong Zhu, Heyue Zhou, Yanwen Fu, Gunnar F. Kaufmann. PSMA-targeted bispecific Fab conjugates that engage T cells. Bioorganic & Medicinal Chemistry Letters 2017, 27 (24) , 5490-5495. https://doi.org/10.1016/j.bmcl.2017.09.065
    29. Masanobu Nagano, Nancy Carrillo, Nobumasa Otsubo, Wataru Hakamata, Hitoshi Ban, Roberta P. Fuller, Nasir K. Bashiruddin, Carlos F. Barbas. In vivo programming of endogenous antibodies via oral administration of adaptor ligands. Bioorganic & Medicinal Chemistry 2017, 25 (21) , 5952-5961. https://doi.org/10.1016/j.bmc.2017.09.010
    30. Patrick J. McEnaney, Christopher G. Parker, Andrew X. Zhang. Antibody-Recruiting Small Molecules: Synthetic Constructs as Immunotherapeutics. 2017, 481-518. https://doi.org/10.1016/bs.armc.2017.08.008
    31. Arturo Castro Nava, Monica Cojoc, Claudia Peitzsch, Giuseppe Cirillo, Ina Kurth, Susanne Fuessel, Kati Erdmann, David Kunhardt, Orazio Vittorio, Silke Hampel, Anna Dubrovska. Development of novel radiochemotherapy approaches targeting prostate tumor progenitor cells using nanohybrids. International Journal of Cancer 2015, 137 (10) , 2492-2503. https://doi.org/10.1002/ijc.29614
    32. Kenneth C Valkenburg, Kenneth J Pienta. Drug discovery in prostate cancer mouse models. Expert Opinion on Drug Discovery 2015, 10 (9) , 1011-1024. https://doi.org/10.1517/17460441.2015.1052790
    33. Jonathan M. Fura, Marcos M. Pires. d‐ amino carboxamide‐based recruitment of dinitrophenol antibodies to bacterial surfaces via peptidoglycan remodeling. Peptide Science 2015, 104 (4) , 351-359. https://doi.org/10.1002/bip.22618
    34. Zhi-Hua Huang, Zhan-Yi Sun, Yue Gao, Pu-Guang Chen, Yan-Fang Liu, Yong-Xiang Chen, Yan-Mei Li. Strategy for Designing a Synthetic Tumor Vaccine: Multi-Component, Multivalency and Antigen Modification. Vaccines 2014, 2 (3) , 549-562. https://doi.org/10.3390/vaccines2030549
    35. Van N. Tra, Danielle H. Dube. Glycans in pathogenic bacteria – potential for targeted covalent therapeutics and imaging agents. Chem. Commun. 2014, 50 (36) , 4659-4673. https://doi.org/10.1039/C4CC00660G
    36. Pornchai Kaewsapsak, Onyinyechi Esonu, Danielle H. Dube. Recruiting the Host's Immune System to Target Helicobacter pylori 's Surface Glycans. ChemBioChem 2013, 14 (6) , 721-726. https://doi.org/10.1002/cbic.201300006
    37. Nikolaus Krall, Jörg Scheuermann, Dario Neri. Small Targeted Cytotoxics: Current State and Promises from DNA‐Encoded Chemical Libraries. Angewandte Chemie International Edition 2013, 52 (5) , 1384-1402. https://doi.org/10.1002/anie.201204631
    38. Nikolaus Krall, Jörg Scheuermann, Dario Neri. Entwicklung zielgerichteter niedermolekularer zytotoxischer Wirkstoffverbindungen mit DNA‐codierten chemischen Bibliotheken. Angewandte Chemie 2013, 125 (5) , 1424-1443. https://doi.org/10.1002/ange.201204631
    39. Jonathan Perez-Meseguer, Esther del Olmo, Blanca Alanis-Garza, Ricardo Escarcena, Elvira Garza-González, Ricardo Salazar-Aranda, Arturo San Feliciano, Noemí Waksman de Torres. Synthesis of Leubethanol derivatives and evaluation against Mycobacterium tuberculosis. Bioorganic & Medicinal Chemistry 2012, 20 (13) , 4155-4163. https://doi.org/10.1016/j.bmc.2012.04.059

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect