A Genetically Encoded FRET Sensor for Intracellular HemeClick to copy article linkArticle link copied!
Abstract

Heme plays pivotal roles in various cellular processes as well as in iron homeostasis in living systems. Here, we report a genetically encoded fluorescence resonance energy transfer (FRET) sensor for selective heme imaging by employing a pair of bacterial heme transfer chaperones as the sensory components. This heme-specific probe allows spatial-temporal visualization of intracellular heme distribution within living cells.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 63 publications.
- Reshma Bano, Neha Soleja, Mohd. Mohsin. Genetically Encoded FRET-Based Nanosensor for Real-Time Monitoring of A549 Exosomes: Early Diagnosis of Cancer. Analytical Chemistry 2023, 95
(13)
, 5738-5746. https://doi.org/10.1021/acs.analchem.2c05774
- Kanta Kawai, Tasuku Hirayama, Haruka Imai, Takanori Murakami, Masatoshi Inden, Isao Hozumi, Hideko Nagasawa. Molecular Imaging of Labile Heme in Living Cells Using a Small Molecule Fluorescent Probe. Journal of the American Chemical Society 2022, 144
(9)
, 3793-3803. https://doi.org/10.1021/jacs.1c08485
- Wenyue Cao, Chia-Chuan Dean Cho, Zhi Zachary Geng, Namir Shaabani, Xinyu R. Ma, Erol C. Vatansever, Yugendar R. Alugubelli, Yuying Ma, Sankar P. Chaki, William H. Ellenburg, Kai S. Yang, Yuchen Qiao, Robert Allen, Benjamin W. Neuman, Henry Ji, Shiqing Xu, Wenshe Ray Liu. Evaluation of SARS-CoV-2 Main Protease Inhibitors Using a Novel Cell-Based Assay. ACS Central Science 2022, 8
(2)
, 192-204. https://doi.org/10.1021/acscentsci.1c00910
- Andrea E. Gallio, Simon S.-P. Fung, Ana Cammack-Najera, Andrew J. Hudson, Emma L. Raven. Understanding the Logistics for the Distribution of Heme in Cells. JACS Au 2021, 1
(10)
, 1541-1555. https://doi.org/10.1021/jacsau.1c00288
- Edward R. H. Walter, Ying Ge, Justin C. Mason, Joseph J. Boyle, Nicholas J. Long. A Coumarin–Porphyrin FRET Break-Apart Probe for Heme Oxygenase-1. Journal of the American Chemical Society 2021, 143
(17)
, 6460-6469. https://doi.org/10.1021/jacs.0c12864
- Shuai Xu, Hong-Wen Liu, Lanlan Chen, Jie Yuan, Yongchao Liu, Lili Teng, Shuang-Yan Huan, Lin Yuan, Xiao-Bing Zhang, Weihong Tan. Learning from Artemisinin: Bioinspired Design of a Reaction-Based Fluorescent Probe for the Selective Sensing of Labile Heme in Complex Biosystems. Journal of the American Chemical Society 2020, 142
(5)
, 2129-2133. https://doi.org/10.1021/jacs.9b11245
- Samaneh Dastpeyman, Robert Godin, Gonzalo Cosa, Ann M. English. Quantifying Heme–Protein Maturation from Ratiometric Fluorescence Lifetime Measurements on the Single Fluorophore in Its GFP Fusion. The Journal of Physical Chemistry A 2020, 124
(4)
, 746-754. https://doi.org/10.1021/acs.jpca.9b11901
- Eric C. Greenwald, Sohum Mehta, Jin Zhang. Genetically Encoded Fluorescent Biosensors Illuminate the Spatiotemporal Regulation of Signaling Networks. Chemical Reviews 2018, 118
(24)
, 11707-11794. https://doi.org/10.1021/acs.chemrev.8b00333
- Sheng Wang, Miao Ding, Boxin Xue, Yingping Hou, Yujie Sun. Live Cell Visualization of Multiple Protein–Protein Interactions with BiFC Rainbow. ACS Chemical Biology 2018, 13
(5)
, 1180-1188. https://doi.org/10.1021/acschembio.7b00931
- Andy Jing Chen, Xiaojing Yuan, Junjie Li, Puting Dong, Iqbal Hamza, Ji-Xin Cheng. Label-Free Imaging of Heme Dynamics in Living Organisms by Transient Absorption Microscopy. Analytical Chemistry 2018, 90
(5)
, 3395-3401. https://doi.org/10.1021/acs.analchem.7b05046
