ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Atom pairs as molecular features in structure-activity studies: definition and applications

Cite this: J. Chem. Inf. Comput. Sci. 1985, 25, 2, 64–73
Publication Date (Print):May 1, 1985
https://doi.org/10.1021/ci00046a002
    ACS Legacy Archive

    Article Views

    3105

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 734 publications.

    1. Sizhe Zhang, Xuecong Tian, Chen Chen, Ying Su, Wanhua Huang, Xiaoyi Lv, Cheng Chen, Hongyi Li. AIGO-DTI: Predicting Drug–Target Interactions Based on Improved Drug Properties Combined with Adaptive Iterative Algorithms. Journal of Chemical Information and Modeling 2024, Article ASAP.
    2. Felipe Perez, Azeezat Ali, Jianxin Wang, Joseph E. Patterson, Ramesh Kini, Alberto Striolo. Machine Learning Suggests Possible Bias in Molecular Simulations for Asphaltene Systems. Energy & Fuels 2024, 38 (9) , 7437-7453. https://doi.org/10.1021/acs.energyfuels.3c04474
    3. Yuheng Ding, Bo Qiang, Qixuan Chen, Yiqiao Liu, Liangren Zhang, Zhenming Liu. Exploring Chemical Reaction Space with Machine Learning Models: Representation and Feature Perspective. Journal of Chemical Information and Modeling 2024, 64 (8) , 2955-2970. https://doi.org/10.1021/acs.jcim.4c00004
    4. Miguel Gallegos, Bienfait Kabuyaya Isamura, Paul L. A. Popelier, Ángel Martín Pendás. An Unsupervised Machine Learning Approach for the Automatic Construction of Local Chemical Descriptors. Journal of Chemical Information and Modeling 2024, 64 (8) , 3059-3079. https://doi.org/10.1021/acs.jcim.3c01906
    5. Panagiotis G. Karamertzanis, Grace Patlewicz, Marta Sannicola, Katie Paul-Friedman, Imran Shah. Systematic Approaches for the Encoding of Chemical Groups: A Case Study. Chemical Research in Toxicology 2024, 37 (4) , 600-619. https://doi.org/10.1021/acs.chemrestox.3c00411
    6. Nathan Villavicencio, Michael N. Groves. Tuning Reinforcement Learning Parameters for Cluster Selection to Enhance Evolutionary Algorithms. ACS Engineering Au 2024, Article ASAP.
    7. Wouter Heyndrickx, Lewis Mervin, Tobias Morawietz, Noé Sturm, Lukas Friedrich, Adam Zalewski, Anastasia Pentina, Lina Humbeck, Martijn Oldenhof, Ritsuya Niwayama, Peter Schmidtke, Nikolas Fechner, Jaak Simm, Adam Arany, Nicolas Drizard, Rama Jabal, Arina Afanasyeva, Regis Loeb, Shlok Verma, Simon Harnqvist, Matthew Holmes, Balazs Pejo, Maria Telenczuk, Nicholas Holway, Arne Dieckmann, Nicola Rieke, Friederike Zumsande, Djork-Arné Clevert, Michael Krug, Christopher Luscombe, Darren Green, Peter Ertl, Peter Antal, David Marcus, Nicolas Do Huu, Hideyoshi Fuji, Stephen Pickett, Gergely Acs, Eric Boniface, Bernd Beck, Yax Sun, Arnaud Gohier, Friedrich Rippmann, Ola Engkvist, Andreas H. Göller, Yves Moreau, Mathieu N. Galtier, Ansgar Schuffenhauer, Hugo Ceulemans. MELLODDY: Cross-pharma Federated Learning at Unprecedented Scale Unlocks Benefits in QSAR without Compromising Proprietary Information. Journal of Chemical Information and Modeling 2024, 64 (7) , 2331-2344. https://doi.org/10.1021/acs.jcim.3c00799
    8. Yining Zhang, Sijie Xing, Lai Wei, Tongfei Shi. Utilizing Machine Learning Models for Predicting Diamagnetic Susceptibility of Organic Compounds. ACS Omega 2024, 9 (12) , 14368-14374. https://doi.org/10.1021/acsomega.3c10469
    9. Jiancong Xie, Yi Wang, Jiahua Rao, Shuangjia Zheng, Yuedong Yang. Self-Supervised Contrastive Molecular Representation Learning with a Chemical Synthesis Knowledge Graph. Journal of Chemical Information and Modeling 2024, 64 (6) , 1945-1954. https://doi.org/10.1021/acs.jcim.4c00157
    10. Zhonglin Cao, Simone Sciabola, Ye Wang. Large-Scale Pretraining Improves Sample Efficiency of Active Learning-Based Virtual Screening. Journal of Chemical Information and Modeling 2024, 64 (6) , 1882-1891. https://doi.org/10.1021/acs.jcim.3c01938
    11. Son Gyo Jung, Guwon Jung, Jacqueline M. Cole. Automatic Prediction of Peak Optical Absorption Wavelengths in Molecules Using Convolutional Neural Networks. Journal of Chemical Information and Modeling 2024, 64 (5) , 1486-1501. https://doi.org/10.1021/acs.jcim.3c01792
    12. Yanqiao Zhu, Dingshuo Chen, Yuanqi Du, Yingze Wang, Qiang Liu, Shu Wu. Molecular Contrastive Pretraining with Collaborative Featurizations. Journal of Chemical Information and Modeling 2024, 64 (4) , 1112-1122. https://doi.org/10.1021/acs.jcim.3c01468
    13. Benjamin Kaufman, Edward C. Williams, Carl Underkoffler, Ryan Pederson, Narbe Mardirossian, Ian Watson, John Parkhill. COATI: Multimodal Contrastive Pretraining for Representing and Traversing Chemical Space. Journal of Chemical Information and Modeling 2024, 64 (4) , 1145-1157. https://doi.org/10.1021/acs.jcim.3c01753
    14. Bartłomiej Fliszkiewicz, Marcin Sajdak. Toward Quantum-Informed Atom Pairs. ACS Omega 2024, 9 (5) , 5966-5971. https://doi.org/10.1021/acsomega.3c09744
    15. Maria Cristina Lomuscio, Carmen Abate, Domenico Alberga, Antonio Laghezza, Nicola Corriero, Nicola Antonio Colabufo, Michele Saviano, Pietro Delre, Giuseppe Felice Mangiatordi. AMALPHI: A Machine Learning Platform for Predicting Drug-Induced PhospholIpidosis. Molecular Pharmaceutics 2024, 21 (2) , 864-872. https://doi.org/10.1021/acs.molpharmaceut.3c00964
    16. Sigitas Mikutis, Stefanie Lawrinowitz, Christian Kretzer, Lavinia Dunsmore, Laurynas Sketeris, Tiago Rodrigues, Oliver Werz, Gonçalo J. L. Bernardes. Machine Learning Uncovers Natural Product Modulators of the 5-Lipoxygenase Pathway and Facilitates the Elucidation of Their Biological Mechanisms. ACS Chemical Biology 2024, 19 (1) , 217-229. https://doi.org/10.1021/acschembio.3c00725
    17. Dilek Coskun, Muyun Lihan, João P. G. L. M. Rodrigues, Márton Vass, Daniel Robinson, Richard A. Friesner, Edward B. Miller. Using AlphaFold and Experimental Structures for the Prediction of the Structure and Binding Affinities of GPCR Complexes via Induced Fit Docking and Free Energy Perturbation. Journal of Chemical Theory and Computation 2024, 20 (1) , 477-489. https://doi.org/10.1021/acs.jctc.3c00839
    18. Tiantao Liu, Zheng Cao, Yuansheng Huang, Yue Wan, Jian Wu, Chang-Yu Hsieh, Tingjun Hou, Yu Kang. SynCluster: Reaction Type Clustering and Recommendation Framework for Synthesis Planning. JACS Au 2023, 3 (12) , 3446-3461. https://doi.org/10.1021/jacsau.3c00607
    19. Shifa Zhong, Xiaohong Guan. Count-Based Morgan Fingerprint: A More Efficient and Interpretable Molecular Representation in Developing Machine Learning-Based Predictive Regression Models for Water Contaminants’ Activities and Properties. Environmental Science & Technology 2023, 57 (46) , 18193-18202. https://doi.org/10.1021/acs.est.3c02198
    20. Dmitry Zankov, Timur Madzhidov, Pavel Polishchuk, Pavel Sidorov, Alexandre Varnek. Multi-Instance Learning Approach to the Modeling of Enantioselectivity of Conformationally Flexible Organic Catalysts. Journal of Chemical Information and Modeling 2023, 63 (21) , 6629-6641. https://doi.org/10.1021/acs.jcim.3c00393
    21. Maxime Langevin, Christoph Grebner, Stefan Güssregen, Susanne Sauer, Yi Li, Hans Matter, Marc Bianciotto. Impact of Applicability Domains to Generative Artificial Intelligence. ACS Omega 2023, 8 (25) , 23148-23167. https://doi.org/10.1021/acsomega.3c00883
    22. Jennifer L. Hickey, Dan Sindhikara, Susan L. Zultanski, Danielle M. Schultz. Beyond 20 in the 21st Century: Prospects and Challenges of Non-canonical Amino Acids in Peptide Drug Discovery. ACS Medicinal Chemistry Letters 2023, 14 (5) , 557-565. https://doi.org/10.1021/acsmedchemlett.3c00037
    23. Megumi Iwayama, Stephen Wu, Chang Liu, Ryo Yoshida. Functional Output Regression for Machine Learning in Materials Science. Journal of Chemical Information and Modeling 2022, 62 (20) , 4837-4851. https://doi.org/10.1021/acs.jcim.2c00626