- David A. Hanna, Osiris Martinez-Guzman, and Amit R. Reddi . Heme Gazing: Illuminating Eukaryotic Heme Trafficking, Dynamics, and Signaling with Fluorescent Heme Sensors. Biochemistry 2017, 56
(13)
, 1815-1823. https://doi.org/10.1021/acs.biochem.7b00007
- Amit R. Reddi and Iqbal Hamza . Heme Mobilization in Animals: A Metallolipid’s Journey. Accounts of Chemical Research 2016, 49
(6)
, 1104-1110. https://doi.org/10.1021/acs.accounts.5b00553
- Satu Lahtinen, Qi Wang, and Tero Soukka . Long-Lifetime Luminescent Europium(III) Complex as an Acceptor in an Upconversion Resonance Energy Transfer Based Homogeneous Assay. Analytical Chemistry 2016, 88
(1)
, 653-658. https://doi.org/10.1021/acs.analchem.5b02228
- T. Hirayama. Construction of Heme and Non-heme Iron Sensor Compounds, Which are Very Useful for Live-cell Imaging. 2025, 249-262. https://doi.org/10.1039/9781837677979-00249
- Mina Ahmadi, Zhuangyu Zhao, Ivan J. Dmochowski. RIBOsensor for FRET-based, real-time ribose measurements in live cells. Chemical Science 2025, 16
(18)
, 8125-8135. https://doi.org/10.1039/D5SC00244C
- Daisuke Tsuji, Tasuku Hirayama, Kanta Kawai, Hideko Nagasawa, Reiko Akagi. Application of fluorescent probe for labile heme quantification in physiological dynamics. Biochimica et Biophysica Acta (BBA) - General Subjects 2024, 1868
(11)
, 130707. https://doi.org/10.1016/j.bbagen.2024.130707
- Bingxiao Wen, Bernhard Grimm. A genetically encoded fluorescent heme sensor detects free heme in plants. Plant Physiology 2024, 196
(2)
, 830-841. https://doi.org/10.1093/plphys/kiae291
- Audrey Belot, Herve Puy, Iqbal Hamza, Herbert L. Bonkovsky. Update on heme biosynthesis,
tissue‐specific
regulation, heme transport, relation to iron metabolism and cellular energy. Liver International 2024, 44
(9)
, 2235-2250. https://doi.org/10.1111/liv.15965
- Iramofu M. Dominic, Mathilda M. Willoughby, Abigail K. Freer, Courtney M. Moore, Rebecca K. Donegan, Osiris Martinez-Guzman, David A. Hanna, Amit R. Reddi. Fluorometric Methods to Measure Bioavailable and Total Heme. 2024, 151-194. https://doi.org/10.1007/978-1-0716-4043-2_9
- Amber L. Grunow, Susan C. Carroll, Alicia N. Kreiman, Molly C. Sutherland, , . Structure-function analysis of the heme-binding WWD domain in the bacterial holocytochrome
c
synthase, CcmFH. mBio 2023, 14
(6)
https://doi.org/10.1128/mbio.01509-23
- Brendan J. Mahoney, Andrew K. Goring, Yueying Wang, Poojita Dasika, Anqi Zhou, Emmitt Grossbard, Duilio Cascio, Joseph A. Loo, Robert T. Clubb. Development and atomic structure of a new fluorescence-based sensor to probe heme transfer in bacterial pathogens. Journal of Inorganic Biochemistry 2023, 249 , 112368. https://doi.org/10.1016/j.jinorgbio.2023.112368
- Hyojung Kim, Courtney M Moore, Santi Mestre-Fos, David A Hanna, Loren Dean Williams, Amit R Reddi, Matthew P Torres. Depletion assisted hemin affinity (DAsHA) proteomics reveals an expanded landscape of heme-binding proteins in the human proteome. Metallomics 2023, 15
(3)
https://doi.org/10.1093/mtomcs/mfad004
- Peng Xue, Eddy Sánchez-León, Djihane Damoo, Guanggan Hu, Won Hee Jung, James W. Kronstad. Heme sensing and trafficking in fungi. Fungal Biology Reviews 2023, 43 , 100286. https://doi.org/10.1016/j.fbr.2022.09.002
- Aileen Krüger, Marc Keppel, Vikas Sharma, Julia Frunzke. The diversity of heme sensor systems – heme-responsive transcriptional regulation mediated by transient heme protein interactions. FEMS Microbiology Reviews 2022, 46
(3)
https://doi.org/10.1093/femsre/fuac002