    24. Alexandre V. Fassio, Laura Shub, Luca Ponzoni, Jessica McKinley, Matthew J. O’Meara, Rafaela S. Ferreira, Michael J. Keiser, Raquel C. de Melo Minardi. Prioritizing Virtual Screening with Interpretable Interaction Fingerprints. Journal of Chemical Information and Modeling 2022, 62 (18) , 4300-4318. https://doi.org/10.1021/acs.jcim.2c00695
    25. Robert P. Sheridan. Stability of Prediction in Production ADMET Models as a Function of Version: Why and When Predictions Change. Journal of Chemical Information and Modeling 2022, 62 (15) , 3477-3485. https://doi.org/10.1021/acs.jcim.2c00803
    26. Robert P. Sheridan, J. Chris Culberson, Elizabeth Joshi, Matthew Tudor, Prabha Karnachi. Prediction Accuracy of Production ADMET Models as a Function of Version: Activity Cliffs Rule. Journal of Chemical Information and Modeling 2022, 62 (14) , 3275-3280. https://doi.org/10.1021/acs.jcim.2c00699
    27. Zhiqing Xu, Radhakrishnan Mahadevan. Efficient Enumeration of Branched Novel Biochemical Pathways Using a Probabilistic Technique. Industrial & Engineering Chemistry Research 2022, 61 (25) , 8645-8657. https://doi.org/10.1021/acs.iecr.1c02211
    28. Michael C. Hutter. Differential Multimolecule Fingerprint for Similarity Search─Making Use of Active and Inactive Compound Sets in Virtual Screening. Journal of Chemical Information and Modeling 2022, 62 (11) , 2726-2736. https://doi.org/10.1021/acs.jcim.2c00242
    29. Hiroshi Nakano, Tomoyuki Miyao. Visualization of Topological Pharmacophore Space with Graph Edit Distance. ACS Omega 2022, 7 (16) , 14057-14068. https://doi.org/10.1021/acsomega.2c00173
    30. Katrina W. Lexa, Kevin M. Belyk, Jeremy Henle, Bangping Xiang, Robert P. Sheridan, Scott E. Denmark, Rebecca T. Ruck, Edward C. Sherer. Application of Machine Learning and Reaction Optimization for the Iterative Improvement of Enantioselectivity of Cinchona-Derived Phase Transfer Catalysts. Organic Process Research & Development 2022, 26 (3) , 670-682. https://doi.org/10.1021/acs.oprd.1c00155
    31. Mikhail Andronov, Maxim V. Fedorov, Sergey Sosnin. Exploring Chemical Reaction Space with Reaction Difference Fingerprints and Parametric t-SNE. ACS Omega 2021, 6 (45) , 30743-30751. https://doi.org/10.1021/acsomega.1c04778
    32. Hamid Safizadeh, Scott W. Simpkins, Justin Nelson, Sheena C. Li, Jeff S. Piotrowski, Mami Yoshimura, Yoko Yashiroda, Hiroyuki Hirano, Hiroyuki Osada, Minoru Yoshida, Charles Boone, Chad L. Myers. Improving Measures of Chemical Structural Similarity Using Machine Learning on Chemical–Genetic Interactions. Journal of Chemical Information and Modeling 2021, 61 (9) , 4156-4172. https://doi.org/10.1021/acs.jcim.0c00993
    33. Michael Tynes, Wenhao Gao, Daniel J. Burrill, Enrique R. Batista, Danny Perez, Ping Yang, Nicholas Lubbers. Pairwise Difference Regression: A Machine Learning Meta-algorithm for Improved Prediction and Uncertainty Quantification in Chemical Search. Journal of Chemical Information and Modeling 2021, 61 (8) , 3846-3857. https://doi.org/10.1021/acs.jcim.1c00670
    34. Xiaolin Pan, Hao Wang, Cuiyu Li, John Z. H. Zhang, Changge Ji. MolGpka: A Web Server for Small Molecule pKa Prediction Using a Graph-Convolutional Neural Network. Journal of Chemical Information and Modeling 2021, 61 (7) , 3159-3165. https://doi.org/10.1021/acs.jcim.1c00075
    35. Marina Garcia de Lomana, Andrea Morger, Ulf Norinder, Roland Buesen, Robert Landsiedel, Andrea Volkamer, Johannes Kirchmair, Miriam Mathea. ChemBioSim: Enhancing Conformal Prediction of In Vivo Toxicity by Use of Predicted Bioactivities. Journal of Chemical Information and Modeling 2021, 61 (7) , 3255-3272. https://doi.org/10.1021/acs.jcim.1c00451
    36. Yaping Wen, Yunhao Liu, Bohan Yan, Théophile Gaudin, Jing Ma, Haibo Ma. Simultaneous Optimization of Donor/Acceptor Pairs and Device Specifications for Nonfullerene Organic Solar Cells Using a QSPR Model with Morphological Descriptors. The Journal of Physical Chemistry Letters 2021, 12 (20) , 4980-4986. https://doi.org/10.1021/acs.jpclett.1c01099
    37. Marina Garcia de Lomana, Andreas Georg Weber, Barbara Birk, Robert Landsiedel, Janosch Achenbach, Klaus-Juergen Schleifer, Miriam Mathea, Johannes Kirchmair. In Silico Models to Predict the Perturbation of Molecular Initiating Events Related to Thyroid Hormone Homeostasis. Chemical Research in Toxicology 2021, 34 (2) , 396-411. https://doi.org/10.1021/acs.chemrestox.0c00304
    38. Ryan H. B. Smith, Zaigham M. Khan, Peter Man-Un Ung, Alex P. Scopton, Lisa Silber, Seshat M. Mack, Alexander M. Real, Avner Schlessinger, Arvin C. Dar. Type II Binders Targeting the “GLR-Out” Conformation of the Pseudokinase STRADα. Biochemistry 2021, 60 (4) , 289-302. https://doi.org/10.1021/acs.biochem.0c00714
    39. Aleksandra Nilova, Louis-Charles Campeau, Edward C. Sherer, David R. Stuart. Analysis of Benzenoid Substitution Patterns in Small Molecule Active Pharmaceutical Ingredients. Journal of Medicinal Chemistry 2020, 63 (22) , 13389-13396. https://doi.org/10.1021/acs.jmedchem.0c00915
    40. Julian Ivanov, Dmitrii Polshakov, Junko Kato-Weinstein, Qiongqiong Zhou, Yingzhu Li, Roger Granet, Linda Garner, Yi Deng, Cynthia Liu, Dana Albaiu, Jeffrey Wilson, Christopher Aultman. Quantitative Structure–Activity Relationship Machine Learning Models and their Applications for Identifying Viral 3CLpro- and RdRp-Targeting Compounds as Potential Therapeutics for COVID-19 and Related Viral Infections. ACS Omega 2020, 5 (42) , 27344-27358. https://doi.org/10.1021/acsomega.0c03682
    41. Todd J. Wills, Dmitrii A. Polshakov, Matthew C. Robinson, Alpha A. Lee. Impact of Chemist-In-The-Loop Molecular Representations on Machine Learning Outcomes. Journal of Chemical Information and Modeling 2020, 60 (10) , 4449-4456. https://doi.org/10.1021/acs.jcim.0c00193
    42. Luka Stojanović, Miloš Popović, Nebojša Tijanić, Goran Rakočević, Marko Kalinić. Improved Scaffold Hopping in Ligand-Based Virtual Screening Using Neural Representation Learning. Journal of Chemical Information and Modeling 2020, 60 (10) , 4629-4639. https://doi.org/10.1021/acs.jcim.0c00622
    43. Anthony DiFranzo, Robert P. Sheridan, Andy Liaw, Matthew Tudor. Nearest Neighbor Gaussian Process for Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling 2020, 60 (10) , 4653-4663. https://doi.org/10.1021/acs.jcim.0c00678
    44. Zoe Cournia, Bryce K. Allen, Thijs Beuming, David A. Pearlman, Brian K. Radak, Woody Sherman. Rigorous Free Energy Simulations in Virtual Screening. Journal of Chemical Information and Modeling 2020, 60 (9) , 4153-4169. https://doi.org/10.1021/acs.jcim.0c00116
    45. Christoph Grebner, Erik Malmerberg, Andrew Shewmaker, Jose Batista, Anthony Nicholls, Jens Sadowski. Virtual Screening in the Cloud: How Big Is Big Enough?. Journal of Chemical Information and Modeling 2020, 60 (9) , 4274-4282. https://doi.org/10.1021/acs.jcim.9b00779
    46. Joseph A. Morrone, Jeffrey K. Weber, Tien Huynh, Heng Luo, Wendy D. Cornell. Combining Docking Pose Rank and Structure with Deep Learning Improves Protein–Ligand Binding Mode Prediction over a Baseline Docking Approach. Journal of Chemical Information and Modeling 2020, 60 (9) , 4170-4179. https://doi.org/10.1021/acs.jcim.9b00927
    47. Francois Berenger, Yoshihiro Yamanishi. Ranking Molecules with Vanishing Kernels and a Single Parameter: Active Applicability Domain Included. Journal of Chemical Information and Modeling 2020, 60 (9) , 4376-4387. https://doi.org/10.1021/acs.jcim.9b01075
    48. Kangway V. Chuang, Laura M. Gunsalus, Michael J. Keiser. Learning Molecular Representations for Medicinal Chemistry. Journal of Medicinal Chemistry 2020, 63 (16) , 8705-8722. https://doi.org/10.1021/acs.jmedchem.0c00385
    49. Evan N. Feinberg, Elizabeth Joshi, Vijay S. Pande, Alan C. Cheng. Improvement in ADMET Prediction with Multitask Deep Featurization. Journal of Medicinal Chemistry 2020, 63 (16) , 8835-8848. https://doi.org/10.1021/acs.jmedchem.9b02187