- Vasiliki‐Dimitra C. Tsolaki, Sofia K. Georgiou‐Siafis, Athina I. Tsamadou, Stefanos A. Tsiftsoglou, Martina Samiotaki, George Panayotou, Asterios S. Tsiftsoglou. Hemin accumulation and identification of a heme‐binding protein clan in K562 cells by proteomic and computational analysis. Journal of Cellular Physiology 2022, 237
(2)
, 1315-1340. https://doi.org/10.1002/jcp.30595
- David A. Hanna, Courtney M. Moore, Liu Liu, Xiaojing Yuan, Iramofu M. Dominic, Angela S. Fleischhacker, Iqbal Hamza, Stephen W. Ragsdale, Amit R. Reddi. Heme oxygenase-2 (HO-2) binds and buffers labile ferric heme in human embryonic kidney cells. Journal of Biological Chemistry 2022, 298
(2)
, 101549. https://doi.org/10.1016/j.jbc.2021.101549
- Angela S. Fleischhacker, Anindita Sarkar, Liu Liu, Stephen W. Ragsdale. Regulation of protein function and degradation by heme, heme responsive motifs, and CO. Critical Reviews in Biochemistry and Molecular Biology 2022, 57
(1)
, 16-47. https://doi.org/10.1080/10409238.2021.1961674
- Wouter Van Genechten, Patrick Van Dijck, Liesbeth Demuyser. Fluorescent toys ‘n’ tools lighting the way in fungal research. FEMS Microbiology Reviews 2021, 45
(5)
https://doi.org/10.1093/femsre/fuab013
- Galvin C.-H. Leung, Simon S.-P. Fung, Andrea E. Gallio, Robert Blore, Dominic Alibhai, Emma L. Raven, Andrew J. Hudson. Unravelling the mechanisms controlling heme supply and demand. Proceedings of the National Academy of Sciences 2021, 118
(22)
https://doi.org/10.1073/pnas.2104008118
- Yosuke Hisamatsu, Koki Otani, Hiroshi Takase, Naoki Umezawa, Tsunehiko Higuchi. Fluorescence Response and Self‐Assembly of a Tweezer‐Type Synthetic Receptor Triggered by Complexation with Heme and Its Catabolites. Chemistry – A European Journal 2021, 27
(21)
, 6489-6499. https://doi.org/10.1002/chem.202003872
- Yuanqiang Sun, Pengjuan Sun, Wei Guo. Fluorescent probes for iron, heme, and related enzymes. Coordination Chemistry Reviews 2021, 429 , 213645. https://doi.org/10.1016/j.ccr.2020.213645
- Ian G. Chambers, Mathilda M. Willoughby, Iqbal Hamza, Amit R. Reddi. One ring to bring them all and in the darkness bind them: The trafficking of heme without deliverers. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2021, 1868
(1)
, 118881. https://doi.org/10.1016/j.bbamcr.2020.118881
- Joachim Kloehn, Clare R. Harding, Dominique Soldati‐Favre. Supply and demand—heme synthesis, salvage and utilization by Apicomplexa. The FEBS Journal 2021, 288
(2)
, 382-404. https://doi.org/10.1111/febs.15445
- Mohammad Ahmad, Naser A. Anjum, Ambreen Asif, Altaf Ahmad. Real-time monitoring of glutathione in living cells using genetically encoded FRET-based ratiometric nanosensor. Scientific Reports 2020, 10
(1)
https://doi.org/10.1038/s41598-020-57654-y
- Liu Liu, Arti B. Dumbrepatil, Angela S. Fleischhacker, E. Neil G. Marsh, Stephen W. Ragsdale. Heme oxygenase-2 is post-translationally regulated by heme occupancy in the catalytic site. Journal of Biological Chemistry 2020, 295
(50)
, 17227-17240. https://doi.org/10.1074/jbc.RA120.014919
- Santi Mestre-Fos, Chieri Ito, Courtney M. Moore, Amit R. Reddi, Loren Dean Williams. Human ribosomal G-quadruplexes regulate heme bioavailability. Journal of Biological Chemistry 2020, 295
(44)
, 14855-14865. https://doi.org/10.1074/jbc.RA120.014332
- Gaurav Bairwa, Eddy Sánchez-León, Eunsoo Do, Won Hee Jung, James W. Kronstad, . A Cytoplasmic Heme Sensor Illuminates the Impacts of Mitochondrial and Vacuolar Functions and Oxidative Stress on Heme-Iron Homeostasis in Cryptococcus neoformans. mBio 2020, 11
(4)
https://doi.org/10.1128/mBio.00986-20