    50. Koichiro Kato, Tomohide Masuda, Chiduru Watanabe, Naoki Miyagawa, Hideo Mizouchi, Shumpei Nagase, Kikuko Kamisaka, Kanji Oshima, Satoshi Ono, Hiroshi Ueda, Atsushi Tokuhisa, Ryo Kanada, Masateru Ohta, Mitsunori Ikeguchi, Yasushi Okuno, Kaori Fukuzawa, Teruki Honma. High-Precision Atomic Charge Prediction for Protein Systems Using Fragment Molecular Orbital Calculation and Machine Learning. Journal of Chemical Information and Modeling 2020, 60 (7) , 3361-3368. https://doi.org/10.1021/acs.jcim.0c00273
    51. Yanxing Wang, Jianxing Hu, Junyong Lai, Yibo Li, Hongwei Jin, Lihe Zhang, Liang-Ren Zhang, Zhen-ming Liu. TF3P: Three-Dimensional Force Fields Fingerprint Learned by Deep Capsular Network. Journal of Chemical Information and Modeling 2020, 60 (6) , 2754-2765. https://doi.org/10.1021/acs.jcim.0c00005
    52. Lena Hefke, Kerstin Hiesinger, W. Felix Zhu, Jan S. Kramer, Ewgenij Proschak. Computer-Aided Fragment Growing Strategies to Design Dual Inhibitors of Soluble Epoxide Hydrolase and LTA4 Hydrolase. ACS Medicinal Chemistry Letters 2020, 11 (6) , 1244-1249. https://doi.org/10.1021/acsmedchemlett.0c00102
    53. Robert P. Sheridan, Prabha Karnachi, Matthew Tudor, Yuting Xu, Andy Liaw, Falgun Shah, Alan C. Cheng, Elizabeth Joshi, Meir Glick, Juan Alvarez. Experimental Error, Kurtosis, Activity Cliffs, and Methodology: What Limits the Predictivity of Quantitative Structure–Activity Relationship Models?. Journal of Chemical Information and Modeling 2020, 60 (4) , 1969-1982. https://doi.org/10.1021/acs.jcim.9b01067
    54. Alice Capecchi, Alain Zhang, Jean-Louis Reymond. Populating Chemical Space with Peptides Using a Genetic Algorithm. Journal of Chemical Information and Modeling 2020, 60 (1) , 121-132. https://doi.org/10.1021/acs.jcim.9b01014
    55. Damian Leśniak, Sabina Podlewska, Stanisław Jastrzębski, Igor Sieradzki, Andrzej J. Bojarski, Jacek Tabor. Development of New Methods Needs Proper Evaluation—Benchmarking Sets for Machine Learning Experiments for Class A GPCRs. Journal of Chemical Information and Modeling 2019, 59 (12) , 4974-4992. https://doi.org/10.1021/acs.jcim.9b00689
    56. Yipin Lu, Shankara Anand, William Shirley, Peter Gedeck, Brian P. Kelley, Suzanne Skolnik, Stephane Rodde, Mai Nguyen, Mika Lindvall, Weiping Jia. Prediction of pKa Using Machine Learning Methods with Rooted Topological Torsion Fingerprints: Application to Aliphatic Amines. Journal of Chemical Information and Modeling 2019, 59 (11) , 4706-4719. https://doi.org/10.1021/acs.jcim.9b00498
    57. Alexey V. Zakharov, Tongan Zhao, Dac-Trung Nguyen, Tyler Peryea, Timothy Sheils, Adam Yasgar, Ruili Huang, Noel Southall, Anton Simeonov. Novel Consensus Architecture To Improve Performance of Large-Scale Multitask Deep Learning QSAR Models. Journal of Chemical Information and Modeling 2019, 59 (11) , 4613-4624. https://doi.org/10.1021/acs.jcim.9b00526
    58. Louis Bellmann, Patrick Penner, Matthias Rarey. Connected Subgraph Fingerprints: Representing Molecules Using Exhaustive Subgraph Enumeration. Journal of Chemical Information and Modeling 2019, 59 (11) , 4625-4635. https://doi.org/10.1021/acs.jcim.9b00571
    59. Hongyao Zhu, Mark E. Flanagan, Robert V. Stanton. Designing DNA Encoded Libraries of Diverse Products in a Focused Property Space. Journal of Chemical Information and Modeling 2019, 59 (11) , 4645-4653. https://doi.org/10.1021/acs.jcim.9b00729
    60. Gian Marco Ghiandoni, Michael J. Bodkin, Beining Chen, Dimitar Hristozov, James E. A. Wallace, James Webster, Valerie J. Gillet. Development and Application of a Data-Driven Reaction Classification Model: Comparison of an Electronic Lab Notebook and Medicinal Chemistry Literature. Journal of Chemical Information and Modeling 2019, 59 (10) , 4167-4187. https://doi.org/10.1021/acs.jcim.9b00537
    61. Wen Torng, Russ B. Altman. Graph Convolutional Neural Networks for Predicting Drug-Target Interactions. Journal of Chemical Information and Modeling 2019, 59 (10) , 4131-4149. https://doi.org/10.1021/acs.jcim.9b00628
    62. Dai Feng, Vladimir Svetnik, Andy Liaw, Matthew Pratola, Robert P. Sheridan. Building Quantitative Structure–Activity Relationship Models Using Bayesian Additive Regression Trees. Journal of Chemical Information and Modeling 2019, 59 (6) , 2642-2655. https://doi.org/10.1021/acs.jcim.9b00094
    63. Carlos Garcia-Hernandez, Alberto Fernández, Francesc Serratosa. Ligand-Based Virtual Screening Using Graph Edit Distance as Molecular Similarity Measure. Journal of Chemical Information and Modeling 2019, 59 (4) , 1410-1421. https://doi.org/10.1021/acs.jcim.8b00820
    64. Robert P. Sheridan. Interpretation of QSAR Models by Coloring Atoms According to Changes in Predicted Activity: How Robust Is It?. Journal of Chemical Information and Modeling 2019, 59 (4) , 1324-1337. https://doi.org/10.1021/acs.jcim.8b00825
    65. Jan Wenzel, Hans Matter, Friedemann Schmidt. Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets. Journal of Chemical Information and Modeling 2019, 59 (3) , 1253-1268. https://doi.org/10.1021/acs.jcim.8b00785
    66. Domenico Alberga, Daniela Trisciuzzi, Michele Montaruli, Francesco Leonetti, Giuseppe Felice Mangiatordi, Orazio Nicolotti. A New Approach for Drug Target and Bioactivity Prediction: The Multifingerprint Similarity Search Algorithm (MuSSeL). Journal of Chemical Information and Modeling 2019, 59 (1) , 586-596. https://doi.org/10.1021/acs.jcim.8b00698
    67. Yingchun Cai, Hongbin Yang, Weihua Li, Guixia Liu, Philip W. Lee, Yun Tang. Multiclassification Prediction of Enzymatic Reactions for Oxidoreductases and Hydrolases Using Reaction Fingerprints and Machine Learning Methods. Journal of Chemical Information and Modeling 2018, 58 (6) , 1169-1181. https://doi.org/10.1021/acs.jcim.7b00656
    68. Izhar Wallach, Abraham Heifets. Most Ligand-Based Classification Benchmarks Reward Memorization Rather than Generalization. Journal of Chemical Information and Modeling 2018, 58 (5) , 916-932. https://doi.org/10.1021/acs.jcim.7b00403
    69. Patrick Bleiziffer, Kay Schaller, Sereina Riniker. Machine Learning of Partial Charges Derived from High-Quality Quantum-Mechanical Calculations. Journal of Chemical Information and Modeling 2018, 58 (3) , 579-590. https://doi.org/10.1021/acs.jcim.7b00663
    70. Tova N. Williams, Melaine A. Kuenemann, George A. Van Den Driessche, Antony J. Williams, Denis Fourches, and Harold S. Freeman . Toward the Rational Design of Sustainable Hair Dyes Using Cheminformatics Approaches: Step 1. Database Development and Analysis. ACS Sustainable Chemistry & Engineering 2018, 6 (2) , 2344-2352. https://doi.org/10.1021/acssuschemeng.7b03795
    71. Samo Turk, Benjamin Merget, Friedrich Rippmann, and Simone Fulle . Coupling Matched Molecular Pairs with Machine Learning for Virtual Compound Optimization. Journal of Chemical Information and Modeling 2017, 57 (12) , 3079-3085. https://doi.org/10.1021/acs.jcim.7b00298
    72. Yuting Xu, Junshui Ma, Andy Liaw, Robert P. Sheridan, and Vladimir Svetnik . Demystifying Multitask Deep Neural Networks for Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling 2017, 57 (10) , 2490-2504. https://doi.org/10.1021/acs.jcim.7b00087
    73. Connor W. Coley, Regina Barzilay, William H. Green, Tommi S. Jaakkola, and Klavs F. Jensen . Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction. Journal of Chemical Information and Modeling 2017, 57 (8) , 1757-1772. https://doi.org/10.1021/acs.jcim.6b00601
    74. Bharath Ramsundar, Bowen Liu, Zhenqin Wu, Andreas Verras, Matthew Tudor, Robert P. Sheridan, and Vijay Pande . Is Multitask Deep Learning Practical for Pharma?. Journal of Chemical Information and Modeling 2017, 57 (8) , 2068-2076. https://doi.org/10.1021/acs.jcim.7b00146