- Amy Bergmann, Katherine Floyd, Melanie Key, Carly Dameron, Kerrick C. Rees, L. Brock Thornton, Daniel C. Whitehead, Iqbal Hamza, Zhicheng Dou, . Toxoplasma gondii requires its plant-like heme biosynthesis pathway for infection. PLOS Pathogens 2020, 16
(5)
, e1008499. https://doi.org/10.1371/journal.ppat.1008499
- Samantha A. Swenson, Courtney M. Moore, Jason R. Marcero, Amy E. Medlock, Amit R. Reddi, Oleh Khalimonchuk. From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme. Cells 2020, 9
(3)
, 579. https://doi.org/10.3390/cells9030579
- Neha Soleja, Mohd. Mohsin. Opportunities for Real-Time Monitoring of Biomolecules Using FRET-Based Nanosensors. 2020, 1-14. https://doi.org/10.1007/978-981-15-8346-9_1
- Amreen, Mohammad Ahmad, Ruphi Naz. Recent Advances of Fluorescence Resonance Energy Transfer-Based Nanosensors for the Detection of Human Ailments. 2020, 157-173. https://doi.org/10.1007/978-981-15-8346-9_8
- Meghan M. Verstraete, L. Daniela Morales, Marek J. Kobylarz, Slade A. Loutet, Holly A. Laakso, Tyler B. Pinter, Martin J. Stillman, David E. Heinrichs, Michael E.P. Murphy. The heme-sensitive regulator SbnI has a bifunctional role in staphyloferrin B production by Staphylococcus aureus. Journal of Biological Chemistry 2019, 294
(30)
, 11622-11636. https://doi.org/10.1074/jbc.RA119.007757
- Ovais Manzoor, Neha Soleja, Parvez Khan, Md. Imtaiyaz Hassan, Mohd Mohsin. Visualization of thiamine in living cells using genetically encoded fluorescent nanosensor. Biochemical Engineering Journal 2019, 146 , 170-178. https://doi.org/10.1016/j.bej.2019.03.018
- Galvin C.-H. Leung, Simon S.-P. Fung, Nicholas R.B. Dovey, Emma L. Raven, Andrew J. Hudson. Precise determination of heme binding affinity in proteins. Analytical Biochemistry 2019, 572 , 45-51. https://doi.org/10.1016/j.ab.2019.02.021
- Rebecca K. Donegan, Courtney M. Moore, David A. Hanna, Amit R. Reddi. Handling heme: The mechanisms underlying the movement of heme within and between cells. Free Radical Biology and Medicine 2019, 133 , 88-100. https://doi.org/10.1016/j.freeradbiomed.2018.08.005
- Jagpreet Singh Sidhu, Ashutosh Singh, Neha Garg, Navneet Kaur, Narinder Singh. Gold conjugated carbon dots nano assembly: FRET paired fluorescence probe for cysteine recognition. Sensors and Actuators B: Chemical 2019, 282 , 515-522. https://doi.org/10.1016/j.snb.2018.11.105
- Laura D. Newton, Sofia I. Pascu, Rex M. Tyrrell, Ian M. Eggleston. Development of a peptide-based fluorescent probe for biological heme monitoring. Organic & Biomolecular Chemistry 2019, 17
(3)
, 467-471. https://doi.org/10.1039/C8OB02290A
- Pijush Ch. Dey, Ratan Das. Ligand free surface of CdS nanoparticles enhances the energy transfer efficiency on interacting with Eosin Y dye – Helping in the sensing of very low level of chlorpyrifos in water. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019, 207 , 156-163. https://doi.org/10.1016/j.saa.2018.09.014
- Biswash Thakuri, Amanda B. Graves, Alex Chao, Sommer L. Johansen, Celia W. Goulding, Matthew D. Liptak. The affinity of MhuD for heme is consistent with a heme degrading function
in vivo. Metallomics 2018, 10
(11)
, 1560-1563. https://doi.org/10.1039/C8MT00238J
- David A. Hanna, Rebecca Hu, Hyojung Kim, Osiris Martinez-Guzman, Matthew P. Torres, Amit R. Reddi. Heme bioavailability and signaling in response to stress in yeast cells. Journal of Biological Chemistry 2018, 293
(32)
, 12378-12393. https://doi.org/10.1074/jbc.RA118.002125