    75. Hongbin Yang, Jie Li, Zengrui Wu, Weihua Li, Guixia Liu, and Yun Tang . Evaluation of Different Methods for Identification of Structural Alerts Using Chemical Ames Mutagenicity Data Set as a Benchmark. Chemical Research in Toxicology 2017, 30 (6) , 1355-1364. https://doi.org/10.1021/acs.chemrestox.7b00083
    76. Manish Sud . MayaChemTools: An Open Source Package for Computational Drug Discovery. Journal of Chemical Information and Modeling 2016, 56 (12) , 2292-2297. https://doi.org/10.1021/acs.jcim.6b00505
    77. Robert P. Sheridan, Wei Min Wang, Andy Liaw, Junshui Ma, and Eric M. Gifford . Extreme Gradient Boosting as a Method for Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling 2016, 56 (12) , 2353-2360. https://doi.org/10.1021/acs.jcim.6b00591
    78. Robert P. Sheridan . Debunking the Idea that Ligand Efficiency Indices Are Superior to pIC50 as QSAR Activities. Journal of Chemical Information and Modeling 2016, 56 (11) , 2253-2262. https://doi.org/10.1021/acs.jcim.6b00431
    79. Jennifer N. Wei, David Duvenaud, and Alán Aspuru-Guzik . Neural Networks for the Prediction of Organic Chemistry Reactions. ACS Central Science 2016, 2 (10) , 725-732. https://doi.org/10.1021/acscentsci.6b00219
    80. Bruno J. Neves, Rafael F. Dantas, Mario R. Senger, Cleber C. Melo-Filho, Walter C. G. Valente, Ana C. M. de Almeida, João M. Rezende-Neto, Elid F. C. Lima, Ross Paveley, Nicholas Furnham, Eugene Muratov, Lee Kamentsky, Anne E. Carpenter, Rodolpho C. Braga, Floriano P. Silva-Junior, and Carolina Horta Andrade . Discovery of New Anti-Schistosomal Hits by Integration of QSAR-Based Virtual Screening and High Content Screening. Journal of Medicinal Chemistry 2016, 59 (15) , 7075-7088. https://doi.org/10.1021/acs.jmedchem.5b02038
    81. Jabed H. Tomal, William J. Welch, and Ruben H. Zamar . Exploiting Multiple Descriptor Sets in QSAR Studies. Journal of Chemical Information and Modeling 2016, 56 (3) , 501-509. https://doi.org/10.1021/acs.jcim.5b00663
    82. Peter Willett . Molecular Similarity Approaches in Chemoinformatics: Early History and Literature Status. 2016, 67-89. https://doi.org/10.1021/bk-2016-1222.ch006
    83. Nicholas C. Firth, Butrus Atrash, Nathan Brown, and Julian Blagg . MOARF, an Integrated Workflow for Multiobjective Optimization: Implementation, Synthesis, and Biological Evaluation. Journal of Chemical Information and Modeling 2015, 55 (6) , 1169-1180. https://doi.org/10.1021/acs.jcim.5b00073
    84. Robert P. Sheridan . The Relative Importance of Domain Applicability Metrics for Estimating Prediction Errors in QSAR Varies with Training Set Diversity. Journal of Chemical Information and Modeling 2015, 55 (6) , 1098-1107. https://doi.org/10.1021/acs.jcim.5b00110
    85. Yuriy A. Abramov . Major Source of Error in QSPR Prediction of Intrinsic Thermodynamic Solubility of Drugs: Solid vs Nonsolid State Contributions?. Molecular Pharmaceutics 2015, 12 (6) , 2126-2141. https://doi.org/10.1021/acs.molpharmaceut.5b00119
    86. Jean-Philippe Métivier, Alban Lepailleur, Aleksey Buzmakov, Guillaume Poezevara, Bruno Crémilleux, Sergei O. Kuznetsov, Jérémie Le Goff, Amedeo Napoli, Ronan Bureau, and Bertrand Cuissart . Discovering Structural Alerts for Mutagenicity Using Stable Emerging Molecular Patterns. Journal of Chemical Information and Modeling 2015, 55 (5) , 925-940. https://doi.org/10.1021/ci500611v
    87. Daniel L. Cheney, Jeffrey M. Bozarth, William J. Metzler, Paul E. Morin, Luciano Mueller, John A. Newitt, Alexandra H. Nirschl, Alan R. Rendina, James K. Tamura, Anzhi Wei, Xiao Wen, Nicholas R. Wurtz, Dietmar A. Seiffert, Ruth R. Wexler, and E. Scott Priestley . Discovery of Novel P1 Groups for Coagulation Factor VIIa Inhibition Using Fragment-Based Screening. Journal of Medicinal Chemistry 2015, 58 (6) , 2799-2808. https://doi.org/10.1021/jm501982k
    88. Robert P. Sheridan, Daniel R. McMasters, Johannes H. Voigt, and Mary Jo Wildey . eCounterscreening: Using QSAR Predictions to Prioritize Testing for Off-Target Activities and Setting the Balance between Benefit and Risk. Journal of Chemical Information and Modeling 2015, 55 (2) , 231-238. https://doi.org/10.1021/ci500666m