- Sitara B. Sankar, Rebecca K. Donegan, Kajol J. Shah, Amit R. Reddi, Levi B. Wood. Heme and hemoglobin suppress amyloid β–mediated inflammatory activation of mouse astrocytes. Journal of Biological Chemistry 2018, 293
(29)
, 11358-11373. https://doi.org/10.1074/jbc.RA117.001050
- Jonathan M. Comer, Li Zhang. Experimental Methods for Studying Cellular Heme Signaling. Cells 2018, 7
(6)
, 47. https://doi.org/10.3390/cells7060047
- Ziyang Hao, Rongfeng Zhu, Peng R Chen. Genetically encoded fluorescent sensors for measuring transition and heavy metals in biological systems. Current Opinion in Chemical Biology 2018, 43 , 87-96. https://doi.org/10.1016/j.cbpa.2017.12.002
- Yosuke Hisamatsu, Naoki Umezawa, Hirokazu Yagi, Koichi Kato, Tsunehiko Higuchi. Design and synthesis of a 4-aminoquinoline-based molecular tweezer that recognizes protoporphyrin IX and iron(
iii
) protoporphyrin IX and its application as a supramolecular photosensitizer. Chemical Science 2018, 9
(38)
, 7455-7467. https://doi.org/10.1039/C8SC02133C
- Amelie Wißbrock, Diana Imhof. A Tough Nut to Crack: Intracellular Detection and Quantification of Heme in Malaria Parasites by a Genetically Encoded Protein Sensor. ChemBioChem 2017, 18
(16)
, 1561-1564. https://doi.org/10.1002/cbic.201700274
- James R. Abshire, Christopher J. Rowlands, Suresh M. Ganesan, Peter T. C. So, Jacquin C. Niles. Quantification of labile heme in live malaria parasites using a genetically encoded biosensor. Proceedings of the National Academy of Sciences 2017, 114
(11)
https://doi.org/10.1073/pnas.1615195114
- Lynn Sanford, Amy Palmer. Recent Advances in Development of Genetically Encoded Fluorescent Sensors. 2017, 1-49. https://doi.org/10.1016/bs.mie.2017.01.019
- Matthew A. Conger, Deepika Pokhrel, Matthew D. Liptak. Tight binding of heme to Staphylococcus aureus IsdG and IsdI precludes design of a competitive inhibitor. Metallomics 2017, 9
(5)
, 556-563. https://doi.org/10.1039/C7MT00035A
- Jaber Keyvan Rad, Ali Reza Mahdavian, Samideh Khoei, Azam Janati Esfahani. FRET-based acrylic nanoparticles with dual-color photoswitchable properties in DU145 human prostate cancer cell line labeling. Polymer 2016, 98 , 263-269. https://doi.org/10.1016/j.polymer.2016.06.042
- David A. Hanna, Raven M. Harvey, Osiris Martinez-Guzman, Xiaojing Yuan, Bindu Chandrasekharan, Gheevarghese Raju, F. Wayne Outten, Iqbal Hamza, Amit R. Reddi. Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors. Proceedings of the National Academy of Sciences 2016, 113
(27)
, 7539-7544. https://doi.org/10.1073/pnas.1523802113
- Margaret C. Carpenter, Amy E. Palmer. Unraveling the mystery of the ring: Tracking heme dynamics in living cells. Proceedings of the National Academy of Sciences 2016, 113
(27)
, 7296-7297. https://doi.org/10.1073/pnas.1607505113
- Hans Henning Brewitz, Nishit Goradia, Erik Schubert, Kerstin Galler, Toni Kühl, Benjamin Syllwasschy, Jürgen Popp, Ute Neugebauer, Gregor Hagelueken, Olav Schiemann, Oliver Ohlenschläger, Diana Imhof. Heme interacts with histidine- and tyrosine-based protein motifs and inhibits enzymatic activity of chloramphenicol acetyltransferase from Escherichia coli. Biochimica et Biophysica Acta (BBA) - General Subjects 2016, 1860
(6)
, 1343-1353. https://doi.org/10.1016/j.bbagen.2016.03.027
- Yong Liu, Fangfang Meng, Yonghe Tang, Xiaoqiang Yu, Weiying Lin. A photostable fluorescent probe for rapid monitoring and tracking of a trans-membrane process and mitochondrial fission and fusion dynamics. New Journal of Chemistry 2016, 40
(4)
, 3726-3731. https://doi.org/10.1039/C5NJ02821C
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.