    89. Oscar Méndez-Lucio, Albert J. Kooistra, Chris de Graaf, Andreas Bender, and José L. Medina-Franco . Analyzing Multitarget Activity Landscapes Using Protein–Ligand Interaction Fingerprints: Interaction Cliffs. Journal of Chemical Information and Modeling 2015, 55 (2) , 251-262. https://doi.org/10.1021/ci500721x
    90. Junshui Ma, Robert P. Sheridan, Andy Liaw, George E. Dahl, and Vladimir Svetnik . Deep Neural Nets as a Method for Quantitative Structure–Activity Relationships. Journal of Chemical Information and Modeling 2015, 55 (2) , 263-274. https://doi.org/10.1021/ci500747n
    91. Nadine Schneider, Daniel M. Lowe, Roger A. Sayle, and Gregory A. Landrum . Development of a Novel Fingerprint for Chemical Reactions and Its Application to Large-Scale Reaction Classification and Similarity. Journal of Chemical Information and Modeling 2015, 55 (1) , 39-53. https://doi.org/10.1021/ci5006614
    92. Jaclyn L. Henderson, Bethany L. Kormos, Matthew M. Hayward, Karen J. Coffman, Jayasankar Jasti, Ravi G. Kurumbail, Travis T. Wager, Patrick R. Verhoest, G. Stephen Noell, Yi Chen, Elie Needle, Zdenek Berger, Stefanus J. Steyn, Christopher Houle, Warren D. Hirst, and Paul Galatsis . Discovery and Preclinical Profiling of 3-[4-(Morpholin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a Highly Potent, Selective, Brain Penetrant, and in Vivo Active LRRK2 Kinase Inhibitor. Journal of Medicinal Chemistry 2015, 58 (1) , 419-432. https://doi.org/10.1021/jm5014055
    93. Richard Sherhod, Philip N. Judson, Thierry Hanser, Jonathan D. Vessey, Samuel J. Webb, and Valerie J. Gillet . Emerging Pattern Mining To Aid Toxicological Knowledge Discovery. Journal of Chemical Information and Modeling 2014, 54 (7) , 1864-1879. https://doi.org/10.1021/ci5001828
    94. Mahendra Awale and Jean-Louis Reymond . Atom Pair 2D-Fingerprints Perceive 3D-Molecular Shape and Pharmacophores for Very Fast Virtual Screening of ZINC and GDB-17. Journal of Chemical Information and Modeling 2014, 54 (7) , 1892-1907. https://doi.org/10.1021/ci500232g
    95. Robert P. Sheridan, Nicolas Zorn, Edward C. Sherer, Louis-Charles Campeau, Charlie (Zhenyu) Chang, Jared Cumming, Matthew L. Maddess, Philippe G. Nantermet, Christopher J. Sinz, and Paul D. O’Shea . Modeling a Crowdsourced Definition of Molecular Complexity. Journal of Chemical Information and Modeling 2014, 54 (6) , 1604-1616. https://doi.org/10.1021/ci5001778
    96. Robert P. Sheridan . Global Quantitative Structure–Activity Relationship Models vs Selected Local Models as Predictors of Off-Target Activities for Project Compounds. Journal of Chemical Information and Modeling 2014, 54 (4) , 1083-1092. https://doi.org/10.1021/ci500084w
    97. Monika Gupta, Harish Jangra, P. V. Bharatam, and A. K. Madan . Relative Eccentric Distance Sum/Product Indices for QSAR/QSPR: Development, Evaluation, and Application. ACS Combinatorial Science 2014, 16 (3) , 101-112. https://doi.org/10.1021/co400088p
    98. Dong-Sheng Cao, Yi-Zeng Liang, Jun Yan, Gui-Shan Tan, Qing-Song Xu, and Shao Liu . PyDPI: Freely Available Python Package for Chemoinformatics, Bioinformatics, and Chemogenomics Studies. Journal of Chemical Information and Modeling 2013, 53 (11) , 3086-3096. https://doi.org/10.1021/ci400127q
    99. Sereina Riniker, Nikolas Fechner, and Gregory A. Landrum . Heterogeneous Classifier Fusion for Ligand-Based Virtual Screening: Or, How Decision Making by Committee Can Be a Good Thing. Journal of Chemical Information and Modeling 2013, 53 (11) , 2829-2836. https://doi.org/10.1021/ci400466r
    100. Robert P. Sheridan . Using Random Forest To Model the Domain Applicability of Another Random Forest Model. Journal of Chemical Information and Modeling 2013, 53 (11) , 2837-2850. https://doi.org/10.1021/ci400482e
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect